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1 Introduction

DeMoivre (1718) used the generating function (found by employing the recurrence) for

o0
. . i x . . .. n_gn
the Fibonacci sequence E Fixt = [p—1 to obtain the identities F,, = & \/gﬁ , Ly, =
—z—x
i=0

a™ + " (Lucas numbers) with o = 1+2*/g,ﬂ = 1_2‘/5. These identities are called Binet

formulas, in honor of Binet who in fact rediscovered them more than one hundred years

later, in 1843 (see [6]). Reciprocally, using the Binet formulas, we can find the generating
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function easily g Fir' = —= g (o' — B2’ = ( — > = o
\/5i:0 Vi \l—azx 1-0z l—2z—=x

i=0
since af = -1, a+ (3 = 1.

A natural question is whether we can find a closed form for the generating function
for powers of Fibonacci numbers, or better yet, for powers of any second-order recurrence
sequences. Carlitz [1] and Riordan [4] were unable to find the closed form for the generating

functions F'(r,x) of F), but found a recurrence relation among them, namely

(5]
(1—Lyz+ (—1)7":1:2)}7(7“7:6) =14+rx Z(—l)j%;jF(r — 27, (—1)j$),
j=1
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with A,; having a complicated structure (see also [2]). We are able to complete the study
started by them by finding a closed form for the generating function for powers of any
non-degenerate second-order recurrence sequence. We would like to point out, that this
”forgotten” technique we employ can be used to attack successfully other sums or series
involving any second-order recurrence sequence. We also find closed forms for non-weighted
partial sums for non-degenerate second-order recurrence sequences, generalizing a theorem
of Horadam [3] and also weighted (by the binomial coefficients) partial sums for such se-
quences. Using these results we indicate how to obtain some congruences modulo powers

of 5 for expressions involving Fibonacci and/or Lucas numbers.

2 Generating Functions

We consider the general non-degenerate second-order recurrence, Up1 = al, + bU,_1,
a,b, Uy, Uy integers, § = a® + 4b # 0. We intend to find the generating function of powers

oo

of its terms, U(r,z) = Z Urz'. Tt is known that the Binet formula for the sequence U, is
i=0

U, = Aa™ — B3", where a = %(a + Va2 +4b),8 = %(a —+Va? +4b) and A = Ul_UﬁOﬁ,B =

oa—

Uﬂm%lg)“. We associate the sequence V,, = o™ + 8", which satisfies the same recurrence, with

the initial conditions Vy = 2, V] = a.

Theorem 1. We have
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Proof. We evaluate

Ulr,z) = i (; (;’) (Aai)’“(—Bﬁi)T_’“> &
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utr,z) _Z(_l) <k> (1 —arkgky 11— o/%’""%)

B i(_l)k r Ar—kBk; o Ak:Br—k + (Ak:Br—kar—kﬁk o Ar—kBkakﬂr—k)x
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2 ( 1)k r\ AT"kBk _ pAkpgr—Fk + (_b)k(Ak:Br—kar—Zkz _ AT_kBkﬁr_zk):U
k=0 k 1 — (=b)FV, _opx — bra? :
If r even, then associating k < r — k, except for the middle term, we get
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If Uy =0, then A = B = Oglﬁ, and in this case we can derive the following beautiful

identities



Theorem 2. We have

T

-1
2 bEU, _op
:Ar—l r r—2k . dd
U(r, ) Z (k) 1= bV, per — a2’ ifr o

k=0
51 k r
2 — (=b)"V,_opx r\ (-1)zA"
U(r,z) = A" —1k<r) —i—( >T, if r even.
(r,z) kzzo( ) k)1 — (=b)FV,_opz + b 22 5)1—(=b)ziz /

Corollary 3. If {U,}, is a non-degenerate second-order recurrence sequence and Uy = 0,

then
le
U(l,l‘) - 1 —aiL‘—biL‘2 (1)
2
1
@) = Upr(l — be) 2)

(bz + 1)(b222 — Vox + 1)

SA?U x (1 — 2abx — b3x2)
U(?),x) = — — 13,2 — 713..2)° (3)
(1 = Vaz — b322)(1 + bViz — b32?)

Proof. We use Theorem 2. The first two identities are straightforward. Now,

Usx 3 bUx
= AP —
U(3,2) <1 — Vax — b3a? * (1) 1+ bVix — b3x2>

A2y Us + 3bUy + b(UsVy — 3U1V3).1‘ — b3(U3 + 3bU1)x2
(1 = Vax — b322)(1 + bViz — b3a?)
SA?U iz (1 — 2abx — b3x2)
(1= Vax — b322)(1 + bViz — b32?)’

since Us + 3bU; = (a® 4 4b)U; = 6U; and U3V — 3U,Vz = —2adU;. O

Remark 4. If U, = F,,, the Fibonacci sequence, then a = b =1, and if U, = P,, the Pell

sequence, then a = 2,b=1.
3 Horadam’s Theorem

n n

Horadam [3] found some closed forms for partial sums S,, = Z P, S, = Z P_;, where
i=1 i=1

P, is the generalized Pell sequence, P,+1 = 2P, + Pp—1,P1 = p, P, = q. Let p, be the

ordinary Pell sequence, with p = 1,¢q = 2, and ¢, be the sequence satisfying the same

recurrence, with p = 1,¢q = 3. He proved



Theorem 5 (Horadam). For any n,

S4n = {q2n (pQanl + qq2n) +p—q; S4n72 = q2n71(pQZn72 + qq2n71)
Sin+1 = @n(Pg2n + qG2n+1) — ¢; Sin—1 = @n(Pg2n—2 + qq2n—1) — p
S_t4n = @n(—Pen+2 + qG2n+1) + 30 — ¢ S_tnt2 = @n(—Pe2n + qq2n-1) +2p

S_tn+1 = @n(P@n+1 — qq2n) + P; S_tn-1 = @n+1(P@n+2 — qG2n+1) + 2P — q.

We observe that Horadam’s theorem is a particular case of the partial sum for a non-
degenerate second-order recurrence sequence U,. In fact, we generalize it even more by

n

finding Sgr(x) = ZUZ:E’ For simplicity, we let Uy = 0. Thus, U, = A(a™ — ") and
i=0

Vi, =a" + ™. We prove

Theorem 6. We have

T
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U (o gr-1 o (1 Ur—2 = (=0)"" U _op) (ns1)®" + (=) Ul —2kyn®
SY.(z)=A xkzob <k> TR e o , (4)

if v is odd, and
1

<2> (—b)(g_(;r;;mii LT Z(_l)k@)'

k=0
2 — (=b)" Vo_gpx — (—=0)* IV oy oy @™+ (=0)" TRV, gy
1 — (=b)kV, _opx + bra? ’

(VIR

SU, (x) = A7(~1)

5 =3

()

if r is even.

Proof. We evaluate
SU (@) = (1) etz o
i=0 k=0

— i(_l)rk <]7;> Zn:(akﬁrka)i

k=0 =0
r kr—k. \n+1 _ 1
— A" E -1 r—k (T (Ck ﬁ .Z') )
k:O( ) (k) akpBr—ky —1



Assume r odd. Then, associating k < r — k, we get

U B . 2 W (T (ar—kﬁkzx)n-i-l -1 (akﬁr—kx)n—&-l -1
Snr(®) = A Z(_l) <k> < ar—kpky —1  akprkp—1 >

k=0

r—1

2 kagr—k,. r—k)(n+1) gk(n+1) ,.n+1 _
Z (aFpr=Fg — 1) (Rt 3 x 1)
k=0 &

—(Oér_kﬁkl' _ 1)(ak(n+1)ﬁ(r—k)(n+1)$n+1 _ 1)
(akﬁrfkm _ 1)(017"7165]{1: _ 1)

) ar(n—&—l)—knﬁr—&—knxn—l—Z _ a(r—k)(n—l—l)ﬁk(n—&—l)xn—l—l

—akﬂT_k:c _ ar+knﬂr(n+1)—knxn+2 + OéT_k,Bkl’

_i_ak(nJrl)ﬁ(rfk)(nJrl)anrl
1— (_b)k(ar—Qk + ﬁr—?k)g; + ar/@r(lﬂ

2 N\ (=b)e(ar—2k — gr—2ky, _ (— k(n+1) a(erk)(n+1)

_ﬁ(r72k)(n+1))xn+l + (_b)r+kn(a(r72k)n _ ﬁ(erk)n)xn+2
1— (=b)FV,_opx — b"2?

r

—1
_ 14r7117§i:bk r\ Ur—2k — (=0)F" Ut oy 1y @™ + (=) RO =D U oy 2
— k 1— (=b)FV, _opw — b"22 ’

Assume r even. Then, as before, associating k < r — k, except for the middle term, we

get
3-1 r\ 2 — (_b)k(ar—2k + ﬁr—2k>x _ (_b)k(n+1)(a(r—2k)(n+l)
st = A -0t()
? k=0 k
+B(r—2kz)(n+1))$n+1 + (_b)r+kn(a(r—2k)n _‘_ﬂ(r—Qk)n)l,n-i-Q
1= (=b)*V, gz + bra?
. _1\=(n+1) ,n+1
+AT(—1)2<:>( b e !
2 (=b)zz—1
r -1
o (=b) 2t g 3 k(r)
= AT‘ —1 2 - +AT _1 .
e EHH

2 — (=0)*V,_opx — (=0)PHOV opy @™+ (=) RV gyt
1 — (=b)kV, _opx + br a2 '

6



O]

Taking r = 1, we get the partial sum for any non-degenerate second-order recurrence

sequence, with Uy = 0,

Uy — Upirz™ — bUp a1
Corollary 7. Sgl(x) _ x( 1 1T z )

1—Viz — ba?
Remark 8. Horadam’s theorem follows easily, since S, = szl(l). Also S_,, can be
found without difficulty, by observing that P_, = pp_n_2 + qp—n_1 = —p(=1)""2p, 10 —

q(—1)"*p, 11, and using Sha(=1).
4 Weighted Combinatorial Sums

n n
In [6] there are quite a few identities like Z <n> F; = Fy,, or Z (n) F?, which is 5711,
i—o \! i—o \'
if n even, and 5[%1]Fn, if n odd. A natural question is: for fized r, what is the closed form

for the weighted sum ;" (T;) F] (if it exists)? We are able to answer the previous question,

not only for the Fibonacci sequence, but also for any second-order recurrence sequence U,,,

n
in a more general setting. Let S, ,,(z) = Z <n> Ul
i
=0

Theorem 9. We have

Proof. Let



If Up =0, then A = B, and S, ,(z) = A" > _o(=1)"*(}) (1 + o* g7 Fz)"

O]

Although we found an answer, it is not very exciting. However, by studying Theorem

9, we observe that we might be able to get nice sums involving the Fibonacci and Lucas

sequences (or any such sequence, for that matter), if we are able to express 1 plus/minus

a power of «, 0 as the same multiple of a power of «, respectively 5. When U,, = F,,, the

Fibonacci sequence, the following lemma does exactly what we need.

Lemma 10. The following identities are true
a2s _ (_1)5 :\/gast
B — (-1 == VBH'F,

ﬂ28 + (_1)5 :Lsﬁs-

Proof. Straightforward using the Binet formula for Fy and L.

Theorem 11. We have

2r
i r 4T+2
Sir4on(l) = (2r41) Z< >F2r+1 kEn@rr1-k), if n odd
k=0
2 dr +2
Sirsan(l) = 52 N (1) < i >F2r;"+1—kLn(2r+lk) if n even
k=0
54 (1) _ 5—27" 2702_1(_1)1c(n—|—1) 4r ) L +9on 4r
Tn — k 2r—k (2r—k)n 2T .

(9)

Proof. We use Theorem 9. Associating k < 4r + 2 — k, except for the middle term in

Sar+2.n(1), we obtain

_ r—(2r+1) S < ) k gdr+2—k )" dr+2—k gk\"
Sirson(l kzo [(14—(15 ) —|—(1+a ﬁ)}
_ (QTH k(4r 2) 4= )kﬁ4r+2—2k>n n (1 n (_l)ka4r+2—2k)n}



— 5= (2r+1) i(—l)k(”“) (47"]:' 2) [((_1)k +52(2r+1—k))" i <(_1)k +a2(2r+1—k))n} .
k=0

(10)

We did not insert the middle term, since it is equal to

57(2r+1)(_1)2r+1 (;1?“ i i) (1 4 o?r+lger+1yn
T

— 5—(2T+1)(_1)27‘+1 (;‘L: 1 ?) (1 + (_1)2T+1)n — O

In (10), using (6), and observing that o227 +1=F) 4 (_1)k = o2@r+1=k) _(_1)2r+1-k we get

2r
Siryon(l) = 5—(2r+1) Z(_l)(n+1)k <4T]:' 2> 5%F27:"+17k ((_1)71671(27”—1—1—]6) i an(2r+1—k)> '
k=0
Therefore, if n is odd, then
2r
_ dr + 2\ _n+1
Sar42n(1) =5 e ( k >5 2 Fy 1k Faerii-k)
k=0
and, if n is even, then
2 4r 4+ 2
Styran(1) =5 Z(—l)k< i >52F§~+1—kLn(2r+1—k)-
k=0

In the same way, associating k < 4r — k, except for the middle term, and using Lemma 10,

we get
Surn(1) =572" 2;"2::_:(_1)19 (i:) Kl i akﬂélr—k)n 4 (1 i a4r—kﬁk>n} 4 5-2rgn (;l:)
2r—1
=5 kzzo(_l)k(nﬂ) <4I:) [((_1)1; +ﬂ2(2r—k)> n ((_1)k _|_a2(2r—k)) }
ro (Z) (11)

2r—1
4r 4r
—2r _ 1\k(n+1) n (2r—k)n n (2r—k)n n
) [ (=1) <k>( =k Lar-r ) 2 <2r>]

ar\ . nf4r
I > Ly Lior—kyn + 2 <2r>] .



Remark 12. In the same manner we can find Z < >UT zt.
=0

We now list some interesting special cases of Theorems 9 and 11.

Corollary 13. We have
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n

2
< n>F2_5n Lo

1

N
S

Y e
S
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1<2n+1

>F2 = 5"Font1
i

‘M:EM

1
( .>F¢3 — g(2”F2n +3F,)
1
0

1
F*= —(3"Ly, — 4(—1)"L,, +6-2").
> (5)F! = 5 "L~ 4-1" L4627

1=0

)

3

Proof. The second, third and fifth identities follow from Theorem 11. Now, using Theorem

9, with A = %, we get

1
Sia(1) = }Z (- (,1)(1 +akpthyn
0
1

ot

k=
( 1+0)"+(1+a)") =

Next, the fourth identity follows from

53,71(1) — i 3 k< > 1+ak183—k)n
fk
— [

= (1+6%)" +3(1+af?)" = 3(1+a’B)" + (1 +a%)"]
\[
1
— % [—(28%)" + 32" — 38" + (2a2)"] = 5(2"1?2” + 3F,),
since 1+ 3% =242, 1 + o = 2a°. O
The results in our next theorem are obtained by putting x = —1 in Theorem 9, and

since the proofs are similar to the proofs in Theorem 11, we omit them.
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Theorem 14. We have

2r—1

n 4r .
Sirn(—1) = 522" Z(—l)k(k>F2”TkL(2rk)n, if n even,
k=0
b, T gy

S4r,n(—1) = —5T_QT Z (k.)FQT;’—kF(QT—k)TL? if n odd,

k=0

2r

dr + 2 4r 4 2
o —(2r+1 k(n+1)+n n n
Sirqan(—1) = 5+ LZ_:O(—l) (n+1) < A > or+1—kL(@r1-k)n — 2 <2T+ 1> .

Next we record some interesting special cases of Theorem 9 and 14.

Corollary 15. We have

g(—l)"(?)ﬁ = %((—1)”Ln_2n+1)
g(—l)"(?)ﬂ?’ = %((—2)”Fn—3an)
é(—w(’;)w = 5"% (Lon — 4Ly), if n even
i(—l)i@)Ff = 5T (Fy +4F,), if n odd.

Proof. The first identity is a simple application of Theorem 9. The identities for even

powers are immediate consequences of Theorem 14. Now, using Theorem 9, we get

Syn(—1) = 5\1/5 (—(1— B2 +3(1 — af®)" — 3(1 — a28)" + (1 — a®)")
_ 5\1/5 (—(—2)"8" + 362 — 302" + (~2)"a") = %((—2)"& —3F),
since 1 — 3% = —283, 1 — a® = —2a. O

From (9) we obtain, for r > 1,

2r—1

n ar\ ., nf4r .
k=0

11



Similar congruences results from other sums in Section 4, and we leave these for the reader
to formulate.
Acknowledgements. The author would like to thank the anonymous referee for her/his

helpful and very detailed comments, which improved significantly the presentation of the

paper.

References

[1] L. CARLITZ, Generating Functions for Powers of Certain Sequences of Numbers, Duke

Math. J. 29 (1962), pp. 521-537.

[2] A.F. HorapaM, Generating functions for powers of a certain generalized sequence of

numbers, Duke Math. J. 32 (1965), pp. 437-446.

[3] A.F. HorapaM, Partial Sums for Second-Order Recurrence Sequences, Fibonacci Quar-

terly, Nov. 1994, pp. 429-440.

[4] J. RiorDAN, Generating functions for powers of Fibonacci numbers, Duke Math. J. 29

(1962), pp. 5-12.

[5] M. RUMNEY, E.J.F. PRIMROSE, Relations between a Sequence of Fibonacci Type and a

Sequence of its Partial Sums, The Fibonacci Quarterly, 9.3 (1971), pp. 296-298.

[6] S. Vaipa, Fibonacci & Lucas Number and the Golden Section - Theory and Applica-

tions, John Wiley & Sons, 1989.

2000 AMS Classification Numbers: 11B37,11B39, 05A10, 05A19

12



