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1 Introduction

DeMoivre (1718) used the generating function (found by employing the recurrence) for

the Fibonacci sequence
∞∑
i=0

Fix
i =

x

1− x− x2
, to obtain the identities Fn = αn−βn

√
5

, Ln =

αn + βn (Lucas numbers) with α = 1+
√

5
2 , β = 1−

√
5

2 . These identities are called Binet

formulas, in honor of Binet who in fact rediscovered them more than one hundred years

later, in 1843 (see [6]). Reciprocally, using the Binet formulas, we can find the generating

function easily
∞∑
i=0

Fix
i =

1√
5

∞∑
i=0

(αi − βi)xi =
1√
5

(
1

1− αx
− 1

1− βx

)
=

x

1− x− x2
,

since αβ = −1, α + β = 1.

A natural question is whether we can find a closed form for the generating function

for powers of Fibonacci numbers, or better yet, for powers of any second-order recurrence

sequences. Carlitz [1] and Riordan [4] were unable to find the closed form for the generating

functions F (r, x) of F r
n , but found a recurrence relation among them, namely

(1− Lrx + (−1)rx2)F (r, x) = 1 + rx

[ r
2
]∑

j=1

(−1)j Arj

j
F (r − 2j, (−1)jx),
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with Arj having a complicated structure (see also [2]). We are able to complete the study

started by them by finding a closed form for the generating function for powers of any

non-degenerate second-order recurrence sequence. We would like to point out, that this

”forgotten” technique we employ can be used to attack successfully other sums or series

involving any second-order recurrence sequence. We also find closed forms for non-weighted

partial sums for non-degenerate second-order recurrence sequences, generalizing a theorem

of Horadam [3] and also weighted (by the binomial coefficients) partial sums for such se-

quences. Using these results we indicate how to obtain some congruences modulo powers

of 5 for expressions involving Fibonacci and/or Lucas numbers.

2 Generating Functions

We consider the general non-degenerate second-order recurrence, Un+1 = aUn + bUn−1,

a, b, U0, U1 integers, δ = a2 + 4b 6= 0. We intend to find the generating function of powers

of its terms, U(r, x) =
∞∑
i=0

U r
i xi. It is known that the Binet formula for the sequence Un is

Un = Aαn −Bβn, where α = 1
2(a +

√
a2 + 4b), β = 1

2(a−
√

a2 + 4b) and A = U1−U0β
α−β , B =

U1−U0α
α−β . We associate the sequence Vn = αn +βn, which satisfies the same recurrence, with

the initial conditions V0 = 2, V1 = a.

Theorem 1. We have

U(r, x) =

r−1
2∑

k=0

(−AB)k

(
r

k

)
Ar−2k −Br−2k + (−b)k(Br−2kαr−2k −Ar−2kβr−2k)x

1− (−b)kVr−2kx− brx2
,

if r odd, and

U(r, x) =

r
2
−1∑

k=0

(−AB)k

(
r

k

)
Br−2k + Ar−2k − (−b)k(Br−2kαr−2k + Ar−2kβr−2k)x

1− (−b)kVr−2kx + brx2

+
(

r
r
2

)
(−AB)

r
2

1− (−b)
r
2 x

, if r even.
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Proof. We evaluate

U(r, x) =
∞∑
i=0

(
r∑

k=0

(
r

k

)
(Aαi)k(−Bβi)r−k

)
xi

=
r∑

k=0

(
r

k

)
Ak(−B)r−k

∞∑
i=0

(αkβr−kx)i

=
r∑

k=0

(
r

k

)
Ak(−B)r−k 1

1− αkβr−kx
.

If r odd, then associating k ↔ r − k, we get

U(r, x) =

r−1
2∑

k=0

(−1)k

(
r

k

)(
Ar−kBk

1− αr−kβkx
− AkBr−k

1− αkβr−kx

)

=

r−1
2∑

k=0

(−1)k

(
r

k

)
Ar−kBk −AkBr−k + (AkBr−kαr−kβk −Ar−kBkαkβr−k)x

1− (αkβr−k + αr−kβk)x + αrβrx2

=

r−1
2∑

k=0

(−1)k

(
r

k

)
Ar−kBk −AkBr−k + (−b)k(AkBr−kαr−2k −Ar−kBkβr−2k)x

1− (−b)kVr−2kx− brx2
.

If r even, then associating k ↔ r − k, except for the middle term, we get

U(r, x) =

r
2
−1∑

k=0

(−1)k

(
r

k

)(
AkBr−k

1− αkβr−kx
+

Ar−kBk

1− αr−kβkx

)
+
(

r
r
2

)
A

r
2 (−B)

r
2

1− (−b)
r
2 x

=

r
2
−1∑

k=0

(−1)k

(
r

k

)
AkBr−k + Ar−kBk − (AkBr−kαr−kβk + Ar−kBkαkβr−k)x

1− (αkβr−k + αr−kβk)x + αrβrx2

+
(

r
r
2

)
(−AB)

r
2

1− (−b)
r
2 x

=

r
2
−1∑

k=0

(−1)k

(
r

k

)
AkBr−k + Ar−kBk − (−b)k(AkBr−kαr−2k + Ar−kBkβr−2k)x

1− (−b)kVr−2kx + brx2

+
(

r
r
2

)
(−AB)

r
2

1− (−b)
r
2 x

.

If U0 = 0, then A = B = U1
α−β , and in this case we can derive the following beautiful

identities
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Theorem 2. We have

U(r, x) = Ar−1

r−1
2∑

k=0

(
r

k

)
bkUr−2kx

1− (−b)kVr−2kx− brx2
, if r odd

U(r, x) = Ar

r
2
−1∑

k=0

(−1)k

(
r

k

)
2− (−b)kVr−2kx

1− (−b)kVr−2kx + brx2
+
(

r
r
2

)
(−1)

r
2 Ar

1− (−b)
r
2 x

, if r even.

Corollary 3. If {Un}n is a non-degenerate second-order recurrence sequence and U0 = 0,

then

U(1, x) =
U1x

1− ax− bx2
(1)

U(2, x) =
U2

1 x(1− bx)
(bx + 1)(b2x2 − V2x + 1)

(2)

U(3, x) =
δA2U1x

(
1− 2abx− b3x2

)
(1− V3x− b3x2)(1 + bV1x− b3x2)

. (3)

Proof. We use Theorem 2. The first two identities are straightforward. Now,

U(3, x) = A2

(
U3x

1− V3x− b3x2
+
(

3
1

)
bU1x

1 + bV1x− b3x2

)
= A2x

U3 + 3bU1 + b(U3V1 − 3U1V3)x− b3(U3 + 3bU1)x2

(1− V3x− b3x2)(1 + bV1x− b3x2)

=
δA2U1x

(
1− 2abx− b3x2

)
(1− V3x− b3x2)(1 + bV1x− b3x2)

,

since U3 + 3bU1 = (a2 + 4b)U1 = δU1 and U3V1 − 3U1V3 = −2aδU1.

Remark 4. If Un = Fn, the Fibonacci sequence, then a = b = 1, and if Un = Pn, the Pell

sequence, then a = 2, b = 1.

3 Horadam’s Theorem

Horadam [3] found some closed forms for partial sums Sn =
n∑

i=1

Pi, S−n =
n∑

i=1

P−i, where

Pn is the generalized Pell sequence, Pn+1 = 2Pn + Pn−1, P1 = p, P2 = q. Let pn be the

ordinary Pell sequence, with p = 1, q = 2, and qn be the sequence satisfying the same

recurrence, with p = 1, q = 3. He proved
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Theorem 5 (Horadam). For any n,

S4n = q2n(pq2n−1 + qq2n) + p− q; S4n−2 = q2n−1(pq2n−2 + qq2n−1)

S4n+1 = q2n(pq2n + qq2n+1)− q; S4n−1 = q2n(pq2n−2 + qq2n−1)− p

S−4n = q2n(−pq2n+2 + qq2n+1) + 3p− q; S−4n+2 = q2n(−pq2n + qq2n−1) + 2p

S−4n+1 = q2n(pq2n+1 − qq2n) + p; S−4n−1 = q2n+1(pq2n+2 − qq2n+1) + 2p− q.

We observe that Horadam’s theorem is a particular case of the partial sum for a non-

degenerate second-order recurrence sequence Un. In fact, we generalize it even more by

finding SU
n,r(x) =

n∑
i=0

U r
i xi. For simplicity, we let U0 = 0. Thus, Un = A(αn − βn) and

Vn = αn + βn. We prove

Theorem 6. We have

SU
n,r(x) = Ar−1x

r−1
2∑

k=0

bk

(
r

k

)
Ur−2k − (−b)knU(r−2k)(n+1)x

n + (−b)r+k(n−1)U(r−2k)nxn+1

1− (−b)kVr−2kx− brx2
, (4)

if r is odd, and

SU
n,r(x) = Ar(−1)

r
2

(
r
r
2

)
(−b)

r
2
(n+1)xn+1 − 1

(−b)
r
2 x− 1

+ Ar

r
2
−1∑

k=0

(−1)k

(
r

k

)
·

2− (−b)kVr−2kx− (−b)k(n+1)V(r−2k)(n+1)x
n+1 + (−b)r+knV(r−2k)nxn+2

1− (−b)kVr−2kx + brx2
,

(5)

if r is even.

Proof. We evaluate

SU
n,r(x) =

n∑
i=0

r∑
k=0

(
r

k

)
(Aαi)k(−Aβi)r−kxi

= Ar
r∑

k=0

(−1)r−k

(
r

k

) n∑
i=0

(αkβr−kx)i

= Ar
r∑

k=0

(−1)r−k

(
r

k

)
(αkβr−kx)n+1 − 1

αkβr−kx− 1
.
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Assume r odd. Then, associating k ↔ r − k, we get

SU
n,r(x) = Ar

r−1
2∑

k=0

(−1)k

(
r

k

)(
(αr−kβkx)n+1 − 1

αr−kβkx− 1
− (αkβr−kx)n+1 − 1

αkβr−kx− 1

)

= Ar

r−1
2∑

k=0

(−1)k

(
r

k

)
(αkβr−kx− 1)(α(r−k)(n+1)βk(n+1)xn+1 − 1)

−(αr−kβkx− 1)(αk(n+1)β(r−k)(n+1)xn+1 − 1)
(αkβr−kx− 1)(αr−kβkx− 1)

= Ar

r−1
2∑

k=0

(−1)k

(
r

k

)
αr(n+1)−knβr+knxn+2 − α(r−k)(n+1)βk(n+1)xn+1

−αkβr−kx− αr+knβr(n+1)−knxn+2 + αr−kβkx

+αk(n+1)β(r−k)(n+1)xn+1

1− (−b)k(αr−2k + βr−2k)x + αrβrx2

= Ar

r−1
2∑

k=0

(−1)k

(
r

k

)
(−b)k(αr−2k − βr−2k)x− (−b)k(n+1)(α(r−2k)(n+1)

−β(r−2k)(n+1))xn+1 + (−b)r+kn(α(r−2k)n − β(r−2k)n)xn+2

1− (−b)kVr−2kx− brx2

= Ar−1x

r−1
2∑

k=0

bk

(
r

k

)
Ur−2k − (−b)knU(r−2k)(n+1)x

n + (−b)r+k(n−1)U(r−2k)nxn+1

1− (−b)kVr−2kx− brx2
.

Assume r even. Then, as before, associating k ↔ r− k, except for the middle term, we

get

SU
n,r(x) = Ar

r
2
−1∑

k=0

(−1)k

(
r

k

)
2− (−b)k(αr−2k + βr−2k)x− (−b)k(n+1)(α(r−2k)(n+1)

+β(r−2k)(n+1))xn+1 + (−b)r+kn(α(r−2k)n + β(r−2k)n)xn+2

1− (−b)kVr−2kx + brx2

+Ar(−1)
r
2

(
r
r
2

)
(−b)

r
2
(n+1)xn+1 − 1

(−b)
r
2 x− 1

= Ar(−1)
r
2

(
r
r
2

)
(−b)

r
2
(n+1)xn+1 − 1

(−b)
r
2 x− 1

+ Ar

r
2
−1∑

k=0

(−1)k

(
r

k

)
·

2− (−b)kVr−2kx− (−b)k(n+1)V(r−2k)(n+1)x
n+1 + (−b)r+knV(r−2k)nxn+2

1− (−b)kVr−2kx + brx2
.
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Taking r = 1, we get the partial sum for any non-degenerate second-order recurrence

sequence, with U0 = 0,

Corollary 7. SU
n,1(x) =

x
(
U1 − Un+1x

n − bUnxn+1
)

1− V1x− bx2

Remark 8. Horadam’s theorem follows easily, since Sn = SP
n,1(1). Also S−n can be

found without difficulty, by observing that P−n = pp−n−2 + qp−n−1 = −p(−1)n+2pn+2 −

q(−1)n+1pn+1, and using Sp
n,1(−1).

4 Weighted Combinatorial Sums

In [6] there are quite a few identities like
n∑

i=0

(
n

i

)
Fi = F2n, or

n∑
i=0

(
n

i

)
F 2

i , which is 5[n−1
2

]Ln

if n even, and 5[n−1
2

]Fn, if n odd. A natural question is: for fixed r, what is the closed form

for the weighted sum
∑n

i=0

(
n
i

)
F r

i (if it exists)? We are able to answer the previous question,

not only for the Fibonacci sequence, but also for any second-order recurrence sequence Un,

in a more general setting. Let Sr,n(x) =
n∑

i=0

(
n

i

)
U r

i xi.

Theorem 9. We have

Sr,n(x) =
r∑

k=0

(
r

k

)
Ak(−B)r−k(1 + αkβr−kx)n.

Moreover, if U0 = 0, then Sr,n(x) = Ar
r∑

k=0

(−1)r−k

(
r

k

)
(1 + αkβr−kx)n.

Proof. Let

Sr,n(x) =
n∑

i=0

(
n

i

) r∑
k=0

(
r

k

)
(Aαi)k(−Bβi)r−kxi

=
r∑

k=0

(
r

k

)
Ak(−B)r−k

n∑
i=0

(
n

i

)
(αkβr−kx)i

=
r∑

k=0

(
r

k

)
Ak(−B)r−k(1 + αkβr−kx)n
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If U0 = 0, then A = B, and Sr,n(x) = Ar
∑r

k=0(−1)r−k
(
r
k

)
(1 + αkβr−kx)n

Although we found an answer, it is not very exciting. However, by studying Theorem

9, we observe that we might be able to get nice sums involving the Fibonacci and Lucas

sequences (or any such sequence, for that matter), if we are able to express 1 plus/minus

a power of α, β as the same multiple of a power of α, respectively β. When Un = Fn, the

Fibonacci sequence, the following lemma does exactly what we need.

Lemma 10. The following identities are true

α2s − (−1)s =
√

5αsFs

β2s − (−1)s =−
√

5βsFs

α2s + (−1)s =Lsα
s

β2s + (−1)s =Lsβ
s.

(6)

Proof. Straightforward using the Binet formula for Fs and Ls.

Theorem 11. We have

S4r+2,n(1) = 5
n+1

2
−(2r+1)

2r∑
k=0

(
4r + 2

k

)
Fn

2r+1−kFn(2r+1−k), if n odd (7)

S4r+2,n(1) = 5
n
2
−(2r+1)

2r∑
k=0

(−1)k

(
4r + 2

k

)
Fn

2r+1−kLn(2r+1−k) if n even (8)

S4r,n(1) = 5−2r

[
2r−1∑
k=0

(−1)k(n+1)

(
4r

k

)
Ln

2r−kL(2r−k)n + 2n

(
4r

2r

)]
. (9)

Proof. We use Theorem 9. Associating k ↔ 4r + 2 − k, except for the middle term in

S4r+2,n(1), we obtain

S4r+2,n(1) = 5−(2r+1)
2r∑

k=0

(−1)k

(
4r + 2

k

)[(
1 + αkβ4r+2−k

)n
+
(
1 + α4r+2−kβk

)n]
= 5−(2r+1)

2r∑
k=0

(−1)k

(
4r + 2

k

)[(
1 + (−1)kβ4r+2−2k

)n
+
(
1 + (−1)kα4r+2−2k

)n]

8



= 5−(2r+1)
2r∑

k=0

(−1)k(n+1)

(
4r + 2

k

)[(
(−1)k + β2(2r+1−k)

)n
+
(
(−1)k + α2(2r+1−k)

)n]
.

(10)

We did not insert the middle term, since it is equal to

5−(2r+1)(−1)2r+1

(
4r + 2
2r + 1

)
(1 + α2r+1β2r+1)n

= 5−(2r+1)(−1)2r+1

(
4r + 2
2r + 1

)
(1 + (−1)2r+1)n = 0.

In (10), using (6), and observing that α2(2r+1−k) +(−1)k = α2(2r+1−k)− (−1)2r+1−k, we get

S4r+2,n(1) = 5−(2r+1)
2r∑

k=0

(−1)(n+1)k

(
4r + 2

k

)
5

n
2 Fn

2r+1−k

(
(−1)nβn(2r+1−k) + αn(2r+1−k)

)
.

Therefore, if n is odd, then

S4r+2,n(1) = 5−(2r+1)
2r∑

k=0

(
4r + 2

k

)
5

n+1
2 Fn

2r+1−kFn(2r+1−k)

and, if n is even, then

S4r+2,n(1) = 5−(2r+1)
2r∑

k=0

(−1)k

(
4r + 2

k

)
5

n
2 Fn

2r+1−kLn(2r+1−k).

In the same way, associating k ↔ 4r− k, except for the middle term, and using Lemma 10,

we get

S4r,n(1) = 5−2r
2r−1∑
k=0

(−1)k

(
4r

k

)[(
1 + αkβ4r−k

)n
+
(
1 + α4r−kβk

)n]
+ 5−2r2n

(
4r

2r

)

= 5−2r
2r−1∑
k=0

(−1)k(n+1)

(
4r

k

)[(
(−1)k + β2(2r−k)

)n
+
(
(−1)k + α2(2r−k)

)n]
+ 5−2r2n

(
4r

2r

)
= 5−2r

[
2r−1∑
k=0

(−1)k(n+1)

(
4r

k

)(
Ln

2r−kβ
(2r−k)n + Ln

2r−kα
(2r−k)n

)
+ 2n

(
4r

2r

)]

= 5−2r

[
2r−1∑
k=0

(−1)k(n+1)

(
4r

k

)
Ln

2r−kL(2r−k)n + 2n

(
4r

2r

)]
.

(11)
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Remark 12. In the same manner we can find
n∑

i=0

(
n

i

)
U r

pix
i.

We now list some interesting special cases of Theorems 9 and 11.

Corollary 13. We have

n∑
i=0

(
n

i

)
Fi = F2n

2n∑
i=0

(
2n

i

)
F 2

i = 5n−1L2n

2n+1∑
i=0

(
2n + 1

i

)
F 2

i = 5nF2n+1

n∑
i=0

(
n

i

)
F 3

i =
1
5
(2nF2n + 3Fn)

n∑
i=0

(
n

i

)
F 4

i =
1
25

(3nL2n − 4(−1)nLn + 6 · 2n) .

Proof. The second, third and fifth identities follow from Theorem 11. Now, using Theorem

9, with A = 1√
5
, we get

S1,n(1) =
1√
5

1∑
k=0

(−1)1−k

(
1
k

)
(1 + αkβ1−k)n

=
1√
5
(−(1 + β)n + (1 + α)n) =

1√
5
(α2n − β2n) = F2n.

Next, the fourth identity follows from

S3,n(1) =
1

5
√

5

3∑
k=0

(−1)3−k

(
3
k

)
(1 + αkβ3−k)n

=
1

5
√

5

[
−(1 + β3)n + 3(1 + αβ2)n − 3(1 + α2β)n + (1 + α3)n

]
=

1
5
√

5

[
−(2β2)n + 3αn − 3βn + (2α2)n

]
=

1
5
(2nF2n + 3Fn),

since 1 + β3 = 2β2, 1 + α3 = 2α2.

The results in our next theorem are obtained by putting x = −1 in Theorem 9, and

since the proofs are similar to the proofs in Theorem 11, we omit them.
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Theorem 14. We have

S4r,n(−1) = 5
n
2
−2r

2r−1∑
k=0

(−1)k

(
4r

k

)
Fn

2r−kL(2r−k)n, if n even,

S4r,n(−1) = −5
n+1

2
−2r

2r−1∑
k=0

(
4r

k

)
Fn

2r−kF(2r−k)n, if n odd,

S4r+2,n(−1) = 5−(2r+1)

[
2r∑

k=0

(−1)k(n+1)+n

(
4r + 2

k

)
Ln

2r+1−kL(2r+1−k)n − 2n

(
4r + 2
2r + 1

)]
.

Next we record some interesting special cases of Theorem 9 and 14.

Corollary 15. We have

n∑
i=0

(−1)i

(
n

i

)
Fi = −Fn

n∑
i=0

(−1)i

(
n

i

)
F 2

i =
1
5
(
(−1)nLn − 2n+1

)
n∑

i=0

(−1)i

(
n

i

)
F 3

i =
1
5

((−2)nFn − 3F2n)

n∑
i=0

(−1)i

(
n

i

)
F 4

i = 5
n−4

2
−(L2n − 4Ln), if n even

n∑
i=0

(−1)i

(
n

i

)
F 4

i = −5
n−3

2 (F2n + 4Fn), if n odd.

Proof. The first identity is a simple application of Theorem 9. The identities for even

powers are immediate consequences of Theorem 14. Now, using Theorem 9, we get

S3,n(−1) =
1

5
√

5

(
−(1− β3)n + 3(1− αβ2)n − 3(1− α2β)n + (1− α3)n

)
=

1
5
√

5

(
−(−2)nβn + 3β2n − 3α2n + (−2)nαn

)
=

1
5
((−2)nFn − 3F2n),

since 1− β3 = −2β, 1− α3 = −2α.

From (9) we obtain, for r ≥ 1,

2r−1∑
k=0

(−1)k(n+1)

(
4r

k

)
Ln

2r−kL(2r−k)n + 2n

(
4r

2r

)
≡ 0 (mod 52r).
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Similar congruences results from other sums in Section 4, and we leave these for the reader

to formulate.
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