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Abstract

We establish several related results on Carmichael, Sierpiński and
Riesel numbers. First, we prove that almost all odd natural numbers
k have the property that 2nk + 1 is not a Carmichael number for any
n ∈ N; this implies the existence of a set K of positive lower density
such that for any k ∈ K the number 2nk + 1 is neither prime nor
Carmichael for every n ∈ N. Next, using a recent result of Matomäki,
we show that there are � x1/5 Carmichael numbers up to x that are
also Sierpiński and Riesel. Finally, we show that if 2nk+ 1 is Lehmer,
then n 6 150ω(k)2 log k, where ω(k) is the number of distinct primes
dividing k.

1 Introduction

In 1960, Sierpiński [25] showed that there are infinitely many odd natural
numbers k with the property that 2nk + 1 is composite for every natural
number n; such an integer k is called a Sierpiński number in honor of his
work. Two years later, J. Selfridge (unpublished) showed that 78557 is a
Sierpiński number, and this is still the smallest known example.1

Every currently known Sierpiński number k possesses at least one covering
set P, which is a finite set of prime numbers with the property that 2nk + 1
is divisible by some prime in P for every n ∈ N. For example, Selfridge
showed that 78557 is Sierpiński by proving that every number of the form
2n·78557 + 1 is divisible by a prime in P := {3, 5, 7, 13, 19, 37, 73}. When a
covering set is used to show that a given number is Sierpiński, every natural
number in a certain arithmetic progression (determined by the covering set)
must also be Sierpiński; in particular, the set of Sierpiński numbers has a
positive lower density.

If N is a prime number, Fermat’s little theorem asserts that

aN ≡ a (mod N) for all a ∈ Z. (1)

Around 1910, Carmichael [9, 10] initiated the study of composite numbers
N with the same property; these are now known as Carmichael numbers. In
1994, Alford, Granville and Pomerance [1] proved the existence of infinitely

1At present, there are only six smaller numbers that might have the Sierpiński property:
10223, 21181, 22699, 24737, 55459, 67607; see http://www.seventeenorbust.com for the
most up-to-date information.
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many Carmichael numbers. Since prime numbers and Carmichael numbers
share the property (1), it is natural to ask whether certain results for primes
can also be established for Carmichael numbers; see, for example, [2, 3, 5,
14, 20, 29] and the references contained therein.

Our work in this paper originated with the question as to whether there
exist Sierpiński numbers k such that 2nk + 1 is not a Carmichael number
for any n ∈ N. Since there are many Sierpiński numbers and only a few
Carmichael numbers, it is natural to expect there are many such k. However,
because the parameter n can take any positive integer value, the problem is
both difficult and interesting. Later on, we dropped the condition that k be
Sierpiński and began to study odd numbers k for which 2nk + 1 is never a
Carmichael number. Our main result is the following theorem.

Theorem 1. Almost all odd natural numbers k have the property that 2nk+1
is not a Carmichael number for any n ∈ N.

This is proved in §2. Our proof uses results and methods from a recent
paper of Cilleruelo, Luca and Pizarro-Madariaga [11], where it is shown that
the bound

n 6 22000000 τ(k)2ω(k)(log k)2 (2)

holds for every Carmichael number 2nk + 1. Here, τ(k) is the number of
positive integer divisors of k, and ω(k) is the number of distinct prime factors
of k. To give some perspective on this result, let v2(·) be the standard
2-adic valuation, so that 2−v2(m)m is the odd part of any natural number m.
Theorem 1 implies that the set{

k = 2−v2(n−1)(n− 1) : n is a Carmichael number
}

has asymptotic density zero.2 By comparison, Erdős and Odlyzko [15] have
shown that the set{

k = 2−v2(p−1)(p− 1) : p is a prime number
}

has a positive lower density.
Since the collection of Sierpiński numbers has a positive lower density,

the following corollary is an immediate consequence of Theorem 1.

2In [11] it is shown that 27 is the smallest number in this set.
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Corollary 1. There exists a set K ⊆ N of positive lower density such that
for any fixed k ∈ K, the number 2nk+ 1 is neither prime nor Carmichael for
each n ∈ N.

Riesel numbers have a similar definition to that of Sierpiński numbers.
An odd natural number k is called a Riesel number if 2nk − 1 is composite
for all n ∈ N. Such numbers were first investigated in 1956 by Riesel [24]. At
present, the smallest known example is 509203.3 It is known that there are
infinitely many natural numbers that are both Sierpiński and Riesel. Using
recent results of Matomäki [20] and Wright [29] coupled with an extensive
computer search, we prove the following result in §3.

Theorem 2. Infinitely many natural numbers are simultaneously Sierpiński,
Riesel, and Carmichael. In fact, the number of them up to x is � x1/5 for
all sufficiently large x.

Let ϕ(·) be the Euler function, which is defined by ϕ(n) := n
∏

p |n(1−p−1)

for all n ∈ N; in particular, one has ϕ(p) = p− 1 for every prime p. In 1932,
Lehmer [19] asked whether there are any composite numbers n such that
ϕ(n) | n − 1, and the answer to this question is still unknown. We say that
n is a Lehmer number if n is composite and ϕ(n) | n − 1. It is easy to
see that every Lehmer number is Carmichael, but there are infinitely many
Carmichael numbers which are not Lehmer (see [4]). We prove the following
result in §4.

Theorem 3. Let k be an odd natural number. If 2nk + 1 is Lehmer then
n 6 150ω(k)2 log k.

Remark. The situation for Lehmer numbers of the form 2nk − 1 is trivial.
Indeed, when N := 2nk − 1 is Lehmer, then ϕ(N) | N − 1 = 2(2n−1k − 1).
For n > 2 this implies that 4 - ϕ(N), which is impossible since N is odd,
squarefree and composite. Therefore, n must be 1.

Throughout the paper, we use logk x to denote the k-th iterate of the
function log x := max{lnx, 1}, where lnx is the natural logarithm. We use
the notations O, o, �, � with their customary meanings. Any constant
or function implied by one of these symbols is absolute unless otherwise
indicated.

3As of this writing, there are 55 candidates smaller that 509203 to consider; see
http://www.prothsearch.net/rieselprob.html for the most recent information.
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2 Proof of Theorem 1

2.1 Preliminary estimates

Let x be a large real parameter, and put

C(x) :=
{

odd k ∈ (x/2, x] : 2nk + 1 is Carmichael for some n
}
.

If S(x) ⊆ C(x) for all large x, we say that S(x) is negligible if |S(x)| = o(x)
as x → ∞. Below, we construct a sequence C1(x),C2(x), . . . of negligible
subsets of C(x), and for each j > 1 we denote

C∗j(x) := C(x) \
j⋃
i=1

Ci(x).

Theorem 1 is the statement that C(x) is itself negligible; thus, we need to
show that C∗j(x) is negligible for some j.

Let Ω(n) be the number of prime factors of n, counted with multiplicity,
and put

N1(x) :=
{
k 6 x : Ω(k) > 1.01 log2 x

}
.

Since log2 x is the normal order of Ω(n) over numbers n 6 x, it follows that

|N1(x)| = o(x) (x→∞). (3)

In fact, using the Turán-Kubilius inequality (see [27]) one sees that |N1(x)| �
x/ log2 x, and stronger bounds can be deduced from results in the literature
(although they are not needed here). Using (3) it follows that

C1(x) := C(x) ∩N1(x)
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is negligible.
Next, let Ω(z;n) denote the number of prime factors p ≤ z of n, counted

with multiplicity. Set

N2(x) :=
{
k 6 x : Ω(z1; k) > 2 log3 x

}
with z1 := (log x)10.

Since the normal order of Ω(z1;n) over numbers n 6 x is log2 z1 ∼ log3 x, it
follows that |N2(x)| = o(x) as x→∞; therefore,

C2(x) := C(x) ∩N2(x)

is negligible.
In what follows, we denote

yl := x1/2−10ε and yu := x1/2+10ε,

where

ε = ε(x) :=
1

log2 x
.

According to Tenenbaum [26, Théorème 1] (see also Ford [17, Theorem 1])
there are precisely x/(log2 x)δ+o(1) numbers k 6 x that have a divisor d ∈
[yl, yu], where δ := 1− (1 + ln ln 2)/ ln 2; in particular, the set

N3(x) :=
{
k 6 x : k has a divisor d ∈ [yl, yu]

}
is such that |N3(x)| = o(x) as x→∞; therefore,

C3(x) := C(x) ∩N3(x)

is negligible.
For each k ∈ C(x), let n0(k) be the least n ∈ N for which 2nk + 1 is a

Carmichael number. For any real X > 1 let

F(X) :=
{
k ∈ C(x) : n0(k) 6 X

}
,

and for any subset Q ⊆ N, let F(Q;X) be the set of k ∈ F(X) for which
there exists n 6 X with the property that 2nk + 1 is a Carmichael number
divisible by some number q ∈ Q.

Lemma 1. If X and Q are both defined in terms of x, and one has

X
∑
q∈Q

q−1 = o(1) and X|Q| = o(x) (x→∞),

then
∣∣F(Q;X)

∣∣ = o(x) as x→∞.
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Proof. For fixed n 6 X and q ∈ Q, if 2nk + 1 is a Carmichael number that
is divisible by q, then k lies in the arithmetic progression −2−n mod q; thus,
the number of such k 6 x cannot exceed x/q + 1. Summing over all n 6 X
and q ∈ Q we derive that∣∣F(Q;X)

∣∣ 6 ∑
n6X
q∈Q

(x/q + 1) 6 xX
∑
q∈Q

q−1 +X|Q| = o(x) (x→∞),

as required.

2.2 Small values of n0(k)

Consider the set

C4(x) := F(X1), where X1 :=
log x

log2 x
.

According to Pomerance [22] there are � t/L(t) Carmichael numbers that
do not exceed t, where

L(t) := exp

(
log t log3 t

log2 t

)
.

Since the function f(k) := 2n0(k)k + 1 is one-to-one and maps C4(x) into the
set of Carmichael numbers not exceeding 2X1x+ 1, we have

|C4(x)| � 2X1x

L(2X1x)
=

x

L(x)1+o(1)
= o(x) (x→∞).

In other words, C4(x) is negligible.

2.3 Medium values of n0(k)

Our aim in this subsection is to show that

S(x) := F(X2) \ F(X1) with X2 := exp

(
log x

log2 x

)
is negligible. To do this, we define five more negligible sets C5(x), . . . ,C9(x)
and show that S(x) is contained in

⋃9
i=1 Ci(x). We denote

S∗j(x) := S(x) \
j⋃
i=1

Ci(x) (1 6 j 6 9).
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As before, we put

z1 := (log x)10, yl := x1/2−10ε, yu := x1/2+10ε, ε :=
1

log2 x
.

Note that X2 = xε with this notation.
Let N := 2nk + 1 be a Carmichael number with k ∈ S∗4(x) and n 6 X2.

For any prime p dividing N we have p − 1 | N − 1 = 2nk (the well–known
Korselt’s criterion); thus, p = 2md+1 for some m 6 n and some divisor d | k.
Note that d 6∈ [yl, yu] since k 6∈ C3(x).

Suppose that d > yu. Writing k = dd1 we see that d1 6 x/d < x/yu = yl.
Furthermore, 2n−md1 = (N −1)/(p−1) ≡ 1 (mod p); that is, p | 2n−md1−1.
Note that 2n−md1 − 1 = (N − p)/(p − 1) is nonzero since N is Carmichael,
hence composite.

Now let P be the set of primes of the form 2md + 1 with m 6 X2 and
d ∈ [yu, x], and let P1 be the subset of P consisting of those primes p that
divide at least one Carmichael number N = 2nk + 1 with k ∈ S∗4(x) and
n 6 X2. In view of the above discussion we have∏

p∈P1

p

∣∣∣∣ ∏
06`6X2
d16yl

(`,d1)6=(0,1)

(2`d1 − 1) 6
∏

06`6X2
d16yl

eX2 6 exp(2X2
2yl).

Here, we have used the fact that 2`d1 − 1 6 2X2yl 6 eX2 holds for x > x0.
Since p > yu > x1/2 for all p ∈ P, it follows that

|P1| 6
log
(∏

p∈P1
p
)

log(x1/2)
6

4X2
2yl

log x
=

4x1/2−8ε

log x

for x > x0; in particular, X2|P1| = o(x) as x→∞. Using this inequality for
|P1| we also have

X2

∑
p∈P1

p−1 6
X2|P1|
yu

6
4x−17ε

log x
= o(1) (x→∞).

Applying Lemma 1 we see that the set

C5(x) := S∗4(x) ∩ F(P1;X2) = C∗4(x) ∩ F(P1;X2)

is negligible.
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Similarly, let P2 be the set of primes of the form 2md+ 1 with m > log x
and d 6 yl. Clearly, for x > x0 we have the bound

|P2| 6
∣∣{(m, d) : 1 6 m 6 X2, d 6 yl

}∣∣ 6 X2yl = x1/2−9ε. (4)

Therefore, X2|P2| = o(x) as x→∞. Moreover,

X2

∑
p∈P2

p−1 6
X2|P2|
2log x

6 x1/2−ln 2−8ε = o(1) (x→∞).

Applying Lemma 1 we see that the set

C6(x) := S∗5(x) ∩ F(P2;X2) = C∗5(x) ∩ F(P2;X2)

is negligible.
We now take a moment to observe that for every k ∈ S∗6(x) one has

n0(k) 6 X3 with X3 := (log x)3.

Indeed, let 2nk+ 1 be a Carmichael number such that n 6 X2. If p | 2nk+ 1,
then p = 2md+ 1 with m 6 log x, d 6 yl and d | k. Taking into account that
d 6 yl 6 x1/2 6 2log x− 1 for x > x0, it follows that 2md+ 1 6 22 log x, and so

2n 6 2nk + 1 6
∏

m6log x
d6yl, d | k

(2md+ 1) 6 22(log x)2τ(k).

Since k 6∈ N1(x) we have

τ(k) 6 2Ω(k) 6 21.01 log2 x 6 (log x)0.8, (5)

and therefore,
n 6 2(log x)2.8 6 X3 (x > x0).

Let P3 be the set of primes of the form 2md+ 1 with m >M and d 6 yl,
where

M := 10 log2 x.

The estimation in (4) shows that |P3| 6 x1/2−9ε; thus X3|P3| = o(x) as
x→∞. Also,

X3

∑
p∈P3

p−1 6 X3

( ∑
m>M

2−m
)(∑

d6yl

d−1

)
� (log x)4−10 ln 2 = o(1)
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as x→∞. By Lemma 1 it follows that the set

C7(x) := S∗6(x) ∩ F(P3;X3) = C∗6(x) ∩ F(P3;X3)

is negligible.
Next, let Q1 be the collection of almost primes of the form q = p1p2,

where p1 = 2m1d + 1, p2 = 2m2d + 1, m1 < m2 6 M , and d > z1. Here,
M := 10 log2 x and z1 := (log x)10 as before. Clearly, the bound

|Q1| 6
∣∣{(m1,m2, d) : m1,m2 6M, d 6 yl

}∣∣ 6M2yl 6 x1/2−9ε

holds if x > x0, and thus X3|Q1| = o(x) as x→∞. Also,

X3

∑
q∈Q1

q−1 6 X3

(∑
m>1

2−m
)2(∑

d>z1

d−2

)
� X3

z1

= (log x)−7 = o(1)

as x→∞. Applying Lemma 1 again, we see that

C8(x) := S∗7(x) ∩ F(Q1;X3) = C∗7(x) ∩ F(Q1;X3)

is negligible.
Similarly, let Q2 be the collection of almost primes of the form q = p1p2,

where p1 = 2m1d1 + 1, p2 = 2m2d2 + 1, m1 < m2 6 M , d1, d2 6 yl, and
gcd(d1, d2) is divisible by some prime r > z1. We have

|Q2| 6
∣∣{(m1,m2, d1, d2) : m1,m2 6M, d1, d2 6 yl

}∣∣ 6M2y2
l 6 x1−19ε

if x > x0, hence X3|Q2| = o(x) as x→∞. Furthermore,

∑
q∈Q2

q−1 6

(∑
m>1

2−m
)2
( ∑

d1=ru6yl
d2=rv6yl
r>z1

(d1d2)−1

)

�
(∑
r>z1

r−2

)(∑
u6yl

u−1

)2

� (log x)−8,

and therefore

X3

∑
q∈Q2

q−1 � (log x)−5 = o(1) (x→∞).
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By Lemma 1 the set

C9(x) := S∗8(x) ∩ F(Q2;X3) = C∗8(x) ∩ F(Q2;X3)

is negligible.
To conclude this subsection, we now show that S∗9(x) = ∅; this implies

that S(x) is contained in C1(x) ∪ · · · ∪ C9(x) as claimed.
Suppose on the contrary that S∗9(x) 6= ∅. For each k ∈ S∗9(x) there exists

n ∈ (X1, X3] such that 2nk + 1 is Carmichael; let

2nk + 1 =
∏̀
j=1

(2mjdj + 1) (6)

be its factorization into (distinct) primes. Grouping the primes on the right
side of (6) according to the size of dj, we set

A :=
∏

16j6`
dj6z1

(2mjdj + 1) and B :=
2nk + 1

A
.

For every prime pj := 2mjdj +1 dividing A we have mj < M since k 6∈ C7(x);
therefore,

pj 6 2M+1z1 = 210 log2 x+1+(10/ ln 2) log2 x 6 230 log2 x = 23M .

Taking into account the bound (5), we see that

A 6
∏
d | k
m<M

23M 6 23M2τ(k) 6 2300(log2 x)2(log x)0.8 6 2(log x)0.9 (x > x0). (7)

On the other hand, every prime pj := 2mjdj + 1 dividing B has dj > z1.
Since each mj < M and k 6∈ C8(x), it follows that the divisors dj are different
for distinct primes pj dividing B. For any such divisor dj, factor dj = d−j d

+
j ,

where d−j [resp. d+
j ] is the largest divisor of d that is composed solely of primes

6 z1 [resp. > z1]. The numbers {d+
j } are coprime in pairs since k 6∈ C9(x);

consequently, ∏
pj |B

d+
j 6 k

10



as the product on the left side is a divisor of k. As for the numbers {d−j }, we
note that

d−j 6 z
Ω(z1;k)
1 6 (log x)20 log3 x 6 2(log2 x)2 (x > x0),

where we have used the fact that k 6∈ N2(x) for the second inequality. Putting
everything together, we derive the bound

B 6
∏
pj |B

2M+1d−j d
+
j 6 (210 log2 x+1+(log2 x)2)τ(k)

∏
pj |B

d+
j 6 2(log x)0.9k (8)

for all x > x0. Combining (6), (7) and (8) it follows that

2nk + 1 = AB 6 22(log x)0.9k,

and therefore, n 6 2(log x)0.9. However, since n > X1 = (log x)/ log2 x this is
impossible for large x. The contradiction implies that S∗9(x) = ∅ as claimed.

2.4 Large values of n0(k)

Recall that a number k is said to be powerful if p2 | k for every prime p
dividing k. We denote

C10(x) :=
{
k 6 x : k is powerful

}
.

By the well known bound |C10(x)| � x1/2, the set C10(x) is negligible.
From now on, fix k ∈ C∗10(x), and let n > X2 := exp((log x)/ log2 x) be

such that 2nk + 1 is a Carmichael number. Also, let p = 2md + 1 be a fixed
prime factor of 2nk + 1. For convenience, we denote

N1 :=

⌊√
n

log x

⌋
and N2 :=

n

N1

.

Since numbers of the form um+vn with (u, v) ∈ [0, N1]2 all lie in the interval
[0, 2nN1], and there are (N1+1)2 such pairs (u, v), by the pigeonhole principle
there exist (u1, v1) 6= (u2, v2) such that∣∣(u1m+ v1n)− (u2m+ v2n)

∣∣ 6 2N1n

(N1 + 1)2 − 1
6

2n

N1

= 2N2.

11



Put u := u1 − u2 and v := v1 − v2. Then

(u, v) 6= (0, 0), max{|u|, |v|} 6 N1, |um+ vn| 6 2N2. (9)

Replacing u, v with u/d, v/d, where d is either gcd(u, v) or − gcd(u, v), we
can further assume that

gcd(u, v) = 1 and u > 0. (10)

From the congruences

2md ≡ −1 (mod p) and 2nk ≡ −1 (mod p) (11)

we derive that
2um+vndukv ≡ (−1)u+v (mod p).

Therefore, p divides the numerator of the rational number

G := 2um+vndukv − (−1)u+v.

We claim that G 6= 0. Indeed, suppose on the contrary that G = 0. Since
k and d are both odd, it follows that um + vn = 0 and dukv = 1. If u = 0
or v = 0, the first equation implies that (u, v) = (0, 0), which is not allowed;
hence uv 6= 0, and by (10) we have u > 0. Since u and v are coprime, the
equality du = k−v implies that k = ku1 for some k1 > 1. As k 6∈ C10(x), it
follows that u = 1. Then, as d | k and d = k−v, we also have v = −1, d = k,
and 0 = um+vn = m−n, so m = n. But this shows that 2nk+1 = p, which
is not possible since 2nk + 1 is a Carmichael number. This contradiction
establishes our claim that G 6= 0.

Since p divides the numerator of G, using (9) we derive the bound

p 6 2|um+vn|d|u|k|v| + 1 6 22N2+1x2N1 = 2(2+2/ ln 2)N2+1, (12)

which is used below and in §2.5. We also need the following:

Lemma 2. Let

∆1 :=

√
2(log2 x)3/2

(log n)1/4
.

For x > x0, the Carmichael number 2nk + 1 has no more than n1/3 prime
divisors p = 2md+ 1 with m > ∆1N2.

12



Proof. With the minor modifications outlined here, this result is essentially
contained in [11, Lemma 7]. The underlying argument is fairly standard (see,
for example, [6, 7, 12, 13, 18]), although it relies on a quantitative version of
the Subspace Theorem due to Evertse [16], a bound of Pontreau [23] on the
number of solutions to certain S-unit equations, and Baker’s bound on linear
forms in logarithms (see [21] or [8, Theorem 5]).

Let p = 2md+ 1 be a prime divisor of 2nk+ 1 with m > ∆1N2. Using the
Euclidean algorithm, we write

n = mq + r with 0 6 r < m 6 5N2, (13)

where the last inequality is a consequence of (12). Note that

q 6
n

m
6

n

∆1N2

= ∆−1
1 N1. (14)

From (11) we obtain the congruences

2mqdq ≡ (−1)q (mod p) and 2mq+rk ≡ −1 (mod p),

hence p divides
G := dq + (−1)q2rk.

We claim that G 6= 0. Indeed, suppose on the contrary that G = 0. Then
r = 0 (since d is odd), q is odd, and k = dq. As k 6∈ C10(x), q = 1.
But this implies that d = k and n = mq + r = m, hence 2nk + 1 = p,
which is impossible since 2nk+1 is a Carmichael number. This contradiction
establishes our claim that G 6= 0.

Since p divides G, using (13) and (14) we derive the bound

p 6 |G| 6 2r+1dqk 6 2r+1xq+1 6 2(r+1)+(q+1)(log x)/ ln 2

6 2(5N2+1)+(∆−1
1 N1+1)(log x)/ ln 2 6 22∆−1

1 N2 (x > x0).
(15)

We also have the lower bound

p− 1 = 2md > 2m > 2∆1N2 . (16)

Put
U := 2md, V1 := dq and V2 := (−1)q2rk.

13



Then, taking into account the fact that V1 + V2 = G, the inequalities (15)
and (16) together imply that

U > |V1 + V2|∆2 with ∆2 := 1
2
∆2

1 =
(log2 x)3

(log n)1/2
.

Taking into account the bound (5) and the combination of [11, Lemmas 2, 3],
for x > x0 we see that all but O(log2 x) of the triples (U, V1, V2) constructed
in this manner satisfy the conditions of [11, Lemma 7] if the parameter δ2

in that lemma is replaced by ∆2. Following the proof, we conclude that the
bound [11, Equation (47)] on the number t1t2 of such triples (U, V1, V2) can
be replaced by

t1t2 6 2100µ2s (x > x0)

in our situation, where

µ := 2
⌊
3∆−1

2

⌋
+ 1 and s := ω(k) + 2.

As µ 6 7∆−1
2 and s 6 1.1 log2 x (since k 6∈ N1(x)), we see that

100µ2s 6 5400
log n

(log2 x)5
6

log n

3 ln 2
− 1 (x > x0).

Putting everything together, it follows that the Carmichael number 2nk + 1
has at most t1t2 +O(log2 x) 6 (1

2
+o(1))n1/3 prime divisors p = 2md+1 with

m > ∆1N2. The result follows.

2.5 The final argument

We continue to use notation introduced earlier.
Put z2 := blog4 xc, and let C11(x) be the set of numbers k ∈ C∗10(x) such

that q2 | k for some q > z2. For any such q the number of k 6 x cannot
exceed x/q2; summing over all q we have

|C11(x)| 6
∑
q>z2

x

q2
� x

z2

� x

log4 x
= o(x) (x→∞);

thus, C11(x) is a negligible set.
Next, let C12(x) be the set of k ∈ C∗11(x) with the property that there is

a prime q such that qz2 | k. For any such q the number of k 6 x does not
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exceed x/qz2 . Also, since z2 > 2 for x > x0 and k 6∈ C11(x), it follows that
q 6 z2. Consequently,

|C12(x)| 6
∑
q6z2

x

qz2
6
x · π(z2)

2z2
6

2x log4 x

(log3 x)ln 2
= o(x) (x→∞),

hence, C12(x) is negligible.
Finally, we put C13(x) := C∗12(x). To complete the proof of Theorem 1

it is enough to show that C13(x) is negligible. We begin by noting that for
every k 6∈ N1(x) the bound

n 6 K1 := exp((log x)4)

holds whenever 2nk+1 is Carmichael; in fact, it is an easy consequence of (2)
since τ(k) 6 (log x)0.8 (by (5)) and ω(k) 6 Ω(k) 6 1.01 log2 x.

In particular, for every k ∈ C13(x) there exists n ∈ [X2, K1] such that
2nk + 1 is a Carmichael number. The interval [X2, K1] can be covered with
at most O(logK1) = O((log x)4) intervals of the form [a, 2a). Thus, if we
denote by C13(a;x) the set of k ∈ C13(x) such that 2nk + 1 is a Carmichael
number for some n ∈ [a, 2a), we have

|C13(x)| � (log x)4 max
X26a6K1

|C13(a;x)|,

hence it suffices to show that

max
X26a6K1

|C13(a;x)| � x

(log x)5
. (17)

From now on, we work to prove (17).
Now, fix a ∈ [X2, K1] and k ∈ C13(a;x), and let n ∈ [a, 2a) be such

that N := 2nk + 1 is Carmichael. Let P denote the set of prime divisors
p = 2md+ 1 of N with m > ∆1N2. Put

A :=
∏

p | 2nk+1
p∈P

p and B :=
2nk + 1

A
.

Since every prime p | N satisfies (12), and |P| 6 n1/3 by Lemma 2, we have

A 6 (25N2)n
1/3

= 25n5/6(log x)1/2 6 210a5/6(log x)1/2 (x > x0). (18)

Put s := blog2 xc and z3 := (log x)0.9. We split the prime factors of B
into three sets according to the following types:
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(i) Primes p = 2md+ 1 of type I are those for which either m 6 a1/3, or p
divides 2njkj + 1 for j = 1, . . . , s, where k1, . . . , ks are distinct numbers
in C13(a;x) and n1, . . . , ns ∈ [a, 2a);

(ii) Primes p = 2md+ 1 of type II have the property that 2td+ 1 is a prime
factor of B for at most 100 values of t in the interval [m,m+ z3];

(iii) Primes p of type III are prime factors of B that are neither of type I
nor of type II.

Factor B = BIBIIBIII , where

BI :=
∏
p |B

p of type I

p, BII :=
∏
p |B

p of type II

p and BIII :=
∏
p |B

p of type III

p.

Our approach is to show that primes of type I are small, whereas primes of
type II are few in number. As for primes of type III, there may be many
for a given k; however, we show that there are only a few such primes on
average, and this is sufficient to finish the proof.

Case 1. Primes of type I.

Let p := 2md + 1 be a prime of type I. Since d 6 x for all p | B, in the
case that m 6 a1/3 it is easy to see that

m 6M3 := 10a1/3 log x and p 6 2M3 (x > x0). (19)

Our goal is to show that (19) holds for every type I prime. Assuming this
result for the moment and using (5), we derive the bound

BI 6
∏
m6M3
d | k

2M3 6 2M
2
3 τ(k) 6 2a

2/3(log x)3 (x > x0). (20)

Now suppose that p := 2md + 1 is of type I with m > a1/3, and let
k1, . . . , ks and n1, . . . , ns have the properties described in (i). We claim that
there are two numbers kj, say k1 and k2, for which there exists a prime q
dividing k2 but not k1; in particular, since d divides each kj, q does not divide
d. Indeed, suppose on the contrary that every kj is divisible by the primes
q1 . . . , qt, which we order by

q1 < · · · < qr 6 z2 < qr+1 < · · · < qt
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with 0 6 r 6 t. Since kj 6∈ C11(x) ∪ C12(x) for each j, it follows that

kj = qr+1 · · · qt
r∏
i=1

q
αi,j
i with 1 6 αi,j 6 z2 (1 6 i 6 r, 1 6 j 6 s).

As s cannot exceed the number of all such factorizations, we have (using the
bound π(u) 6 2u/ log u for all large u)

blog2 xc = s 6 zr2 6 z
π(z2)
2 6 exp(2z2) 6 (log3 x)2,

which is impossible for x > x0. This contradiction proves the claim.
Next, we apply a three-dimensional analogue of the argument used in §2.4

to derive the inequality (12).
Put N3 := d(2a)1/3e. Since max{m,n1, n2} 6 2a = N3

3 , all numbers
of the form um + vn1 + wn2 with (u, v, w) ∈ [0, N3]3 lie in the interval
[0, 3N4

3 ]; as there are (N3 + 1)3 such triplets (u, v, w), it follows that there
exist (u1, v1, w1) 6= (u2, v2, w2) for which∣∣(u1m+ v1n1 + w1n1)− (u2m+ v2n1 + w2n2)

∣∣ 6 3N4
3

(N3 + 1)3 − 1
6 3N3.

Put (u, v, w) := (u1 − u2, v1 − v2, w1 − w2) 6= (0, 0, 0), and note that

max{|u|, |v|, |w|} 6 N3, |um+ vn1 + wn2| 6 3N3. (21)

In view of the congruences

2md ≡ −1 (mod p) and 2njkj ≡ −1 (mod p) (j = 1, 2),

we have
2um+vn1+wn2dukv1k

w
2 ≡ (−1)u+v+w (mod p).

Therefore, p divides the numerator of the rational number

G := 2um+vn1+wn2dukv1k
w
2 − (−1)u+v+w.

We claim that G 6= 0. Indeed, suppose on the contrary that G = 0. Since
dk1k2 is odd, it follows that um + vn1 + wn2 = 0, u + v + w is even, and
dukv1k

w
2 = 1. Since there is a prime q that divides k2 but neither k1 nor d, it

follows that w = 0, and therefore

2um+vn1dukv1 = (−1)u+v.
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However, by the arguments of §2.4 we see this relation is not possible unless
(u, v) = (0, 0); but this leads to (u, v, w) = (0, 0, 0), which is not allowed. We
conclude that G 6= 0.

Since p divides the numerator of G, using (21) we derive the bound

p 6 2|um+vn1+wn2|d|u|k
|v|
1 k
|w|
2 + 1 6 23N3+1x3N3 6 2M3 (x > x0).

Since p > 2m, this establishes the promised result that (19) holds for every
type I prime.

Case 2. Primes of type II.

We first observe that every prime factor p = 2md+ 1 of B satisfies

m 6 ∆1N2 6
2a1/2(log x)1/2(log2 x)3/2

(log n)1/2
6M4 := 2a1/2(log2 x)2, (22)

where we have used the fact that

log n > logX2 =
log x

log2 x
.

Let d be fixed and split the interval [0,M4] into subintervals Ij of length z3,
where Ij := [jz3, (j + 1)z3) for j = 0, . . . , bM4/z3c. Every such Ij contains
at most 100 indices m for which p = 2md + 1 is a type II prime factor of
2nk + 1; these primes clearly satisfy

p = 2md+ 1 6 22M4 (x > x0).

Thus, for fixed d we have∏
p |BII

p=2md+1

p 6 (22M4)100(M4/z3+1) 6 2300M2
4 /z3 (x > x0).

Then, taking the product over all divisors d of k, we derive that

BII 6 2300M2
4 τ(k)/z3 (x > x0).

Finally, using (5) and the definitions of M4 and z3, for all x > x0 we have

300M2
4 τ(k)

z3

6
1200a(log2 x)4(log x)0.8

(log x)0.9
6

a

(log x)0.09
(x > x0)
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hence we obtain the bound

BII 6 2a/(log x)0.09 (x > x0). (23)

Case 3. Primes of type III.

Combining the bounds (18), (20) and (23), we have

ABIBII 6 210a5/6(log x)1/2+a2/3(log x)3+a/(log x)0.09 6 2a/2 (x > x0);

therefore, since
2a 6 2nk + 1 = AB = ABIBIIBIII ,

it follows that
BIII > 2a/2 (x > x0). (24)

We now adopt the convention that for every k ∈ C13(a;x), the number n is
chosen to be the least integer in [a, 2a) such that 2nk + 1 is a Carmichael
number. With this convention in mind, we use the notation BIII(k) instead
of BIII to emphasize that this number depends only on k.

Multiplying the bounds (24) over all k ∈ C13(a;x), we get

2(a/2)|C13(a;x)| 6
∏

k∈C13(a;x)

BIII(k) 6

( ∏
p∈Ba

p

)s
, (25)

where we have used Ba to denote the collection of type III primes that divide
some BIII(k) with k ∈ C13(a;x). Note that every prime in Ba is repeated no
more than s times since p is not of type I.

Let p = 2md + 1 ∈ Ba. Since d 6 x and m > a1/3 > X
1/3
2 > 2 log x for

all x > x0, it follows that p 6 22m. Thus, fixing m and denoting by Da,m the
set of numbers d for which 2md+ 1 ∈ Ba, it follows that∏

d∈Da,m

(2md+ 1) 6 22m|Da,m| 6 22M4|Da,m|,

where we used (22) for the second inequality. Taking the product over all
values of m 6M4, we have for x > x0:∏

p∈Ba

p 6 22M2
4Da with Da := max

m6M4

|Da,m|. (26)
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Hence, to get an upper bound for the product in (26), it suffices to find a
uniform upper bound for Da.

Observe that, as the primes in Ba are not of type II, every d ∈ Da,m has
the property that 2td+ 1 is prime for at least 100 values of t in the interval
[m,m + z3]. Let m be fixed, and let λ1 < · · · < λ100 be fixed integers in the
interval [0, z3]. We begin by counting the number of d 6 x for which the 100
numbers

{
2m+λjd+ 1 : 1 6 j 6 100

}
are simultaneously prime. By the Brun

sieve, the number of such d 6 x is

O

(
x

(log x)100

(
E

ϕ(E)

)100
)
, where E :=

∏
i<j

(2λj−λi − 1).

Since
E 6 21002z3 6 2104 log x = x104 ln 2,

using the well known bound u/ϕ(u)� log2 u we have

E

ϕ(E)
� log2E � log2 x.

Hence, for fixed λ1 < · · · < λ100 the number of possibilities for d is

O

(
x(log2 x)100

(log x)100

)
.

As the number of choices for λ1, . . . , λ100 in [0, z3] is 6 (z3 +1)100 � (log x)90,
it follows that

|Da,m| �
x(log2 x)100

(log x)10
.

Consequently,

Da := max
m6M4

|Da,m| 6
x

(log x)9
(x > x0),

and we have

2M2
4Da 6

8ax(log2 x)4

(log x)9
6

ax

(log x)8
(x > x0). (27)

Inserting estimate (27) into (26), and combining this with (25), we see that

2(a/2)|C13(a;x)| 6 2axs/(log x)8 ,
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and therefore

|C13(a;x)| 6 2xs

(log x)8
6

2x log2 x

(log x)8
(x > x0).

Since this bound clearly implies (17), our proof of Theorem 1 is complete.

3 Proof of Theorem 2

The following statement provides the key to the proof of Theorem 2.

Theorem 4 (Matomäki). If gcd(b,m) = 1 and b is a quadratic residue
mod m, then for all large x there are �m x1/5 Carmichael numbers up to x
in the arithmetic progression b mod m.

In the recent preprint [29], Wright extends the previous theorem to remove
the condition on b being a quadratic residue modulo m. Precisely, he showed
(under gcd(b,m) = 1) that the number of Carmichael numbers up to x that

are congruent to b mod m is � x
K

(log3 x)
2 , for some constant K > 0. Using

this result would allow a somewhat easier approach to the problem, but we
prefer to use Matomäki’s Theorem 4, since it gives a better lower bound for
the count.

The next proposition illustrates our approach to the proof of Theorem 2.

Proposition 1. For all large x, there are � x1/5 natural numbers up to x
that are both Sierpiński and Carmichael.

Proof. In view of Theorem 4, to prove this result it suffices to find coprime
b,m such that b is a quadratic residue mod m, and every sufficiently large
number in the arithmetic progression b mod m is a Sierpiński number.

Suppose that we can find a finite collection C := {(aj, nj; bj, pj)}Nj=1 of
ordered quadruples of integers with the following properties:

(i) n1, . . . , nN are natural numbers, and p1, . . . , pN are distinct primes;

(ii) every integer lies in at least one of the arithmetic progressions aj mod nj;

(iii) pj | 2nj − 1 for each j;

(iv) pj | 2ajbj + 1 for each j;
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(v) bj is a quadratic residue mod pj for each j.

Put m := p1 · · · pN , and let b ∈ Z be such that b ≡ bj (mod pj) for each j.
Since p1, . . . , pN are distinct primes, is clear from (v) that b is a quadratic
residue mod m. Let k be an arbitrary element of the arithmetic progression
b mod m that exceeds max{p1, . . . , pN}. For every n ∈ Z there exists j
such that n ≡ aj (mod nj). For such j, using (iii) and (iv) one sees that
pj | 2nk + 1, hence 2nk + 1 is composite since k > pj. As this is so for every
n ∈ Z, it follows that k is Sierpiński.

To complete the proof of the theorem it suffices to observe that

C := {(1, 2; 1, 3), (2, 4; 1, 5), (4, 8; 1, 17), (8, 16; 1, 257),

(16, 32; 1, 65537), (32, 64; 1, 641), (0, 64;−1, 6700417)}
(28)

is a collection with the properties (i)− (v).

Proof of Theorem 2. In view of Theorem 4, it suffices to find coprime b,m
such that b is a quadratic residue mod m, and every sufficiently large number
in the arithmetic progression b mod m is both Sierpiński and Riesel.

Suppose that we can find two finite collections C := {(aj, nj; bj, pj)}Nj=1

and C ′ := {(cj,mj; dj, qj)}Mj=1 such that C has the properties (i)–(v) listed in
Proposition 1, and C ′ has the properties:

(vi) m1, . . . ,mN are natural numbers, and q1, . . . , qN are distinct primes;

(vii) the union of the arithmetic progressions cj mod mj is Z;

(viii) qj | 2mj − 1 for each j;

(ix) qj | 2cjdj − 1 for each j;

(x) dj is a quadratic residue mod qj for each j.

Furthermore, assume that

(xi) gcd(p1 · · · pN , q1 · · · qM) = 1.

Put m := p1 · · · pNq1 · · · qM , and let b ∈ Z be such that b ≡ bi (mod pi) for
i = 1, . . . , N and b ≡ dj (mod qj) for j = 1, . . . ,M . Since all the primes pi
and qj are distinct, is clear from (v) that b is a quadratic residue mod m.
Arguing as in the proof of Proposition 1 we see that every sufficiently large

22



number in the arithmetic progression b mod m is both Sierpiński (using (iii)
and (iv)) and Riesel (using (viii) and (ix)).

Hence, to prove the theorem it suffices to exhibit collections C and C ′ with
the stated properties. For this, we take C to be the collection listed in (28),
whereas for C ′ we use the collection disclosed in the Appendix.

4 Proof of Theorem 3

Let us now suppose that N := 2nk + 1 is Lehmer. We can clearly assume
that n > 150 log k, and by Wright [28] we must have k > 3; therefore,

1 6 ω(k) 6
log k

log 3
<

n

150
. (29)

Since every Lehmer number is Carmichael, we can apply the following lemma,
which is a combination of [11, Lemmas 2, 3, 4].

Lemma 3. Suppose that p = 2md + 1 is a prime divisor of the Carmichael
number N = 2nk + 1, where d | k and n > 3 log k.

(i) If d = 1, then m = 2α for some integer α > 0, and p < k2;

(ii) if d > 1 and the numbers 2md and 2nk are multiplicatively dependent,
then p < 2n/3k1/3 + 1;

(iii) if d > 1 and the numbers 2md and 2nk are multiplicatively independent,
then m < 7

√
n log k.

Moreover, N has at most one prime divisor for which (ii) holds.

Let A1, A2, A3 respectively denote the product of the primes p | N for
each possibility (i), (ii), (iii) in Lemma 3. If A1 > 1 and p = 22α + 1 is the
largest prime dividing A1, then we have

A1 6
α∏
j=0

(22j + 1) = 22α+1 − 1 = (p− 1)2 − 1 6 p2 6 k4, (30)

and clearly Lemma 3 implies that

A2 6 2n/3k1/3 + 1 6 2n/3+1k1/3. (31)
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Furthermore, if the prime divisors of A3 are pj := 2mjdj + 1, j = 1, . . . , r,
then

d1 · · · dr | ϕ(A3) | ϕ(N) | N − 1 = 2nk,

so we see that d1 · · · dr | k and r 6 ω(k). Consequently,

A3 =
r∏
j=1

(2mjdj + 1) 6
r∏
j=1

2mj+1dj 6 2(7
√
n log k+1)ω(k)k. (32)

Combining (30), (31) and (32), it follows that

2nk 6 N = A1A2A3 6 2n/3+1+(7
√
n log k+1)ω(k)k16/3.

Taking the logarithm and using the inequalities of (29) we derive that

n 6
n

3
+ 1 +

(
7
√
n log k + 1

)
ω(k) +

13 log k

3 ln 2

6
n

3
+
(
7
√
n log k

)
ω(k) +

19n

450 ln 2
,

and it follows that

n 6 49

(
2

3
− 19

450 ln 2

)−2

ω(k)2 log k 6 150ω(k)2 log k

as stated.

5 Appendix A

The collection C ′ that is needed for our proof of Theorem 2 (see §3) consists
of the quadruples (cj,mj; dj, qj) disclosed in the following tables.
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cj mj dj qj

0 2 1 3
1 3 4 7
2 5 8 31
6 7 2 127
0 9 1 73
0 15 1 151
14 21 128 337
23 25 4 601
3 25 1576 1801
21 27 64 262657
11 35 58 71
31 35 16 122921
24 45 22473 23311
35 45 393 631

cj mj dj qj

23 63 55318 92737
2 63 487243 649657
1 70 a1 p1
38 75 15604 100801
63 75 4096 10567201
3 81 2269 2593
30 81 69097 71119
47 81 84847359 97685839
5 90 4120594 18837001
89 105 7154 29191
59 105 48124 106681
26 105 48168 152041
a1 := 290641821624556480; p1 := 581283643249112959

cj mj dj qj

38 135 43817595232267 49971617830801
39 135 41 271
66 135 41811 348031
51 150 1133819953185 1133836730401
29 162 134527 135433
137 162 33554432 272010961
158 175 12419 39551
8 175 30170438 60816001
33 175 a2 p2
155 189 1072100 1560007
92 189 a3 p3
51 210 247125 664441
179 210 412036 1564921
a2 := 311219987433457559260630

p2 := 535347624791488552837151

a3 := 44183558259521350402959571

p3 := 207617485544258392970753527
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cj mj dj qj

93 225 68316 115201
168 225 111534 617401
183 225 196089342 1348206751
141 225 5524543637190621 13861369826299351
65 270 14107 15121
134 315 465324 870031
44 315 944338 983431
296 315 524288 29728307155963706810228435378401
245 405 421858 537841
155 405 794228530486264 11096527935003481
219 405 a4 p4
33 450 4714696801 4714696801
143 450 a5 p5
231 525 2325 4201
458 525 3644 7351
336 525 108146490 181165951
21 525 a6 p6
138 567 a7 p7
518 675 a8 p8
68 675 a9 p9
a4 := 5374027197450830037173993714239791208197682

p4 := 17645665556213400107370602081155737281406841

a5 := 277105769675251661059822497

p5 := 281941472953710177758647201

a6 := 130389571378501740404359908566659664918592879449898771616

p6 := 325985508875527587669607097222667557116221139090131514801

a7 := 34175792320105064276509598883086470918869640752174548399861885128941214865520182674355385966526465

p7 := 34175792320105064276509600649933535697253970335472049142780400956425111741139140798213387072831489

a8 := 1086551216887830778103354063694

p8 := 1094270085398478390395590841401

a9 := 375881803356253828783891377794842091038

p9 := 470390038503476855180627941942761032401
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cj mj dj qj

668 675 128 2842496263188647640089794561760551
68 675 378466 1605151
293 675 31900530 289511839
83 810 2980 9721
141 810 1619 6481
425 810 1113369644664597 1969543281137041
29 945 a10 p10
96 945 a11 p11
96 1575 79759849 82013401

1356 1575 21286182334 32758188751
344 1575 27829883893510195 76641458269269601
233 1575 a12 p12
411 1575 a13 p13
1806 2025 29194 81001
1191 2025 375769199 429004351
1131 2025 a14 p14
a10 := 50835936807709736817104784421509870

p10 := 124339521078546949914304521499392241

a11 := 59062237672015342892330136827234845353476843214908095835470998053274553710744754308864210671730

p11 := 89371283318924988713544642472309024678004403189516730060412595564942724011446583991926781827601

a12 := 499918989349861832576268113521739

p12 := 764384916291005220555242939647951

a13 := 415411639487789290827522873736236492723576906851307827673621379441482

p13 := 745832506848141808511611576240568244832258614550704416204357517716551

a14 := 462022372600473167169237015384303310307

p14 := 2029839982282855554442383177052070534551.

6 Appendix B

We conclude with examples of Sierpiński-Carmichael, Riesel-Carmichael, and
Sierpiński-Riesel-Carmichael numbers. The idea behind the construction is
the same for each of the three examples. We construct a Carmichael number
of the form N = f(t) = (2t+1)(4t+1)(6t+1), where each of the factors 2t+1,
4t+ 1 and 6t+ 1 is prime. We can then check that N is Carmichael since 2t,
4t and 6t are easily seen to be factors of N−1. What remains is to construct
the coverings necessary to produce Sierpiński or Riesel numbers (or both):
we have called the elements in these coverings (cj,mj; dj, qj) throughout this
article. The final step is to solve the congruence f(tj) ≡ dj (mod qj). Thus,
we have an additional column for tj in the tables presented below.
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Sierpiński-Carmichael number
Let f(t) = (6t+ 1)(12t+ 1)(18t+ 1).

cj mj dj qj tj

1 2 1 3 0
2 4 1 5 0
4 8 1 17 0
8 16 1 257 0
16 32 1 65537 0
0 48 96 97 76
16 24 226 241 42
32 96 655316 2225377 9066929

Now observe that (cj,mj) forms a covering, t = 1034170868575402949878725
satisfies all the congruences tj (mod qj), and that f(t) ≡ dj (mod qj) for
each j. Thus, for this value of t, f(t) is Sierpiński. To see that
f(t) = 1433447863276475102293771681784302201846076475365432242305613689102632631601

is also Carmichael, notice that 6t + 1 = 6205025211452417699272351, 12t +
1 = 12410050422904835398544701, and 18t+1 = 18615075634357253097817051
are all prime, and f(t)− 1 is divisible by 6t, 12t, and 18t.

Riesel-Carmichael number
Let f(t) = (2t+ 1)(4t+ 1)(6t+ 1).

cj mj dj qj tj

0 2 1 3 0
0 3 1 7 0
4 9 32 73 1
5 12 11 13 5
7 8 2 17 11
11 18 14 19 11
25 36 13 37 22
11 48 53 97 44
1 36 55 109 28
19 24 32 241 73
3 16 225 257 196
37 48 29 673 210

Again, the congruences cj (mod mj) form a covering. Moreover, ob-
serve that t = 383045479078858981706118 satisfies all the congruences tj
(mod qj), and that f(t) ≡ dj (mod qj) for each j. Thus, for this value of t,
f(t) is Riesel. To see that
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f(t) = 2697691354484186943747008650234933049993410660498697822360729113096591609

is also Carmichael, notice that 2t+1 = 766090958157717963412237, 4t+1 =
1532181916315435926824473, and 6t+ 1 = 2298272874473153890236709 are
all prime, and f(t)− 1 is divisible by 2t, 4t, and 6t.

Sierpiński-Riesel-Carmichael number
Let f(t) = (2t+ 1)(4t+ 1)(6t+ 1).

cj mj dj qj tj

1 2 1 3 0
0 4 4 5 3
6 12 1 13 0
4 9 41 73 8
10 18 10 19 1
2 24 60 241 91
14 36 16 37 14
34 36 105 109 1
38 72 325 433 91
62 72 37713 38737 1256

0 2 1 3 0
0 3 1 7 0
0 5 1 31 0
5 8 8 17 10
1 10 6 11 1
2 15 38 151 32
11 16 32 257 141
3 20 36 41 26
7 30 75 331 196
3 32 57345 65537 51629
9 40 59633 61681 59393
7 48 72 97 54
19 48 641 673 224
59 60 2 61 26
13 60 1028 1321 129
79 80 2 4278255361 1351662299
113 120 128 4562284561 3018421270

In the table above, the congruence cj (mod mj) in the top part of the
table form a covering, and the congruences in the bottom part of the table
form a separate covering. The integer

t = 1338979105545414811992186692235778298273840303222085925082378476296462844923
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satisfies all of the congruences tj (mod qj) in the entire table. Thus, f(t) ≡ dj
(mod qj) for both the top and bottom parts of the table. This implies that
f(t) is both Sierpiński (from the top part) and Riesel (from the bottom part).
Finally,

f(t) = 115229224052855887100756588659264307276443422419402462627311319917631839876768−

543292399537807831615677851203822707234896300064793740772960178584232868017442980971−

810181759397938835296681335113793727167516391877007957575147486369

is Carmichael, since the factors
2t+ 1 = 2677958211090829623984373384471556596547680606444171850164756952592925689847,

4t+1 = 5355916422181659247968746768943113193095361212888343700329513905185851379693, and
6t+ 1 = 8033874633272488871953120153414669789643041819332515550494270857778777069539

are all prime, and f(t)− 1 is divisible by 2t, 4t, and 6t.
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