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Abstract. We give some results towards the conjecture that X(2t, 2t+1`− 1) are the only nonlinear
balanced elementary symmetric polynomials over GF (2), where t and ` are any positive integers
and X(d, n) =

∑
1≤i1<i2<···<id≤n xi1xi2 · · ·xid .
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Balancedness is sometimes required for Boolean functions, since we often desire

our cryptographic primitives to be unbiased in output. Symmetry is also often re-
quired [2, 3], and naturally, one would ask when the two features will intersect. In [5],
we conjectured that the polynomials X(2t, 2t+1` − 1) are the only nonlinear balanced
elementary symmetric polynomials, where X(d, n) =

∑
1≤i1<···<id≤n

xi1 · · ·xid .

In the present paper we give some results towards this conjecture. In fact, we prove
the conjecture for many cases of the parameters involved, but there are some cases still
open (which will be mentioned explicitly later in Remark 3.19).

1 Preliminaries

Throughout, x = (x1, . . . , xn) and ⊕ is the addition modulo 2. If f : GF (2)n −→
GF (2), then f can be uniquely expressed in the following form, called the algebraic
normal form (ANF):

f(x1, x2, . . . , xn) =
⊕

k1,k2,...,kn∈GF (2)

ak1k2...knx1
k1x2

k2 · · ·xnkn ,

where each coefficient ak1k2...kn
is a constant in GF (2).

The function f(x) is called an affine function if f(x) = a1x1 ⊕ · · · ⊕ anxn ⊕ a0.
If a0 = 0, f(x) is also called a linear function. We will denote by Fn the set of
all functions of n variables and by Ln the set of affine ones. We will call a function
nonlinear if it is not in Ln. Let wt(a) denote the Hamming weight of a vector a with
entries 0 or 1. The function f(x) is called symmetric if any permutation of the xi leaves
the value of the function unchanged.
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2 The balancedness of elementary symmetric polynomials over
GF (2)

Definition 2.1. For integers n and d, 1 ≤ d ≤ n we define the elementary symmetric
polynomial by

X(d, n) =
∑

1≤i1<i2<···<id≤n

xi1xi2 · · ·xid . (2.1)

We summarize here some of the results proven in [5]. We let C(n, k) denote the
binomial coefficient (recall that if n < k, then C(n, k) = 0).

Theorem 2.2. The elementary symmetric polynomial X(d, n) is balanced if and only if∑
0≤j≤n C(n, j)(−1)C(j,d) = 0. If X(d, n) is balanced, then d ≤ dn/2e. Furthermore,

if t, ` are positive integers, then X(2t, 2t+1`− 1) is balanced.

We conjectured [5] that the functions in Theorem 2.2 are the only balanced ones.
Conjecture 1. There are no nonlinear balanced elementary symmetric polynomials
except for X(2t, 2t+1`− 1), where t and ` are any positive integers.

3 The Results

The remainder of the paper will be devoted to the study of Conjecture 1 and proving it
for various values of the parameters t, `. A Boolean function f(x) in n variables is said
to satisfy the Strict Avalanche Criterion (“is SAC” for short) if changing any one of
the n bits in the input x results in the output of the function being changed for exactly
half of the 2n vectors x with the changed input bit. The SAC concept is relevant for
our work because of

Lemma 3.1. The function f(x) = X(d, n) is SAC if and only if X(d − 1, n − 1) is
balanced.

Proof. By definition, f is SAC if and only if f(x)⊕f(x⊕a) is balanced for all a ∈
GF (2)n, with wt(a) = 1. We have f(x)⊕f(x⊕(0, . . . , 0, 1)) = X(d − 1, n − 1), so
the lemma is proved. 2

By definition any symmetric function is completely determined by the weight of its
input, so we can define vf (i) for 0 ≤ i ≤ n by f(x) = vf (wt(x)). Moreover, recall the
usual algebraic normal form (ANF) of a Boolean function f in n variables

f(x1, . . . , xn) =
n⊕
i=0

λf (i)
⊕

u,wt(u)=i

n∏
j=1

x
uj

j ,

where vf (i) =
⊕
j�i

λf (j), and λf (i) =
⊕
j�i

vf (j), over GF (2) (j � i means that the

binary expansion of j is less than the binary expansion of i, in lexicographical order)
(see [3, Propositions 1 and 2, p. 2792]).
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The ANF of a symmetric function becomes

f(x1, . . . , xn) =
n⊕
d=0

λf (d)X(d, n), (3.1)

in our notations. Further, when f is an elementary symmetric function, then λf (d) = 1
is the only nonzero coefficient in the representation (3.1). Moreover,

vf (i) =
⊕
j�i

λf (j) =

{
λf (d), if d � i
0, otherwise.

(3.2)

We need the following further lemmas. We define the well known Walsh transform
Wf (w) by

Wf (w) =
∑

x∈GF (2)n

(−1)f(x)+x·w.

Lemma 3.2. A Boolean function f in n variables is SAC if and only if for every vector
u with wt(u) = 1 and every vector v, we have∑

w�ū

Wf (w⊕v)2 = 2wt(ū)+n.

Proof. This is a special case of Proposition 1 of Carlet [4, p. 35]. 2

Lemma 3.3. If f(x) in n variables is SAC, then∑
w:wn=0

Wf (w)2 =
∑

w:wn=1

Wf (w)2 = 22n−1. (3.3)

Proof. We use Lemma 3.2 with v = 0 and u = (0, . . . , 0, 1). It follows that wt(ū) =
n− 1, so the first sum in (3.3) equals 22n−1. The two sums add up to 22n by Parseval’s
Theorem, so the second sum is also 22n−1. 2

Lemma 3.4. If f(x) = X(d, n) is SAC and d is odd, then

Wf (0) = 2n − 2wt(f) and Wf (1) = 2wt(f). (3.4)

Proof. The first equation in (3.4) is clear for any f , whether or not d is odd.
For the second equation, we observe that by (3.2) our hypotheses imply that vf (k) =

0 for all even k. Since

Wf (0) =
n∑
k=0

(−1)vf (k)C(n, k) and

Wf (1) =
n∑
k=0

(−1)vf (k)+kC(n, k),

a computation gives
Wf (0) +Wf (1) = 2n.

Now the second equation in (3.4) follows from the first one. 2
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We define

A = 0, 0, 1, 1; Ā = 1, 1, 0, 0; B = 0, 1, 0, 1; B̄ = 1, 0, 1, 0;

C = 0, 1, 1, 0; C̄ = 1, 0, 0, 1; D = 0, 0, 0, 0; D̄ = 1, 1, 1, 1.
(3.5)

The next two lemmas are used in the proof of our Theorem 3.8.

Lemma 3.5. (Folklore Lemma [1, Lemma 3.7.2]) Any affine function f on n variables,
n ≥ 2, is a linear string of length 2n made up of 4-bit blocks I1, . . . , I2n−2 given as
follows:

1. The first block I1 is one of A,B,C,D, Ā, B̄, C̄ or D̄.

2. The second block I2 is I1 or Ī1.

3. The next two blocks I3, I4 are I1, I2 or Ī1, Ī2.

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

n− 1. The 2n−3 blocks I2n−3+1, . . . , I2n−2 are I1, . . . , I2n−3 or Ī1, ..., Ī2n−3 .

Lemma 3.6. We have
∑

x,wt(x) even

(−1)x·w = 0 for all w 6= 0 or 1.

Proof. Let E(w) denote the 2n−1-vector of bits x ·w (mod 2), where x runs through
the n-vectors x of even weight in lexicographical order. Thus E(w) lists the exponents
in the sum in the lemma. Consider the 2n−1 by n array of the vectors x with even
weight, taken in lexicographical order. By the Folklore Lemma, each column in this
array is a 2n−1-vector which gives the truth table of a nonconstant linear function in
n − 1 variables. In fact, taking the columns left to right, the functions are simply
x1, x2, . . . , xn−1, x1⊕x2⊕ · · ·⊕xn−1. The vector sum of any subset of at least one and
at most n− 1 of the n columns (corresponding to w 6= 0 or 1) is thus the truth table of
a nonconstant linear function and so it is balanced. Each vector E(w) is one of these
vector sums, so the sum in the lemma is 0. 2

Remark 3.7. The sum in Lemma 3.6 is the sum of the Krawtchouk polynomials [9, pp.
130 and 150–153] (variable y = wt(w))

Pk(y, n) =
∑

x,wt(x)=k

(−1)x·w =
k∑
j=0

(−1)jC(y, j)C(n− y, k − j)

of even degree k in y.

Theorem 3.8. If f(x) = X(d, n) has odd degree d, then Wf (w) = −Wf (w̄) for all
w 6= 0 or 1.
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Proof. Let f be an elementary symmetric function of degree d, that is f = X(d, n).
We compute the Walsh transform

Wf (w) =
∑

x∈GF (2)n

(−1)f(x)+x·w =
∑

x∈GF (2)n

(−1)f(x)+x·(1+w)

=
∑

x∈GF (2)n

(−1)f(x)+wt(x)+x·w =
n∑
k=0

∑
x,wt(x)=k

(−1)f(x)+wt(x)+x·w

=
n∑
k=0

(−1)vf (k)+k
∑

x,wt(x)=k

(−1)x·w.

(3.6)

Next, we use (3.2). Since d is odd, then any integer i with d � i has to be odd, as
well. It follows that vf (k) = 0, for any even integer k. Thus, (3.6) becomes

Wf (w) =
n∑

k=0

(−1)vf (k)+k
∑

x,wt(x)=k

(−1)x·w

=
n∑

k=0, even

(−1)vf (k)
∑

x,wt(x)=k

(−1)x·w −
n∑

k=0, odd

(−1)vf (k)
∑

x,wt(x)=k

(−1)x·w

=
∑

x, wt(x)=even

(−1)x·w −
n∑

k=0, odd

(−1)vf (k)
∑

x, wt(x)=k

(−1)x·w.

Since

Wf (w) =
n∑

k=0, even

(−1)vf (k)
∑

x,wt(x)=k

(−1)x·w +
n∑

k=0, odd

(−1)vf (k)
∑

x,wt(x)=k

(−1)x·w

=
∑

x, wt(x)=even

(−1)x·w +
n∑

k=0, odd

(−1)vf (k)
∑

x, wt(x)=k

(−1)x·w,

to prove Theorem 3.8 it will suffice to show that∑
x,wt(x)=even

(−1)x·w = 0,

as long as w 6= 0,1, and that follows from Lemma 3.6. 2

Theorem 3.9. If f(x) = X(d, n) is SAC and d is odd, then Wf (0) = Wf (1).

Proof. By Theorem 3.8, all of the terms except Wf (0)2 and Wf (1)2 in the two sums
in (3.3) cancel out (for all other w, Wf (w) is in one sum and Wf (w̄) is in the other
sum). By Lemma 3.4, both square roots are positive and we get Theorem 3.9. 2

Corollary 3.10. If d is odd and f(x) = X(d, n) is SAC, then wt(f) = 2n−2.

Now we determine when X(d, n) is SAC. To deal with the case when d is an even
integer, by Lemma 3.1, it is enough to show:
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Lemma 3.11. If d > 1 is odd, then X(d, n) is not balanced.

Proof. Formula (3.2) shows that when f = X(d, n) we have vf (i) = 1 if and only if
d � i. Thus we have

wt(X(d, n)) =
∑

d�i,i≤n

C(n, i) ≤
∑
i odd

C(n, i) = 2n−1, (3.7)

where the inequality holds because d � i and d odd implies i is odd. If d > 1, then
d � i cannot hold for all odd i ≤ n (in particular, d 6� d− 2), so the inequality in (3.7)
is strict. Therefore, X(d, n) is not balanced. 2

Lemma 3.12. Suppose d > 1 is odd. If

d = 2t + 1 and n = 2t+1` for integers t > 0, ` > 0, (3.8)

then wt(X(d, n)) = 2n−2.

Proof. First we observe

wt(X(d, n)) =
∑

d�i,i≤n

C(n, i) (3.9)

because of (3.2), which shows that when f = X(d, n) we have vf (i) = 1 if and only if
d � i. By (3.9), we need to show that

wt(X(d, n)) =
∑

d�i, i≤n

C(n, i) = 2n−2 (3.10)

if and only if (3.8) holds. If (3.8) holds, the sum in (3.10) is∑
2t+1�i, i≤2t+1`

C(2t+1`, i)

=
∑

2t+1�i, i≤2t+1`

(
C(2t+1`− 1, i) + C(2t+1`− 1, i− 1)

)
=

∑
2t�i−1, i−1≤2t+1`−1

(
C(2t+1`− 1, i) + C(2t+1`− 1, i− 1)

)
=

∑
2t�j, j≤2t+1`−1

C(2t+1`− 1, j) = 2n−2,

(note i is never even in the first three sums, since then 2t + 1 � i is false; this justifies
the second last equality, since in the last sum j runs through disjoint pairs of consec-
utive integers) where the last sum is wt(X(2t, 2t+1` − 1) by (3.9) and so is 2n−2 by
Theorem 2.2. Thus we have proved that (3.8) implies (3.10). 2

We would like to prove the converse of the previous lemma. The following work
moves toward that goal, but does not achieve it. Next, we prove five lemmas, which
establish many cases of the converse of Lemma 3.12.
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Lemma 3.13. Let n = 2t+1` for some strictly positive integers t, `. If j is odd and
2t + 1 < j < 2t+1 + 1, then wt(X(j, n)) < 2n−2.

Proof. The argument of the previous lemma shows that if (3.8) and (3.10) hold for
some given t and `, then the set

S(t, `) = {i : 2t + 1 � i, i ≤ 2t+1` = n}

gives a set of binomial coefficients {C(n, i) : i ∈ S(t, `)} whose sum is 2n−2. (It is
easy to see that S(t, `) has n/4 elements, but we do not need this fact.) Now suppose
that (3.10) holds for n = 2t+1` and for some odd d = j, say, satisfying 2t + 1 < j <
2t+1 + 1. Then wt(j) > 2, so the set

T (j, n) = {i : j � i, i ≤ 2t+1` = n}

is a proper subset of S(t, `). Therefore the sum of the binomial coefficients in {C(n, i) :
i ∈ T (j, n)} is < 2n−2, contradicting our assumption that (3.10) holds with d = j. 2

Since we refer to it often, we include here for completeness an equation given by
Canteaut and Videau in [3] (these sums are called lacunary sums of binomial coeffi-
cients, see [8]). Results like this concerning the binomial coefficients are very old.
Some proofs and references are given in [7].

Lemma 3.14. For positive integers i, n, p, we have

A2p

n (i) =
∑

0≤j≤n
j≡i (mod 2p)

C(n, j)

= 2n−p + 21−p
2p−1−1∑
j=1

(
2 cos

(
jπ

2p

))n
cos
(
j(n− 2i)π

2p

) (3.11)

Lemma 3.15. Let t, r be positive integers. Suppose that a1 > a3 ≥ a5 ≥ · · · ≥ aJ , with
J = 2K + 1, are nonnegative integers. Define the sum

T =
∑

1≤j≤J

aj sin
(
jrπ

2t+1

)
.

If T = 0, then r ≡ 0 (mod 2t+1).

Proof. Write bk = aj , for j = 2k + 1. For convenience, let α = rπ
2t+1 . Then, using

Abel’s summation formula, T becomes

T =
K∑
k=0

bk sin((2k + 1)α)

=
K−1∑
m=0

(bm − bm+1)
m∑
k=0

sin((2k + 1)α) + bK

K∑
k=0

sin((2k + 1)α).
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Note that for the first term where m = 0, we have (b0 − b1) sinα 6= 0, if r 6= 0
(mod 2t+1). Also, (bm − bm+1) ≥ 0, and bK ≥ 0. The conclusion follows once we
show that

sinα and
m∑
k=0

sin((2k + 1)α)

have the same sign. Indeed

sinα
m∑
k=0

sin((2k + 1)α) =
1
2

m∑
k=0

(cos(2kα)− cos((2k + 2)α)

=
1
2
(1− cos((2m+ 2)α) ≥ 0.

The lemma is proved. 2

Remark 3.16. Note that T above has the same sign as sinα.

Because of Theorem 2.2, there is no loss of generality in taking n ≥ 2(d− 1) in our
next lemma.

Lemma 3.17. Let r, t be positive integers, d = 2t+1, n = 2t+1, and r 6≡ 0 (mod 2t+1).
Then wt(X(d, n+ r)) 6= 2n+r−2.

Proof. Let d := 1 + 2t be fixed. Now, using Pascal’s identity, we get that S :=
wt(X(d, n+ r)) satisfies

S =
∑

d�i≤n+r

C(n+ r, i) =
∑

d�i≤n+r

(C(n+ r − 1, i) + C(n+ r − 1, i− 1))

=
∑

d�i≤n+r−1

C(n+ r − 1, i) +
∑

2t�j≤n+r−1
j even

C(n+ r − 1, j)

=
∑

d�i≤n+r−2

C(n+ r − 2, i) +
∑

2t�j≤n+r−1
j even

(C(n+ r − 1, j) + C(n+ r − 2, j)) .
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Continuing in this manner, we obtain

S =
∑

d�i≤n+r−r

C(2t+1, i) +
∑

2t�j≤n+r−1
j even

r∑
k=1

C(n+ r − k, j)

= 2n−2 +
∑

2t�j≤n+r−1
j even

r∑
k=1

C(n+ r − k, j)

= 2n−2 +
r∑
k=1

∑
2t�j≤n+r−1

j even

C(n+ r − k, j)

= 2n−2 +
r∑
k=1

2t−1−1∑
s=0

∑
j≡2s+2t (mod 2t+1)

0≤j≤n+r−1

C(n+ r − k, j).

We push further the previous identity, by computing the innermost sum. So,

∑
j≡2s+2t (mod 2t+1)

0≤j≤n+r−1

C(n+ r − k, j) = A2t+1

N (2s+ 2t)

in the notations of Lemma 3.14, where N := n+ r − k. Thus, using equation (3.11),
we obtain

A2t+1

N (2s+ 2t) = 2n+r−k−t−1 + 2−t
2t−1∑
a=1

(
2 cos

aπ

2t+1

)N
cos

a(N − 4s− 2t+1)π
2t+1 .

Since

cos
a(N − 4s− 2t+1)π

2t+1 = (−1)a cos
a(N − 4s)π

2t+1 ,

we get

A2t+1

N (2s+ 2t) = 2n+r−k−t−1 + 2−t
2t−1∑
a=1

(−1)a
(

2 cos
aπ

2t+1

)N
cos

a(N − 4s)π
2t+1
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We obtain

S = 2n−2 +
r∑

k=1

2t−1−1∑
s=0

A2t+1

N (2s+ 2t)

= 2n−2 +
r∑

k=1

2t−1−1∑
s=0

2n+r−k−t−1

+2−t
r∑

k=1

2t−1−1∑
s=0

2t−1∑
a=1

(−1)a
(

2 cos
aπ

2t+1

)N

cos
a(N − 4s)π

2t+1

= 2n−2 + 2n+r−2
r∑

k=1

2−k + 2−t
r∑

k=1

2t−1−1∑
s=0

2t−1∑
a=1

(−1)a
(

2 cos
aπ

2t+1

)N

cos
a(N − 4s)π

2t+1

= 2n+r−2 + 2−t
r∑

k=1

2t−1−1∑
s=0

2t−1∑
a=1

(−1)a
(

2 cos
aπ

2t+1

)N

cos
a(N − 4s)π

2t+1 .

Therefore, to prove our assertion, we need to show that

T : =
r∑
k=1

2t−1−1∑
s=0

2t−1∑
a=1

(−1)a
(

2 cos
aπ

2t+1

)n+r−k
· cos

a(n+ r − k − 4s)π
2t+1

=
r∑
k=1

2t−1∑
a=1

(−1)a
(

2 cos
aπ

2t+1

)n+r−k
·

2t−1−1∑
s=0

cos
a(n+ r − k − 4s)π

2t+1 6= 0.

Since
a(n+ r − k − 4s)π

2t+1 = aπ +
(r − k − 4s)aπ

2t+1 ,

and so,

cos
(
a(n+ r − k − 4s)π

2t+1

)
= (−1)a cos

(
(r − k − 4s)aπ

2t+1

)
,

we obtain

T =
r∑

k=1

2t−1∑
a=1

(
2 cos

aπ

2t+1

)n+r−k
2t−1−1∑

s=0

cos
(

(r − k − 4s)aπ
2t+1

)

Formula (17.1.1) of [6] states

N∑
s=0

cos(sx+ y) = csc
x

2
cos
(
Nx

2
+ y

)
sin
(

(N + 1)x
2

)
. (3.12)

Taking A = aπ
2t+1 , N = 2t−1 − 1, x = −4A, y = (r − k)A in the previous formula, we
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obtain

2t−1−1∑
s=0

cos ((r − k − 4s)A)

= csc(−2A) cos
(
(2t−1 − 1)(−2A) + (r − k)A

)
sin(2t−1(−2A))

= csc(2A) sin
(aπ

2

)
cos
(
−aπ

2
+ (r − k + 2)A

)
=

1− (−1)a

2
sin((r − k + 2)A)

sin(2A)
.

Now, T becomes

T =
r∑
k=1

2t−1∑
a=1

1− (−1)a

2
(2 cosA)n+r−k · sin((r − k + 2)A)

sin(2A)

=
2t−1∑
a=1

1− (−1)a

2
(2 cosA)n+r

sin(2A)
·
r∑
k=1

(2 cosA)−k sin((r − k + 2)A)

We evaluate the inside sum using formula (14.7.1) of [6]

N−1∑
k=1

bk sin(kx+ y) = − sin y + (1− 2b cosx+ b2)−1

·[sin y + b sin(x− y)− bN sin(Nx+ y) + bN+1 sin((N − 1)x+ y)]

with N = r + 1, b = (2 cosA)−1, x = −A, y = (r + 2)A. We get
r∑
k=1

(2 cosA)−ksin((r − k + 2)A)

= − sin((r + 2)A) + b−2(sin((r + 2)A)

−b sin((r + 3)A)− br+1 sinA+ br+2 sin(2A))

= − sin((r + 2)A) + b−1(2 cosA sin((r + 2)A)

− sin((r + 3)A))− br(2 cosA sinA− sin(2A))

= − sin((r + 2)A) + 2 cosA sin((r + 1)A) = sin(rA).

and so,

T =
2t−1∑
a=1

1− (−1)a

2
(2 cosA)n+r−1 sin(rA)

sinA
=

2t−1∑
a=1, odd

(2 cosA)n+r−1 sin(rA)
sinA

Recall that our initial sum is

S = 2n+r−2 + 2−tT,
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so we need to prove T 6= 0. Observing that

aj =
(

cos
jπ

2t+1

)2t+1+r−1

· 1
sin jπ

2t+1

strictly decreases as j increases, 1 ≤ j ≤ 2t − 1, Lemma 3.15 shows that T 6= 0,
thereby proving our claim. (One can prove, by a slightly more complicated method
that, in fact, T > 0, but we did not need that.) The proof of the lemma is done. 2

Lemma 3.18. If d is odd and 2t + 1 < d ≤ 2t+1 − 1 for some positive integer t,
then wt(X(d, n)) 6= 2n−2 for any n of the form n = 2t+1` + r, where ` is even and
0 ≤ r < 2t+1 + 2t.

Proof. From equation (3.9) we have

wt(X(2t + 1, n)) =
∑
k∈I(t)

∑
i≡k (mod 2t+1), i≤n

C(n, i), (3.13)

where

I(t) = {k : k odd, 2t + 1 ≤ k ≤ 2t+1 − 1}.

Let k := 2t+2s+1, where 0 ≤ s ≤ 2t−1−1, and let A2t+1

n (k) denote the inner sum
in (3.13). Then Lemma 3.14 gives (with A = jπ

2t+1 )

A2t+1

n (k)

=2n−(t+1) + 2n−t
2t−1∑
j=1

(cosA)n cos((n− 2k)A)

=2n−(t+1) + 2n−t
2t−1∑
j=1

(−1)j(cosA)n cos ((n− 2− 4s)A) ,

(3.14)

since

cos((n− 2k)A) = cos((n− 2(2t + 2s+ 1))A)

= cos((n− 4s− 2)A− 2t+1A) = cos((n− 4s− 2)A− jπ)

= cos((n− 4s− 2)A) cos(jπ) + sin((n− 4s− 2)A) sin(jπ)

= (−1)j cos((n− 4s− 2)A).

If d is odd, let J(d) ⊂ I(t) be the subset of I(t), made up of the 2t−2 integers k
that satisfy d � k ≤ 2t+1 − 1 (for example, if d = 2t + 3, then J(d) contains every
other integer in I(t), starting with 2t + 3). Let n = 2t+1` + r, 0 ≤ r < 2t+1 + 2t. If
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r = 0, Lemma 3.13 implies the result. Now, assume 1 ≤ r < 2t+1 + 2t. Using (3.12)
we obtain (recall that A = jπ

2t+1 )

2t−1−1∑
s=0

cos (s(−4A) + (n− 2)A)

= csc(−2A) cos
(
(2t−1 − 1)(−2A) + (n− 2)A

)
sin(2t−1(−2A))

= csc(2A) cos(−2tA+ nA) sin(
jπ

2
)

= csc(2A)(cos(
jπ

2
) cos(nA) + sin(

jπ

2
) sin(nA)) sin(

jπ

2
)

= csc(2A) sin2(
jπ

2
) sin(nA)

=
1− (−1)j

2
csc(2A) sin((2t+1`+ r)A)

=
1− (−1)j

2
csc(2A)(−1)` sin(rA).

(3.15)

Certainly (with k = 2t + 2s+ 1),

wt(X(d, n)) =
∑
k∈J(d)

∑
i≡k (mod 2t+1), i≤n

C(n, i)

≤
∑
k∈I(t)

A2t+1

n (k) =
2t−1−1∑
s=0

A2t+1

n (2t + 2s+ 1).

Then, using (3.14) and (3.15)

2t−1−1∑
s=0

A2t+1

n (2t + 2s+ 1) = 2n−2 + 2n−t
2t−1−1∑

s=0

2t−1∑
j=1

(−1)j (cosA)n cos ((n− 2− 4s)A)

= 2n−2 + 2n−t
2t−1∑
j=1

(−1)j (cosA)n
2t−1−1∑

s=0

cos ((n− 2− 4s)A)

= 2n−2 + 2n−t
2t−1∑
j=1

(−1)`+j (cosA)n 1− (−1)j

2
sin(rA)
sin(2A)

= 2n−2 + 2−t(−1)`+1
2t−1∑

j=1,odd

(2 cosA)n−1 sin(rA)
sinA

:= S

(3.16)

But the last sum is strictly positive by Lemmas 3.15 and 3.17. Therefore, if ` is even,
S < 2n−2, and this proves our lemma. 2
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The following remark summarizes our progress so far on Conjecture 1.

Remark 3.19. We see that if n = 2t+1`+ r, ` odd and r < 2t, then we can write n =
2t+1`+r = 2t+1(`−1)+2t+1 +r, with `−1 even, and 0 ≤ r′ := 2t+1 +r < 2t+1 +2t.
Thus, the only cases left unchecked in the previous lemma (which gives many cases of
Conjecture 1) are: n = 2t+1`+ r, ` odd, 2t ≤ r < 2t+1.

4 The Case wt(d) ≥ 3

Lemma 3.1, Corollary 3.10 and Lemma 3.17 show that Conjecture 1 holds for any
X(d, n) with wt(d) = 1, 2. A key fact, given in the proof of Lemma 3.17, is a useful
formula forwt(X(d, n)) whenwt(d) = 2. We can find a similar formula whenwt(d) =
3, however it becomes substantially harder to handle.

Lemma 4.1. Let d := 1 + 2s + 2t, where 1 ≤ s < t and t ≥ 2. Then

wt(X(d, n)) = 2n−3 − 2−t
2t−1∑

j=1,odd

(2 cosA)n−1 sin((n− 2s)A) sin(2sA)
sinA sin(2s+1A)

− 2−s−1
2s−1∑

k=1,odd

(2 cosB)n−1 sin(nB)
sinB

,

(4.1)

where A = jπ
2t+1 , B = kπ

2s+1 .

Proof. From d � i, we get that i = 2t+1i′ + 2t + 2s+1p + 2s + 2q + 1, and so,
i ≡ 2t + 2s+1p+ 2s + 2q + 1 (mod 2t+1). Certainly the converse is also true. Using
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the previous observation,

wt(X(d, n)) =
∑
d�i≤n

C(n, i)

=
2t−s−1−1∑
p=0

2s−1−1∑
q=0

A2t+1

n (2t + 2s+1p+ 2s + 2q + 1)

=
2t−s−1−1∑
p=0

2s−1−1∑
q=0

(2n−t−1 + 2−t
2t−1∑
j=1

(2 cosA)n

· cos((n− 2t+1 − 2s+2p− 2s+1 − 4q − 2)A))

= 2t−s−12s−12n−t−1 + 2−t
2t−1∑
j=1

(2 cosA)n

·
2t−s−1−1∑
p=0

2s−1−1∑
q=0

cos((n− 2t+1 − 2s+2p− 2s+1 − 4q − 2)A)

= 2n−3 + 2−t
2t−1∑
j=1

(2 cosA)n

·
2t−s−1−1∑
p=0

2s−1−1∑
q=0

cos((n− 2t+1 − 2s+2p− 2s+1 − 4q − 2)A)

(4.2)

using Lemma 3.14. Further, by using formula (3.12) with x = −4A, y = (n− 2t+1 −
2s+2p− 2s+1 − 2)A, N = 2s−1 − 1, the innermost sum is equal to

csc(x/2) cos(Nx/2 + y) sin((N + 1)x/2)

= csc(−2A) cos((2s−1 − 1)(−2A)

+ (n− 2t+1 − 2s+2p− 2s+1 − 2)A) sin(2s−1(−2A))

= csc(2A) cos((n− 2t+1 − 2s+2p− 3 · 2s)A) sin(2sA),

which is defined everywhere, since j ≤ 2t − 1. Thus,

wt(X(d, n)) = 2n−3 + 2−t
2t−1∑
j=1

(2 cosA)n−1 sin(2sA)
sinA

·
2t−s−1−1∑
p=0

cos((n− 2t+1 − 2s+2p− 3 · 2s)A).

(4.3)

Let
U := {j : j = 2t−sk, 1 ≤ k ≤ 2s − 1}
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We distinguish two cases:
Case 1. Assume j ∈ U . That means that

2s+2A = 2s+2 jπ

2t+1 = 2s+2 k2t−sπ
2t+1 = 2kπ,

and using the periodicity of the cosine function, we obtain that in this case, the inner-
most sum is

2t−s−1 cos((n− 2t+1 − 3 · 2s)A).

Case 2. Assume j 6∈ U . In this case, we apply again formula (3.12) with x = −2s+2A,
y = (n− 2t+1 − 3 · 2s)A, N = 2t−s−1 − 1, the innermost sum is equal to

csc(−2s+1A) cos((2t−s−1 − 1)(−2s+1A)

+(n− 2t+1 − 3 · 2s)A) sin(2t−s−1(−2s+1A))

= csc(2s+1A) cos(−2tA+ (n− 2t+1 − 2s)A) sin(2tA)

= csc(2s+1A) cos((n− 2s)A− 3jπ/2) sin(jπ/2)

= csc(2s+1A) cos((n− 2s)A+ jπ/2) sin(jπ/2)

Thus, from equation (4.3), we obtain (note that A = B, if j = 2t−sk; also, 2t+1A =
jπ, 2sB = kπ/2)

wt(X(d, n)) = 2n−3 + 2−t
2t−1∑

j=1,j 6∈U

(2 cosA)n−1 cos((n− 2s)A+ jπ/2) sin(jπ/2) sin(2sA)
sinA sin(2s+1A)

+ 2−t
2t−1∑

j=1,j∈U

(2 cosA)n−1 sin(2sA)
sinA

2t−s−1 cos((n− 3 · 2s)A− jπ)

= 2n−3 + 2−t
2t−1∑

j=1,j 6∈U

(2 cosA)n−1 cos((n− 2s)A+ jπ/2) sin(jπ/2) sin(2sA)
sinA sin(2s+1A)

+ 2−s−1
2s−1∑
k=1

(2 cosB)n−1 sin(kπ/2)
sinB

cos((n− 3 · 2s)B − 2t−skπ)

= 2n−3 + 2−t
2t−1∑

j=1,j 6∈U

(2 cosA)n−1 cos((n− 2s)A+ jπ/2) sin(jπ/2) sin(2sA)
sinA sin(2s+1A)

+ 2−s−1
2s−1∑
k=1

(2 cosB)n−1 sin(kπ/2)
sinB

cos(nB + kπ/2).

(4.4)

(The last equality follows from the periodicity of cos, and also from cos((n−3·2s)B) =
cos(nB − 3kπ/2) = cos(nB + kπ/2).) Further, if j 6∈ U , then sin(2s+1A) is well
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defined, however sin(jπ/2) = 0, if j is even. Thus, the terms in the first sum of the
last equation of (4.4) are zero, unless j is odd. Then, if j is odd, we get

cos((n− 2s)A+ jπ/2) sin(jπ/2)

= (cos((n− 2s)A) cos(jπ/2)− sin((n− 2s)A) sin(jπ/2)) sin(jπ/2)

= − sin((n− 2s)A).

Therefore,

wt(X(d, n)) = 2n−3 − 2−t
2t−1∑

j=1,odd

(2 cosA)n−1 · sin((n− 2s)A) sin(2sA)
sinA sin(2s+1A)

+ 2−s−1
2s−1∑
k=1

(2 cosB)n−1 sin(kπ/2)
sinB

cos(nB + kπ/2)

or better, yet,

wt(X(d, n)) = 2n−3 − 2−t
2t−1∑

j=1,odd

(2 cosA)n−1 sin((n− 2s)A) sin(2sA)
sinA sin(2s+1A)

− 2−s−1
2s−1∑

k=1,odd

(2 cosB)n−1 sin(nB)
sinB

2

In order to prove Conjecture 1, by Lemma 3.1 and Corollary 3.10 it would suffice to
show that for n ≥ 2(d− 1) (we can assume this because of Theorem 2.2) we have

wt(X(d, n)) 6= 2n−2 (4.5)

for all pairs d, n except d = 2t + 1, n = 2t+1`, where t and ` are any positive integers.
Lemma 3.17 proves (4.5) when wt(d) = 2 (if d is odd with wt(d) = 2, then d =

2t + 1; further, if n ≥ 2(d − 1), then n ≥ 2t+1 and if 2t+1 does not divide n, then
n = 2t+1`+ r with r 6≡ 0 (mod 2t+1) and so Lemma 3.17 applies; if 2t+1 does divide
n, then we already know from Theorem 1, which summarizes the results of [5] that
X(d, n) is balanced).

We attempted to prove (4.5) when wt(d) = 3 by using Lemma 4.1, but the sums in
(4.1) were too complicated to allow us to cover all of the cases. Certainly (4.1) shows
that for fixed d, (4.5) holds for all sufficiently large n, because the factors (cosA)n−1

and (cosB)n−1 tend to 0 as n → ∞, which implies wt(X(d, n)) − 2n−2 < 0 for all
large n. Our computations suggest that this inequality will always hold if wt(d) is large
enough. In fact, we conjecture that the following stronger form of Conjecture 1 is true
when wt(d) ≥ 6:
Conjecture 2. If n ≥ 2(d− 1), d is fixed and wt(d) ≥ 6, then wt(X(d, n)) < 2n−2.
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