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Abstract

Here, we show that if E is a CM elliptic curve with CM field
different from Q(

√
−1), then the set of n for which the nth Fibonacci

number Fn is elliptic Carmichael for E is of asymptotic density zero.
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1 Introduction

Let b ≥ 2 be an integer. A composite integer n is a pseudoprime to base
b if the congruence bn ≡ b (mod n) holds. There are infinitely many pseu-
doprimes with respect to any base b, but they are less numerous than the
primes. That is, putting πb(x) for the number of base b pseudoprimes n ≤ x,
a result of Pomerance [11] shows that the inequality

πb(x) ≤ x

L(x)1/2
with L(x) = exp (log x log log log x/ log log x)

holds for all sufficiently large x. It is conjectured that πb(x) = x/L(x)1+o(1)

holds as x → ∞. For the Fibonacci sequence {Fn}n≥1 is was shown in [9]
that the set of n ≤ x such that Fn is a prime or a base b pseudoprime is of
asymptotic density zero. More precisely, it was shown that the number of
such n ≤ x is at most 5x/ log x if x is sufficiently large.

There are composite integers n which are pseudoprimes for all bases b.
They are called Carmichael numbers and there exist infinitely many of them
as shown by Alford, Granville and Pomerance in 1994 (see [1]). They are also
characterized by the property that n is composite, squarefree and p−1 | n−1
for all prime factors p of n. This characterization is referred to as the Korselt
criterion.

Since elliptic curves have become very important in factoring and primal-
ity testing, several authors have defined elliptic pseudoprimes and elliptic
Carmichael numbers and proved results about them. To define an elliptic
Carmichael number, let E be an elliptic curve over Q given by the minimal
global Weierstraß equation:

E : y2 + A1xy + A3y = x3 + A2x
2 + A4x+ A6, (1)

and let ∆E be its discriminant. For each prime p we put

ap = p+ 1−#E(Fp),

where E(Fp) is the reduction of E modulo p. If p | ∆E, then E(Fp) has a
singularity and we put

ap =


0 for the case of a cusp,
1 for the case of a split node,
−1 for the case of a non–split node.
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If p - ∆E, we have |ap| < 2
√
p. The L-function associated to E is given by

L(s, E) =
∏
p|∆E

1

1− app−s
∏
p-∆E

1

1− app−s + p1−2s
.

The infinite product above is convergent for Re(s) > 3/2 and therefore we can
expand it into a series L(s, E) =

∑
n≥1 ann

−s. Following [10] (see also [12]),
we say that n is an E-Carmichael number if

(i) n is not a prime power;

(ii) gcd(n,∆E) = 1;

(iii) for every p | n and every point P ∈ E(Fp), we have

(n− an + 1)P = Op,

where in the above both the equation and the group law are considered
in Fp.

2 Preliminary observations on E-Carmichael

numbers in the CM case

In [10], it was shown that if E has no CM (complex multiplication), then the
set of E-Carmichael numbers is of asymptotic density zero. Before stating
our main result, we make some comments about condition (iii) above. It is
known that, as a group,

E(Fp) = Z/epZ× Z/dpZ,

for some integers ep and dp with dp | ep. In particular, ep is the exponent of
E(Fp), namely the smallest positive integer k such that

kP = Op

holds for all points P ∈ E(Fp). So, with these notations, (iii) above becomes
equivalent to

ep | n− an + 1 for all p | n. (2)
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It is plain that if we write

#E(Fp) = up,Ev
2
p,E,

where up,E is squarefree, then up,Evp,E | ep. Thus, (2) implies

up,Evp,E | n− an + 1 for all p | n. (3)

Condition (3) is weaker than condition (2) but has the advantage that it
depends only on the arithmetic of p − ap + 1 = #E(Fp) and not on the
group structure of E(Fp). When E has complex multiplication by Q(

√
−d)

(d ∈ {1, 2, 3, 7, 11, 19, 43, 67, 163}), condition (iii) becomes easier in some
cases. Let p be a prime factor of n and suppose additionally that we have
(−d|p) = −1, where (a|p) denotes the Legendre symbol of a with respect
to p. Then ap = 0, so, in particular, #E(Fp) = p + 1. Furthermore, if
there exists such a prime p with the property that p‖n (that is, p | n and
p2 - n), then, writing n = pm with some integer m coprime to p and using
the multiplicative property of an, we get that

an = apam = 0.

In particular, in this case n− an + 1 = n+ 1, a number which is independent
of E.

3 The main result

In this paper, we assume that E has CM by Q(
√
−d), where

d ∈ D := {2, 3, 7, 11, 19, 43, 67, 163},

and look at the set of numbers

Nd = {n : Fn is E-Carmichael}.

For a subset A of the positive integers and a positive real number x put
A(x) = A ∩ [1, x].

Theorem 1. For d ∈ D, we have

#Nd(x) ≤ x

(log x)1/2+o(1)
(x→∞).
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In [5], the authors gave a sufficient condition for a positive integer n to
be an elliptic Carmichael number for all E with CM by Q(

√
−d) resem-

bling the Korselt criterion for Carmichael numbers. In [8], we showed that
the counting function of the set of n such that Fn fulfills that criterion is
O(x(log log x)1/2/(log x)1/2). The upper bound of the present Theorem 1 is
only slightly weaker because of the appearance of o(1) in the exponent of
log x, but here we are counting the presumably larger set of n such that Fn
is elliptic Carmichael for E. In the concluding section of the paper, we make
some comments as to why our argument does not work for d = 1.

4 The proof of Theorem 1

Let ρ(d) be the period modulo d of {Fn}n≥1. We have

ρ(2) = 3, ρ(3) = 8, ρ(7) = 16, ρ(11) = 10, ρ(19) = 18,

ρ(43) = 88, ρ(67) = 136, ρ(163) = 328.

We let `(d) = ρ(d) for all d ∈ D\{2}, and `(2) = ρ(8) = 12 for a reason that
will be apparent later. For each d ∈ D, we let

A(d) =

{
1 ≤ r ≤ `(d) : gcd(r, `(d)) = 1,

(
−d
Fr

)
= −1

}
,

and let a(d) = #A(d). Note that since `(d) is always even, A(d) consists only
of odd residue classes of integers. If d = 2, then `(d) = 12, so gcd(3, r) = 1
for r ∈ A(2). For d ∈ D\{2}, since Fr ≡ Fr+`(d) (mod d), we may always
assume in the calculation of the elements of A(d) that r is not a multiple of
3, so, in particular, Fr is odd therefore the Jacobi symbol appearing in the
definition of A(d) is well defined. For example, 7 ∈ A(d) for d ∈ {2, 7, 11, 19}
since F7 = 13, and(

−2

13

)
=

(
−7

13

)
=

(
−11

13

)
=

(
−19

13

)
= −1,

whereas 13 ∈ A(d) for d ∈ {3, 43, 67, 163} ⊂ D because F13 = 233, and(
−3

233

)
=

(
−43

233

)
=

(
−67

233

)
=

(
−163

233

)
= −1.
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Computing we have

a(2) = 2, a(3) = 2, a(7) = 4, a(11) = 2, a(19) = 4,

a(43) = 20, a(67) = 32, a(163) = 80.

Let x be a large positive real number and y ≤ x be some parameter
depending on x to be made more precise later. Consider n ∈ N (x), where
we omit the dependence on d for simplicity. In fact, in what follows, Ni(x)
will be subsets of N (x) for i = 1, 2, . . . labeled increasingly as they appear.
Let Qd be the set of primes q ≡ r (mod `(d)) for r ∈ A(d) and d ∈ D.

We distinguish several cases.

Case 1. n ∈ N1(x) = {n ≤ x : q - n for any q ∈ Qd(y, x)}.

By the sieve and the prime number theorem in arithmetic progressions,
we have

#N1(x)� x
∏
p∈Qd
y<p<x

(
1− 1

p

)
� x

(
log y

log x

)a(d)/φ(`(d))

� x

(
log y

log x

)1/2

, (4)

where we used the fact that a(d)/φ(`(d)) = 1/2 for all d ∈ D\{19}, whereas
a(19)/φ(`(19)) = 2/3 > 1/2.

Case 2. n ∈ N2(x) = {n ≤ x : q2 | n for some q ∈ (y, x)}.

To estimate #N2(x), we fix q ∈ (y, x) and note that the number of n ≤ x
such that q2 | n is bx/q2c ≤ x/q2. Summing this up for q > y, we get

#N2(x) ≤
∑
y<q<x

x

q2
≤ x

∑
m≥y

1

m2
� x

y
. (5)

From now on, we assume that n ∈ N (x)\(N1(x) ∪ N2(x)). Then there
exists q ∈ Qd∩(y, x) with q‖n. Let q be the minimal such prime. Since q ≡ r
(mod `(d)) for some r ∈ A(d), we get that Fq ≡ Fr (mod d). In particular,(

−d
Fq

)
=

(
−d
Fr

)
= −1.
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Indeed, this is not quite immediate but it can be shown in the following way
(where one sees the reason we chose the definition of `(d) the way we did).
If d is odd, then since Fq and Fr are congruent to 1 modulo 4, we have(

−d
Fq

)
=

(
−1

Fq

)(
d

Fq

)
=

(
d

Fq

)
=

(
Fq
d

)
, (6)

where for the last equality we used quadratic reciprocity. The same argument
works with q replaced by r to give(

−d
Fr

)
=

(
Fr
d

)
, (7)

and now the numbers shown at (6) and (7) are equal because Fq ≡ Fr
(mod d). Finally, when d = 2, the value of (−d|m) for odd m only depends
on the class of m modulo 8, and Fq ≡ Fr (mod 8).

Having concluded that (−d|Fq) = −1, we conclude that Fq must have
a prime factor p such that (−d|p) = −1 and the exponent of p in the fac-
torization of Fq is odd. Let p be the smallest such prime factor of Fq. Let
νp(m) be the exponent of p in the factorization of the positive integer m. Let
νp(Fq) = t with t odd.

Case 3. n ∈ N3(x) = {n ≤ x : νp(Fn) > νp(Fq)}.

In this case, p | Fq and p | Fn/Fq. Writing n = mq, it is known that this
last condition implies that p | m. Since also p | Fq, it follows that p ≡ ±1
(mod q). Thus, n has two prime factors, q ∈ (y, x) and p ≡ ±1 (mod q).
Fixing p and q, the number of such n ≤ x is bx/pqc ≤ x/pq. Summing up
first over p while keeping q fixed, then over q, we get that

#N3(x) ≤
∑
y<q<x
p≤x

p≡±1 (mod q)

x

pq
� x

∑
y<q<x

1

q

∑
p≤x

p≡±1 (mod q)

1

p

� x
∑
y<q

log log x

qφ(q)
� x log log x

∑
m≥y

1

m(m− 1)

� x log log x

y
. (8)

From now on, we assume that n ∈ N (x)\(N1(x) ∪ N2(x) ∪ N3(x)). In
this case, Fn = ptm, with some odd t. Since an is multiplicative, ap = 0 and
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t is odd, we get that aFn = aptam = 0. Here, we used the fact that apt = 0,
which follows because upon writing ap = α + β for some complex numbers
α, β with αβ = p (here, {α, β} = {−√p,√p} because their sum is zero),
then

apt =
αt+1 − βt+1

α− β
= 0,

where the last equality holds because t + 1 is even and α = −β. Thus,
Fn − aFn + 1 = Fn + 1. We observe that

Fn + 1 = F(n+δ)/2L(n−δ)/2 where δ ∈ {±1,±2} with n ≡ δ (mod 2).

Here, {Lm}m≥0 is the Lucas companion of the Fibonacci sequence given by
L0 = 2, L1 = 1 and Lm+2 = Lm+1 + Lm for all m ≥ 0. More precisely,

F4k + 1 = F2k−1L2k+1, F4k+1 + 1 = F2k+1L2k,

F4k+2 + 1 = F2k+2L2k, F4k+3 + 1 = F2k+1L2k+2

(see, for example, [2]). Now clearly,

F(n+δ)/2L(n−δ)/2 | Fn+|δ|Fn−|δ| | F3(n2−δ2).

Indeed, the first divisibility follows from the fact that F2m = FmLm for all
positive integers m. For the second one, note that

gcd(Fn+|δ|, Fn−|δ|) = Fgcd(n+|δ|,n−|δ| | F2|δ|.

If |δ| = 1, then F2|δ| = F2 = 1, so Fn+1 and Fn−1 are coprime and each divides
Fn2−1, therefore so does their product. If |δ| = 2, then F2|δ| = F4 = 3, so
either Fn+2 and Fn−2 are coprime, in which case their product divides Fn2−4

and also F3(n2−4), or they are each multiples of 3. This happens if n ≡ 2
(mod 4). In that case, at most one of n + 2 and n − 2 is a multiple of 3,
therefore either 3‖Fn+2, or 3‖Fn−2. It now follows easily that

ν3(F3(n2−4)) > max{ν3(Fn+2), ν3(Fn−2},

so it follows that Fn+2Fn−2 | F3(n2−4).

We now write P (m) for the largest prime factor of m, we put

z := exp

(
log x log log log x

log log x

)
,
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and continue with our cases.

Case 4. n ∈ N4(x) = {n ≤ x : P (n) ≤ z}.

In classical notations, #N4(x) = Ψ(x, z). By known estimates from the
theory of smooth numbers (see [4]), we have that

#N4(x) ≤ x

exp((1 + o(1))u log u)
, where u =

log x

log z
(x→∞).

For us, u = log log x/ log log log x, so u log u = (1 + o(1)) log log x as x→∞.
Thus, clearly,

#N4(x)� x

(log x)1/2
. (9)

From now on, we assume that

n ∈ N (x)\ (N1(x) ∪N2(x) ∪N3(x) ∪N4(x)) .

We write n = Pm, where P = P (n) > z. Put w = exp((log x)1/2) and let us
treat the case:

Case 5. n ∈ N5(x) = {n ≤ x : m ≤ w}.

We fix m. Then P ≤ x/m, so there are π(x/m) choices for P . Since

π(x/m)� x

m log(x/m)
≤ x

m log z
=
x log log x

m log x
,

we get that

#N5(x) �
∑
m≤w

x log log x

m log x
=
x log log x

log x

∑
m≤w

1

m

� x log log x logw

log x
=
x log log x

(log x)1/2
. (10)

From now on,

n ∈ N6(x) = N (x)\

(
5⋃
i=1

Ni(x)

)
.
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Let n = Pm, P = P (n) ≥ y, m > w. We fix m. Then P ≤ x/m. Let p be
the largest prime factor of Fm. Then p ≥ m − 1 by Carmichael’s Primitive
Divisor Theorem [3] (in fact, p/m tends to infinity with m in an effective
way by a recent result of Stewart [13], but we shall not need this). Write
p− ap + 1 = up,Ev

2
p,E. Then, since |ap| < 2

√
p, we get that

up,Evp,E ≥
√
p− ap + 1� p1/2 � m1/2.

Condition (3) now gives

up,Evp,E | Fn + 1 | F3(n2−δ2),

which implies
z(up,Evp,E) | 3(n2 − δ2).

Here and in what follows, for a positive integer m we write z(m) for the order
of appearance of m in the Fibonacci sequence, namely the smallest positive
integer k such that z(m) | Fk. This always exists and has the property that
if m | F`, then z(m) | `. Let z(up,Evp,E) = fE(m), a number that depends
only on E and m. Since up,Evp,E � m1/2, we have f(m)� logm. Also,

f(m) | 3(n2 − δ2).

This shows that

P 2m2 ≡ δ2 (mod f(m)/ gcd(3, f(m)).

Put g(m) = f(m)/ gcd(3, f(m)). If |δ| = 1, then m is odd and invertible
modulo g(m), and we get that P 2 is fixed modulo g(m). If |δ| = 2, then
m is even, and P 2 is fixed modulo h(m) = f(m)/ gcd(12, f(m)). So, in
both cases, P 2 is fixed modulo h(m). This puts P in at most O(τ(h(m)))
arithmetic progressions modulo h(m), therefore O(τ(f(m))) arithmetic pro-
gressions modulo f(m). Here, τ is the number of divisors function. To count
such P ’s we distinguish three cases:

(i) If f(m) < z1/2, we then have that for each fixed progression say a
modulo f(m), the number of such primes P ≤ x/m is at most

π(x/m; f(m), a) � x

mφ(f(m)) log(x/mf(m))
� x log log x

mf(m) log(z1/2)

� x(log log x)2

mf(m) log x
.
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Here, we used the Brun-Titchmarsh theorem to bound the number of
the primes in an arithmetic progression up to x/m, the minimal order
φ(k)� k/ log log k of the Euler function with k = f(m) < z1/2 and the
fact that

x

mf(m)
≥ P

z1/2
≥ z1/2.

Thus, the number of such primes over all progressions modulo f(m) is
at most

� x(log log x)2τ(f(m))

mf(m) log x
� x(log log x)2

mf(m)1+o(1) log x

� x(log log x)2

m(log x)3/2+o(1)

as x→∞, where we used the fact that τ(k) = ko(1) as k →∞, as well
as the fact that f(m)� logm ≥ logw = (log x)1/2. Summing up over
m and using the fact that∑

m≤x

1

m
= log x+O(1),

we get a bound of

x

(log x)1/2+o(1)
(x→∞). (11)

(ii) If z1/2 ≤ f(m) < x/m, then the number of such primes in one progres-
sion is at most x/mf(m) + 1 ≤ 2x/mf(m) � x/mz1/2. Summing up
over all progressions modulo f(m), the number of such possibilities is
at most

� xτ(f(m))

mz1/2
.

Since f(m) ≤ 3x2, using the maximal order of the divisor function
exp(O(log x/ log log x)) for k ≤ 3x2, we see that

τ(f(m))

z1/2
≤ exp(O(log x/ log log x)− (log z)/2) <

1

z1/3

for all sufficiently large x. Thus, the number of such possibilities is at
most

x

mz1/3
.
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Summing up over m, we get

x log x

z1/3
. (12)

(iii) If x/m ≤ f(m) < 3x2, then each progression contains at most one such
prime. So, for each fixed m, there are at most τ(f(m)) such possibil-
ities. Summing up over all m ≤ x/z, we get a number of possibilities
at most

x

z
exp(O(log x/ log log x)) <

x

z1/2
. (13)

Summarizing the above calculations (11), (12) and (13), the number of n ∈
N6(x) is at most

#N6(x)� x

(log x)1/2+o(1)
+
x log x

z1/3
+

x

z1/2
� x

(log x)1/2+o(1)
(x→∞).

(14)
We now choose y = (log x)1/2, and the conclusion follows from (4), (5), (8),
(9), (10), (14) and the fact that

#N (x) ≤
6∑
i=1

#Ni(x).

5 Comments and Remarks

We make some comments on the case d = 1. From the remarks preceding
the statement of our theorem, if n is a E-Carmichael number then we can
exploit well the CM assumption provided that we can find primes p such that
p‖n or νp(n) odd, such that (−d|p) = −1, because then n− an + 1 = n+ 1.
In the case d = 1, such primes are the primes p ≡ 3 (mod 4). However, if
Fn is a Fibonacci number of odd index and coprime to 3 (otherwise Fn is
even), then every prime factor of Fn is congruent to 1 modulo 4. This is
easy to see by writing n = 2t + 1, and using F2t+1 = F 2

t + F 2
t+1 and the

fact that Ft and Ft+1 are coprime. Thus, for d = 1 and for all n odd and
coprime to 6 (a positive proportion of them), there are no prime factors p
of Fn with (−d|p) = (−1|p) = −1, so we cannot exploit this aspect of the
CM condition. In particular, we cannot conclude that aFn = 0 for most n,
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and then Fn − aFn + 1 does not have the same nice property as Fn + 1 has
that it factors as a product of some Fibonacci and Lucas numbers which
we successfully exploited in our proof of Theorem 1. Obviously, there might
be other aspects of the CM condition for d = 1 which we have overlooked
and which may be invoked to prove that the set of n for which Fn is E-
Carmichael is of asymptotic density zero, but we leave such a task to the
reader. Finally, we point out that several authors have treated the more
coarse notion of an P ∈ E pseudoprime, which is a composite integer n such
that (n− an + 1)P = Op for all p | n and a fixed P ∈ E(Q) of infinite order
(see [5], [6], [7]), and proved that they are of asymptotic density zero. It
makes sense to ask the same question for the set of n such that Fn is an
P ∈ E pseudoprime, but we have no idea how to attack this question.
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