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Abstract

In this paper, we construct some piecewise defined functions, and
study their c-differential uniformity. As a by-product, we improve upon
several prior results. Further, we look at concatenations of functions
with low differential uniformity and show several results. For exam-
ple, we prove that given βi (a basis of Fqn over Fq), some functions
fi of c-differential uniformities δi, and Li (specific linearized poly-
nomials defined in terms of βi), 1 ≤ i ≤ n, then F (x) =∑n

i=1 βifi(Li(x)) has c-differential uniformity equal to
∏n

i=1 δi.
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1 Introduction and basic definitions

Let p be a prime number and n be a positive integer. We let Fpn be the finite
field with pn elements, and F⋆

pn = Fpn \ {0} be its multiplicative group.
We call a function from Fpn (or Fn

p ) to Fp a p-ary function on n variables.
For positive integers n and m, any map F : Fpn → Fpm (or Fn

p → Fm
p )

is called a vectorial p-ary function, or an (n,m)-function. When m = n, F
can be uniquely represented as a univariate polynomial over Fpn of the form

F (x) =
∑pn−1

i=0 aix
i, ai ∈ Fpn , whose algebraic degree is then the largest weight

in the p-ary expansion of i (that is, the sum of the digits of the exponents i)
with ai ̸= 0.

Motivated by [3], who extended the differential attack on some ciphers by
using a new type of differential, in [9], the authors introduced a new differ-
ential and Difference Distribution Table, in any characteristic, along with the
corresponding perfect/almost perfect c-nonlinear functions and other notions
(this was also developed independently in [2] where the authors introduce the
concept of quasi planarity). In [1, 9, 10, 13], various characterizations of the c-
differential uniformity were found, and some of the known perfect and almost
perfect nonlinear functions have been investigated.

For a p-ary (n,m)-function F : Fpn → Fpm , and c ∈ Fpm , the
(multiplicative) c-derivative of F with respect to a ∈ Fpn is the function

cDaF (x) = F (x+ a)− cF (x), for all x ∈ Fpn .

For an (n, n)-function F , and a, b ∈ Fpn , we let the entries of the c-
Difference Distribution Table (c-DDT) be defined by c∆F (a, b) = #{x ∈ Fpn :
F (x+ a)− cF (x) = b}. We call the quantity

δF,c = max {c∆F (a, b) : a, b ∈ Fpn , and a ̸= 0 if c = 1} ,

the c-differential uniformity of F . If δF,c = δ, then we say that F is differen-
tially (c, δ)-uniform (or that F has c-uniformity δ). If δ = 1, then F is called a
perfect c-nonlinear (PcN) function (certainly, for c = 1, they only exist for odd
characteristic p; however, as proven in [9], there exist PcN functions for p = 2,
for all c ̸= 1). If δ = 2, then F is called an almost perfect c-nonlinear (APcN)
function. It is easy to see that if F is an (n, n)-function, that is, F : Fpn → Fpn ,
then F is PcN if and only if cDaF is a permutation polynomial.

For c = 1, we recover the classical derivative, PN, APN, differential
uniformity and DDT.

In the last years, several constructions of low differentially uniform permu-
tations have been introduced by modifying some functions on a subfield (see
for instance [5, 12, 17, 18]).

There are many works constructing cryptographic Boolean functions (bent,
plateaued, APN, etc.) starting with good such objects on smaller environments.
In this work we will do the same, concentrating on subfields, and extend some
of the results given in [5] to the case of the c-differential uniformity. From this
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generalization, we are also able to improve the upper bound obtained in [16]
for the case of a Gold APN function in even characteristics. Moreover, these
results can be used also for providing an upper bound on the c-differential uni-
formity of several differentially 4-uniform functions constructed by modifying
the inverse functions on a subfield, such as those in [12, 17, 18].

2 An upper bound on the differential
uniformity of a piecewise defined function

Here, we shall give a general result concerning an upper bound for the c-
differential uniformity of a piecewise defined function, thus generalizing a result
of [5].

Before considering the case of the c-differential uniformity, we will give a
property for some functions having δF,1 = 4 when p = 2. Indeed, recently
in [7], Carlet noticed that for an APN function F ∈ F2s [x] defined on an
extension F2ms , with m odd, we have that the equation F (x + a) + F (x) = b
does not admit solutions x /∈ F2s , whenever a ∈ F⋆

2s and b ∈ F2s . This result
can be extended to the case of differentially 2k-uniform functions, under some
conditions on the extension.

Proposition 2.1 Let n = sm, where s and m are integers, and let F ∈ F2s [x] be a
differentially (1, 2k)-uniform function over F2n , with k ≥ 2. If m is not divisible by
any integer 2 ≤ t ≤ k, then F (x+a)+F (x) = b does not admit solutions x ∈ F2n\F2s ,
whenever a, b ∈ F2s , a ̸= 0.

Remark 2.2 We restrict to k ≥ 2 for ease of notation with the constrain 2 ≤ t ≤ k,
but the result is true for k = 1 if m is odd, as proven in [7]. For m odd, this gives an
extension of the result of [7], not only for APN functions, but also for 4-differential
uniform functions.

Proof Let us consider a, b ∈ F2s , a ̸= 0. Without loss of generality, we can suppose
that the equation F (x) + F (x+ a) = b admits 2k solutions, that can be denoted by

x1, . . . , xk, x1 + a, . . . , xk + a. Suppose x1 /∈ F2s and consider the set Ox1 = {x2
is

1 :

0 ≤ i ≤ m − 1} = {x2
is

1 : 0 ≤ i ≤ 2k − 1}. This last equality holds since the
polynomial F (x)+F (x+a)+ b has all coefficients in F2s . If x is a solution, then also

x2
s

is a solution.
Now, if |Ox1 |≤ k, then there exists 0 < i ≤ k such that x2

is

1 = x1, implying
x1 ∈ F2s , which gives us a contradiction.

If |Ox1 |> k, consider J = {j : xj , xj +a ∈ Ox1}. We have J ̸= ∅, and there must

exists j ∈ J for which there exist 0 < i ≤ k such that x2
is

j = xj +a. Indeed, consider
the sequence

x1, x
2s

1 , . . .

and suppose that for all the pairs xj , xj + a in this sequence we cannot have x2
is

j =
xj + a, for i ≤ k. Then, up to relabeling the solutions, we would have that the first
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k elements of the sequence are

x1, x2(= x2
s

1 ), . . . , xk.

Now, for the next element we need to have one among x1+a, . . . , xk+a. So, we would

obtain a pair xj , xj+a for which there exists i ≤ k such that x2
is

j = xj+a. Therefore,

x2
2is

j = xj for some i ≤ k and so xj ∈ F2s , implying x1 ∈ F2s , contradiction. □

From Proposition 2.1, we can simplify Theorem 4.1 from [5] for some
dimensions.

Theorem 2.3 Let n = sm, where s and m are integers. Let f and g be two polyno-
mials with coefficients in F2s , that is, f, g ∈ F2s [x], and g permuting F2n . Suppose
that f is a δf,1-uniform function over F2s and g is a δg,1-uniform function over F2n ,

and m is not divisible by any integer 2 ≤ t ≤ k, where k =
δg,1
2 . Then, the function

F (x) = f(x) + (f(x) + g(x))(x2
s

+ x)2
n−1 =

{
f(x), if x ∈ F2s ,

g(x), if x /∈ F2s

is such that, for any b ∈ F2n ,

1∆F (a, b) ≤

{
max{δf,1, δg,1}, if a ∈ F2s ,

δg,1 + 2, if a /∈ F2s .

From Theorem 2.3, we have that all the results given in [5] for the differen-
tially 4-uniform Gold and Bracken-Leander functions can be extended to other
functions, such as the differentially 4-uniform Kasami function [4, 6, 8, 11].
Indeed, the assumption on the solutions of the derivatives of the modified
function is needed for applying Theorem 4.1 in [5]. In particular, we have the
following result.

Theorem 2.4 Let n = sm, with s even such that s/2 and m are odd. Let k be such
that gcd(k, n) = 2 and f(x) = A1 ◦ Inv ◦ A2(x), with Inv(x) = x−1 (where 0 7→ 0)
and A1, A2 are affine permutations over F2s . Then

F (x) = f(x) + (f(x) + x2
2k−2k+1)(x2

s

+ x)2
n−1 =

{
f(x), if x ∈ F2s ,

x2
2k−2k+1, if x /∈ F2s

is a differentially (1, 6)-uniform permutation over F2n . Moreover, if s > 2, then the
algebraic degree of F is n− 1. The nonlinearity of F is at least 2n−1 − 2

s
2+1 − 2

n
2 .

Proof The proof follows in a similar way as in [5, Theorem 4.2, Proposition 4.1].
□

Theorem 4.1 in [5] can be extended to the case of p-ary functions and c ̸= 1.
In the following result, we do not request any condition on the solutions of the
derivatives of our functions. Furthermore, we shall consider piecing more than
two functions, but we prefer to state the result for two functions separately
since it is the usual subfield modification, and the general case will be more
evident.
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Theorem 2.5 Let p is a prime, n > 2 be an integer, s be a divisor of n, 1 ̸= c ∈ Fpn

fixed, and F : Fpn → Fpn be a p-ary (n, n)-function defined by

F (x) =

{
f(x), if x ∈ Fps ,

g(x), if x /∈ Fps ,

where f is an (s, s)-function of c′-differential uniformity δf,c′ (for all c′) and g ∈
Fpn [x] is an (n, n)-function of c′-differential uniformity δg,c′ (for all c′). Then, the
c-differential uniformity of F is

δF,c ≤

{
δf,0 + δg,0, if c = 0,

max
{
δf,c1 + δg,c, δg,c + 2psδg,0

}
, if c ̸= 0,

where c =
∑m

i=1 cigi, with ci ∈ Fps and {g1 = 1, g2, . . . , gm} is a basis of the
extension Fpn over Fps .

NB: Note that, if c ∈ Fps , we have c = c1, and δf,c1 = δf,c.

Proof We first observe that the polynomial representation of F is F (x) = f(x) +

(g(x) − f(x))(xp
s

− x)p
n−1 (here, we consider the embedding of f as an (n, n)-

function, by taking f(x) = 0 for x /∈ Fps). We consider the c-differential equation,
F (x+ a)− cF (x) = b, of F at (a, b) ∈ Fpn × Fpn ,

f(x+ a) + (g(x+ a)− f(x+ a))
(
xp

s

− x+ ap
s

− a
)pn−1

− cf(x)− c(g(x)− f(x))(xp
s

− x)p
n−1 = b.

(1)

If c = 0, the equation is either f(x+ a) = b, or g(x+ a) = b, depending upon x+ a
being in Fps or not. The first claim follows.

If c ̸= 0, we consider several cases.
Case 1. Let a ∈ Fps . If x ∈ Fps , Equation (1) becomes

f(x+ a)− cf(x) = b.

Since Fpn is an extension of degree m over Fps , we can write c =
∑m

i=1 cigi and
b =

∑m
i=1 bigi, where bi, ci ∈ Fps and {g1 = 1, g2, . . . , gm} is a basis of the extension.

Then, the equation above becomes

f(x+ a)−

(
m∑
i=1

cigi

)
f(x) =

m∑
i=1

bigi,

which implies

f(x+ a)− c1f(x) = b1 and − cif(x) = bi, ∀i = 2, . . . ,m.

This gives a (probably loose, though the bi, and therefore the bi
ci
, go through all

values) bound for the number of solutions given by δf,c1 .
NB: Note that, if c ∈ Fps , we have c = c1, and this bound becomes δf,c.
If x /∈ Fps , Equation (1) transforms into

g(x+ a)− cg(x) = b,

which has at most δg,c solutions. Therefore, in this case we get at most δf,c1 + δg,c
solutions for (1).
Case 2. Let a /∈ Fps . If x+ a ∈ Fps , x /∈ Fps , then Equation (1) becomes

f(x+ a)− cg(x) = b. (2)
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We raise Equation (2) to the power ps and get f(x + a) − cp
s

g(x)p
s

= bp
s

(using

the fact that (f(x+ a))p
s

= f(x+ a), since x+ a ∈ Fps and f is an (s, s)-function),
which combined with (2) renders

g(x)− cp
s−1g(x)p

s

=
bp

s

− b

c
. (3)

The polynomial cp
s−1Xps

−X is a linearized polynomial whose kernel is of dimension

s. Thus, there are at most psδg,0 (since, for any root X0 of cp
s−1Xps

−X + bp
s
−b
c ,

there are at most δg,0 values of x such that g(x) = X0) solutions to Equation (3).
Next, if x + a /∈ Fps , x ∈ Fps , then (1) becomes g(x + a) − cf(x) = b, and an

argument similar to the one above gives

g(x+ a)p
s

− cp
s−1g(x+ a) = bp

s

− cp
s−1b,

with at most psδg,0 solutions.
It remains to consider x, x+ a /∈ Fps . In this case, Equation (1) transforms into

g(x+a)−cg(x) = b, which has at most δg,c solutions. Putting these counts together,
we obtain the result claimed on the theorem.

□

Remark 2.6 In the proof above, if g ∈ Fps [x], when a /∈ Fps we can get: for the case
x+ a ∈ Fps at most δg,1/cps−1 = δg,cps−1 solutions; and for the case x ∈ Fps , we get

at most δg,cps−1 solutions. Indeed, from Equation (2) we would have (recalling that
x+ a ∈ Fps)

g(x)p
s

− 1

cp
s−1

g(x) = g(x+ a− ap
s

)− 1

cp
s−1

g(x) =
b− bp

s

cp
s .

The number of solutions x /∈ Fps such that x + a ∈ Fps is upper bounded by
δg,1/cps−1 = δg,cps−1 . The same is true for the case x ∈ Fps and x + a /∈ Fps .

Therefore, for c ̸= 0, we get δF,c ≤ max
{
δf,c1 + δg,c, δg,c + 2δg,cps−1

}
.

We can generalize this result as follows:

Theorem 2.7 Let t ≥ 2, ki | ki+1, 1 ≤ i ≤ t − 1, kt = n, be a sequence of integer
divisors, and fi, 1 ≤ i ≤ t, be some (ki, ki)-functions of c′-differential uniformity
δfi,c′ (for all c′). Further, let c ∈ Fpn be fixed, and Ft : Fpn → Fpn be a p-ary
(n, n)-function defined by

Ft(x) =


f1(x), if x ∈ Fpk1 ,

f2(x), if x ∈ Fpk2 \ Fpk1 ,

· · · · · · · · · · · ·
ft(x), if x ∈ Fpkt \ F

pkt−1 .

Then, the c-differential uniformity of f is

δFt,c ≤ δft,c +

t−1∑
i=1

max

δfi,c(i) , 2p
ki

t−i−1∑
j=1

δfj ,0

 ,

where c(i) are the projections of c onto Fpki , via some bases of Fpn over Fpki .
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Proof We use induction on t. The case of t = 2 was treated in the proof of Theorem
2.5, and the general case follows similarly.

If c = 0, the same argument as before will show that δFt,0 ≤
∑t

i=1 δfi,0. Using
the notation

Ft−i+1(x) =


fi(x), if x ∈ Fpki ,

fi+1(x), if x ∈ F
pki+1 \ Fpki ,

· · · · · · · · · · · ·
ft(x), if x ∈ Fpkt \ Ft−1,

and applying the induction assumption, we find that

δFt,c ≤ δFt−1,c +max{δf1,c(1) , 2p
k1δFt−1,0},

if c ̸= 0. By the proof of Theorem 2.5, δFt−1,0 ≤
∑t−1

i=1 δfi,0. Moreover, δFt−1,c ≤
δFt−2,c +max{δf2,c(2) , 2p

k2
∑t−2

i=1 δfi,0}, and by iteration we see that

δFt,c ≤ δft,c +

t−1∑
i=1

max

δfi,c(i) , 2p
ki

t−i−1∑
j=1

δfj ,0

 .

The proof is done. □

Surely, there are other ways of piecing a function together, and we look at
such a way below.

Theorem 2.8 Let p is a prime, n > 2 be an integer, n = st, and gcd(s, t) = 1. Let
1 ̸= c ∈ Fpn fixed, and F : Fpn → Fpn be a p-ary (n, n)-function defined by

F (x) =


f(x), if x ∈ Fpt ,

g(x), if x ∈ Fps \ Fp,
h(x), if x /∈ (Fps ∪ Fpt),

where f is a (t, t)-function of c′-differential uniformity δf,c′ (for all c
′), g is an (s, s)-

function of c′-differential uniformity δg,c′ (for all c′), and h is an (n, n)-function of
c′-differential uniformity δh,c′ (for all c′). Then, the c-differential uniformity of F is
upper bounded by

δf,0 + δg,0 + δg,0, if c = 0,

δh,c +max
{
δf,c1 + δg,c′1 , δf,c1 + 2psδh,0, 2p

tδh,0 + 2min{ptδg,0, psδf,0}

+δg,c′1 , 2min{ptδg,0, psδf,0}+ (2pt + 2ps)δh,0

}
, if c ̸= 0,

where c =
∑s

i=1 cigi =
∑t

i=1 c
′
ig

′
i, with ci ∈ Fpt , c′i ∈ Fps , and {g1 = 1, g2, . . . , gs},

{g′1 = 1, g′2, . . . , g
′
t} are bases of the extension Fpn over Fpt , respectively, Fpn over

Fps .

Proof We need to investigate the number of solutions of

F (x+ a)− cF (x) = b.

If c = 0, for any a, b, the equation is either f(x+a) = b, g(x+a) = b or h(x+a) = b.
The first claim follows.
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Let now c ̸= 0 and a ∈ Fp. We can distinguish three cases:
Case 1) x ∈ Fpt : In this case, the equation is

f(x+ a)− cf(x) = b.

As in the proof of Theorem 2.5, this implies that the number of solutions is upper
bounded by δf,c1 , where c =

∑s
i=1 cigi, where ci ∈ Fpt and {g1 = 1, g2, . . . , gs} is a

basis of the extension of Fpn over Fpt .
Case 2) x ∈ Fps \ Fp: In this case, the equation is

g(x+ a)− cg(x) = b.

Similarly as in case 1), the number of solutions is upper bounded by δg,c′1 , where

c =
∑t

i=1 c
′
ig

′
i, where c′i ∈ Fps and {g′1 = 1, g′2, . . . , g

′
t} is a basis of the extension of

Fpn over Fps .
Case 3) x ∈ Fpn \ (Fpt ∪ Fps): In this case, the equation is

h(x+ a)− ch(x) = b.

The upper bound is here δh,c.
Let now c ̸= 0 and a ∈ Fpt \ Fp. We can distinguish four cases:

Case 1. x ∈ Fpt , x+ a ∈ Fpt : In this case the equation is

f(x+ a)− cf(x) = b.

As above, this implies that the number of solutions is upper bounded by δf,c1 .
Case 2. x ∈ Fps \ Fp, x+ a ∈ Fpn \ (Fpt ∪ Fps): In this case, the equation is

h(x+ a)− cg(x) = b.

Raising to the power ps and subtracting, we obtain the equation

(h(x+ a))p
s

− cp
s−1h(x+ a) = bp

s

− cp
s−1b,

which has as a solution set b+ Fps (note that, if c ∈ F∗ps , cp
s−1 = 1, and, if b ∈ Fps ,

b+ Fps = Fps , so this covers all cases (with nonzero c)). The number of solutions is
thus upper-bounded by psδh,0.
Case 3. x ∈ Fpn \ (Fpt ∪ Fps), x+ a ∈ Fps \ Fp: In this case, the equation is

g(x+ a)− ch(x) = b.

By similar arguments as the previous case, we obtain the bound psδh,0.
Case 4. x, x+ a ∈ Fpn \ (Fpt ∪ Fps): In this case, the equation is

h(x+ a)− ch(x) = b,

so we have at most δh,c solutions.
Let now c ̸= 0, a ∈ Fps \ Fp. We have now six cases:

Case A. x ∈ Fp, x+ a ∈ Fps \ Fp. In this case, the equation is

g(x+ a)− cf(x) = b.

If we raise to pt, we see that the number of solutions is upper-bounded by ptδg,0.
However, raising to ps, we obtain an upper bound of psδf,0. From this case, then,

we get min{ptδg,0, psδf,0}.
Case B. x ∈ Fpt \ Fp, x+ a ∈ Fpn \ (Fpt ∪ Fps): In this case, the equation is

h(x+ a)− cf(x) = b,

which has at most ptδh,0 solutions.
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Case C. x ∈ Fps \ Fp, x+ a ∈ Fpt : this case is only possible if x+ a ∈ Fp. Here the
equation is

f(x+ a)− cg(x) = b.

Similarly as in Case A, we get min{ptδg,0, psδf,0}.
Case D. x, x+ a ∈ Fps \ Fp: Here the equation is

g(x+ a)− cg(x) = b,

which gives an upper bound of δg,c′1 .

Case E. x ∈ Fpn \ (Fpt ∪ Fps), x+ a ∈ Fpt : Here the equation is

f(x+ a)− ch(x) = b,

which has at most ptδh,0 solutions.
Case F . x, x+ a ∈ Fpn \ (Fpt ∪ Fps). In this case, the equation is

h(x+ a)− ch(x) = b,

which gives an upper bound of δh,c.
Now, let us consider the case c ̸= 0, a ∈ Fpn \ (Fpt ∪Fps). We consider here seven

cases:
Case a. x ∈ Fpt , x+ a ∈ Fps \ Fp. Here the equation is

g(x+ a)− cf(x) = b,

which gives an upper bound of min{ptδg,0, psδf,0}.
Case b. x ∈ Fpt , x+ a ∈ Fpn \ (Fpt ∪ Fps). Here the equation is

h(x+ a)− cf(x) = b,

which gives an upper bound of ptδh,0.
Case c. x ∈ Fps \ Fp, x+ a ∈ Fpt . Here the equation is

f(x+ a)− cg(x) = b,

which gives an upper bound of min{ptδg,0, psδf,0}.
Case d. x ∈ Fps \ Fp, x+ a ∈ Fpn \ (Fpt ∪ Fps). Here the equation is

h(x+ a)− cg(x) = b,

which gives an upper bound of psδh,0.
Case e. x ∈ Fpn \ (Fpt ∪ Fps), x+ a ∈ Fpt . Here the equation is

f(x+ a)− ch(x) = b,

which gives an upper bound of ptδh,0.
Case f . x ∈ Fpn \ (Fpt ∪ Fps), x+ a ∈ Fps \ Fp. Here the equation is

g(x+ a)− ch(x) = b,

which gives an upper bound of psδh,0.
Case g. x, x+ a ∈ Fpn \ (Fpt ∪ Fps). Here the equation is

h(x+ a)− ch(x) = b,

which gives an upper bound of δh,c. □

Remark 2.9 Note that, if c ∈ F∗
ps and h ∈ Fps [x] or c ∈ F∗pt and h ∈ Fpt [x] we can

reduce the bound, in a similar way as in Remark 2.6.



Springer Nature 2021 LATEX template

10 Low c-differential uniformity for functions modified on subfields

If we introduce some extra conditions on the solutions of the derivatives
of the function g, we can obtain another upper bound on the c-differential
uniformity of the modified function.

Theorem 2.10 Let p be a prime, n > 2 be an integer, s be a divisor of n, 1 ̸= c ∈ Fps

fixed, and F : Fpn → Fpn be a p-ary (n, n)-function defined by

F (x) =

{
f(x), if x ∈ Fps ,

g(x), if x /∈ Fps ,

where f is an (s, s)-function of c-differential uniformity δf,c and g ∈ Fps [x] is an
(n, n)-function of c-differential uniformity, δg,c. Suppose that:

(H1) for any a ∈ F⋆
ps and b ∈ Fps the equation g(x+a)−g(x) = b has no solution

in Fpn \ Fps .
(H2) for any a ∈ Fps and b ∈ Fps the equation g(x+a)−cg(x) = b has no solution

in Fpn \ Fps .

Then, the c-differential uniformity of F is

c∆F (a, b) ≤

{
max{δf,c, δg,c}, if a ∈ Fps ,

δg,c + 2 · δg,0, if a /∈ Fps .

Proof In order to get the c-differential uniformity of F , we need to check the number
of solutions of the equation

F (x+ a)− cF (x) = b. (4)

Let us consider a ∈ Fps . Then, for a solution x, we can have that both x and x+ a
are in Fps or none is in Fps . In the first case, (4) becomes

f(x+ a)− cf(x) = b,

which has at most δf,c solutions if b ∈ Fps and none when b /∈ Fps .
In the second case, we obtain

g(x+ a)− cg(x) = b.

From (H2) we have no solution in Fpn \ Fps if b ∈ Fps . If b /∈ Fps , the number of
solutions is at most δg,c. Then, for a ∈ Fps we can have at most δ = max{δf,c, δg,c}.

Let a /∈ Fps . Given a solution x of (4), we can have the following cases:

1. x /∈ Fps and x+ a ∈ Fps ;
2. x ∈ Fps and x+ a /∈ Fps ;
3. both x and x+ a are not in Fps .

Let us consider Case 1. Then, (4) becomes

f(x+ a)− cg(x) = b. (5)

Let us note that b /∈ Fps , otherwise we cannot have a solution of this type since
g(x) /∈ Fps , which is derived from (H2) with a = 0.

From this, raising (5) by ps and substracting (5), we obtain

g(x)p
s

− g(x) = −
(
b

c

)ps

+
b

c
.



Springer Nature 2021 LATEX template

Low c-differential uniformity for functions modified on subfields 11

Denoting by y = g(x) and by b′ = − b
c , we obtain

yp
s

− y = b′
ps

− b′.

The solutions of this last equation are the elements of the coset b′ + Fps .
Now, x ∈ a + Fps . Therefore, we need to check how many elements we have in
g(a + Fps) ∩

(
b′ + Fps

)
, where g(a + Fps) := {g(x) : x ∈ a + Fps}. Suppose

that
∣∣g(a+ Fps) ∩

(
b′ + Fps

)∣∣ ≥ 2. Then, there exist x1, x2, y1, y2 ∈ Fps such that
b′ + y1 = g(a+ x1), b

′ + y2 = g(a+ x2) and x1 ̸= x2, y1 ̸= y2. Thus,

g(a+ x1)− g(a+ x2) = y1 − y2.

Denoting by x′ = a+ x2 /∈ Fps and a′ = x1 − x2 ∈ Fps , we obtain that

g(x′ + a′)− g(x′) = y1 − y2.

This is not possible by (H1). Therefore,
∣∣g(a+ Fps) ∩

(
b′ + Fps

)∣∣ ≤ 1, implying that
we have at most δg,0 solutions in Case (1), since for any element y in g(a+ Fps) we

have |g−1(y)|≤ δg,0.
For Case 2, we obtain, in a similar way, that |g(a + Fps) ∩ (b + Fps)|≤ 1, which

implies that we have at most δg,0 solutions.
In the last case, we obtain the equation

g(x+ a)− cg(x) = b,

which admits at most δg,c solutions for any b. Then, for a /∈ Fps , Equation (4) admits
at most δg,c + 2 · δg,0 solutions. □

Remark 2.11 We can note that if we remove condition (H2) in Theorem 2.10, we
would obtain that

c∆F (a, b) ≤

{
δf,c + δg,c if a ∈ Fps

δg,c + 2 · δg,0 if a /∈ Fps .

Moreover, if g permutes Fpn then we have also that δg,0 = 1.

For PcN and APcN functions we have a similar result as in Proposition 2.1.

Proposition 2.12 Let n = sm, with s and m positive integers. Let c ∈ Fps and
F ∈ Fps [x]. Then,

i) if F is PcN, F (x + a) − cF (x) = b does not admit solution x ∈ Fpn \ Fps ,
whenever a, b ∈ Fps (a ̸= 0, if c = 1).

ii) if F is APcN and m is odd, F (x+ a)− cF (x) = b does not admit solution
x ∈ Fpn \ Fps , whenever a, b ∈ Fps (a ̸= 0, if c = 1).

Proof Suppose that F is APcN and m is odd. We have then that the polynomial
F (x + a) − cF (x) − b admits at most 2 roots for any a and b. Then, if a, b ∈ Fps ,

we have that if x1 is a solution so is xp
s

1 , since F (x+ a)− cF (x)− b is a polynomial
with coefficients over Fps (a ̸= 0, if c = 1).
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Suppose next that x1 /∈ Fps . Then, xp
s

1 = x2, where x2 is the second root. So,

xp
s

2 must be equal to x1, implying xp
2s

1 = x1. Therefore x1 ∈ Fp2s ∩ Fpn = Fps ,
which gives us a contradiction.

For the PcN case, we have no restriction on m since we have only one root x1 of

F (x+ a)− cF (x)− b, and thus xp
s

1 must be equal to x1. □

As for the case of the differential uniformity we can extend the previous
result as follows.

Proposition 2.13 Let n = sm, c ∈ Fps , and F is a δF,c c-differentially uniform
function over Fpn , with coefficients on the subfield Fps . Then, if for any prime q ≤
δF,c, q ∤ m, the equation F (x+a)− cF (x) = b does not admit solution x ∈ Fpn \Fps ,
whenever a, b ∈ Fps .

Proof Let x be a solution of F (x+ a)− cF (x) = b. Then, all the elements in Ox =

{xp
is

: 0 ≤ i ≤ m−1} are solutions of this equation. Moreover, since |Ox|≤ δF,c, for

some integer j ≤ δF,c we have xp
js

= x, implying that x ∈ Fpgcd(js,n) = Fps . □

We can use Theorem 2.10 to provide an upper bound on the c-differential
uniformity of several functions that have been introduced in the recent years,
such as the 4-uniform functions given in [12, 17, 18]. In particular, we have the
following result, which includes the functions defined in [12, 17, 18].

Theorem 2.14 Let n = sm with m odd. Let β and γ in F2s , with β ̸= 0. Let
A : F2s → F2s be an affine permutation, and consider the function

F (x) =

{
β(A(x))2

n−2 + γ, if x ∈ F2s
x−1, if x /∈ F2s

Then, we have:

• δF,c ≤ 4, for c ∈ F2s \ F2 such that Tr(c) = Tr(1/c) = 1;
• if 3 ∤ m, δF,c ≤ 4 for c ∈ F2s \ F2 such that Tr(c) = 0 or Tr(1/c) = 0.

Proof Let us note that for any function f(x), the c-differential uniformity of the
function f ′(x) = βf(A(x)) + γ is equal to the c-differential uniformity of f . Indeed,
the number of solutions of

f ′(x+ a)− cf ′(x) = b

is the same as for the equation

f(x+A(a) +A(0))− cf(x) =
b+ (c− 1)γ

β
.

Now, for the inverse function x−1, from Theorem 12 in [9], we have that the c-
differential uniformity is 2 if Tr(c) = Tr(1/c) = 1, and 3 if Tr(c) = 0 or Tr(1/c) = 0.
Therefore, from Proposition 2.13 and Theorem 2.10 we have our claim. Indeed, for
the case Tr(c) = Tr(1/c) = 1, we have immediately the upper bound since δx−1,c = 2.
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When Tr(c) = 0 or Tr(1/c) = 0, we have that δx−1,c = 3, so we would have the
upper bound δx−1,c+2 = 5 from Theorem 2.10. However, from the proof of Theorem
2.10, in the last case, we should count the solutions for which both x and x+a (with
a /∈ F2s) are not in F2s . From the proof of Theorem 12 in [9], when the equation

(x+ a)−1 − cx−1 = b

admits three solutions, then one of these is 0 or a. In our case, these solutions do not
have to be counted. So, we have at most two solutions with x and x+ a not in F2s ,
and thus δF,c ≤ 4. □

2.1 Shifting Gold-like functions on a subfield

In [16], the author studied the c-differential uniformity of the modified Gold
function. In particular he obtained the following result.

Theorem 2.15 Let n = sm. Let

G(x) = x2
k+1 + α(x2

s

+ x)2
n−1 + α =

{
x2

k+1 + α, if x ∈ F2s ,
x2

k+1, if x /∈ F2s ,

where 1 ≤ k < n, gcd(k, n) = 1, α ∈ F⋆
2s . Then, for c ̸= 1, the c−differential

uniformity of G is δG,c ≤ 9.

Remark 2.16 The c-differential uniformity of a Gold function g(x) = x2
k+1 has

been characterized in [13, Theorem 4]. In particular, for c ̸= 1 we have δg,c ≤
2gcd(k,n)+1. Applying Theorem 2.5 and Remark 2.6 we obtain that the c-differential

uniformity of G(x) = x2
k+1 + α(x2

s

+ x)2
n−1 + α satisfies

δG,c ≤

{
2 · (2gcd(k,n) + 1) if c = 0

3 · (2gcd(k,n) + 1) if c ̸= 0.

Therefore, the upper bound in Theorem 2.15 can be obtained applying Theorem 2.5
and Remark 2.6. Indeed, for gcd(k, n) = 1 we have

δG,c ≤

{
6 if c = 0

9 if c ̸= 0.

For a Gold-like function defined over F2n , we can observe the following.

Proposition 2.17 Let n = sm, with m odd. For a Gold function g(x) = x2
k+1 with

gcd(n, k) = t such that F2t ⊂ F2s , we have that

g(x+ a) + g(x) = b

does not admit solutions in F2n \ F2s , whenever a ∈ F⋆
2s and b ∈ F2s .
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Proof The proof follows in a similar way as Lemma 4.1 in [5]. Indeed, we can consider
just the equation

x2
k

+ x = b.

If b ∈ F2s we obtain that (x2
k

+ x)2
s

= x2
k

+ x, which implies x2
s

+ x ∈ F2k .
Therefore, x2

s

+ x ∈ F2t ⊂ F2s . Then, (x2
s

+ x)2
s

+ x2
s

+ x = 0 implies x2
2s

= x,
and thus x ∈ F22s ∩ F2n = F2s . □

Remark 2.18 Note that the above proposition cannot be derived directly from Propo-

sition 2.1, for t ≥ 2. Indeed, the Gold-like function g(x) = x2
k+1 with gcd(n, k) = t

has differential uniformity equal to 2t. So, for applying Proposition 2.1 we need i ∤ m
for any 2 ≤ i ≤ 2t−1, while in Proposition 2.17 we just require 2 ∤ m. For t = 1, the
result follows from [7].

Theorem 2.19 Let n = sm, with m odd. For a Gold function g(x) = x2
k+1, with

gcd(n, k) = t such that F2t ⊂ F2s , and n/t odd, n/t ≥ 3 (n ≥ 3). Then, for any

fixed α ∈ F⋆
2s , G(x) = x2

k+1 + α(x2
s

+ x)2
n−1 + α is such that δG,c ≤ 3, for any

c ∈ F2t \ {1}.

Proof From Proposition 2.17, we have that g(x) = x2
k+1 satisfies (H1) in Theorem

2.10.
Since n/t is odd we have that g is a permutation of F2n , so δg,0 = 1. Moreover,

from Theorem 4 in [13] we have that g is PcN for c ∈ F2t \ {1}.
From Proposition 2.12 we have that (H2) holds. Therefore, δG,c ≤ 3 by Theorem

2.10. □

Theorem 2.20 Let n = sm, with n odd. Given the Gold function g(x) = x2
k+1

with gcd(n, k) = 1, then, for any fixed α ∈ F⋆2s , G(x) = x2
k+1 + α+ α(x2

s

+ x)2
n−1

is such that δG,c ≤ 6, for any c ∈ F2s \ {1}. Moreover, if 3 ∤ m, then δG,c ≤ 5.

Proof If 3 ∤ m, then since the map is 3 c-differentially uniform from Proposition 2.13
we have that (H2) in Theorem 2.10 is satisfied. The same for (H1) by Proposition
2.1. Therefore, from Theorem 2.10 we have that δG,c ≤ 5 (δg,0 = 1).

If 3 | m, then we cannot guarantee that (H2) in Theorem 2.10 is satisfied, but
applying Remark 2.11 we have δG,c ≤ 6. □

Remark 2.21 Theorem 2.20 improves the upper bound obtained by Stănică in [16],
albeit when c is restricted to the subfield F2s .
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3 Concatenating functions with low
c-differential uniformity

In this section we will show how it is possible to obtain a function over Fqn ,
with low c-differential uniformity, concatenating n functions defined over Fq.

Let {β1, . . . , βn} be a basis of Fqn as vector space over Fq. Let

A =


β1 βq

1 · · · βqn−1

1

β2 βq
2 · · · βqn−1

2
...

...

βn βq
n · · · βqn−1

n

 .

The matrix A is non-singular, so we let A−1 = (ai,j)i,j .
Let us denote by ek the column vector composed by all zeros but one in

position k, for 1 ≤ k ≤ n. We define the linear polynomial

Lk(x) =

n∑
i=1

ai,kx
qi−1

= (x, xq, . . . , xqn−1

) ·A−1 · ek.

Any element x ∈ Fqn can be written as x = β1x1+· · ·+βnxn, with xi ∈ Fq.
So, we have

Lk(x) =

(
n∑

i=1

βixi, . . . ,

n∑
i=1

βqn−1

i xi

)
·A−1 ·ek = (x1, . . . , xn) ·A ·A−1 ·ek = xk.

That is, Lk is the projection of the k-th component of x.
So we obtain the following result.

Theorem 3.1 Let c ∈ Fq \ {1} and let f1, . . . , fn be n functions over Fq with c-
differential uniformity δ1, . . . , δn, respectively. Let β1, . . . , βn, Lk be defined as before.
Then F (x) =

∑n
k=1 βkfk(Lk(x)) has c-differential uniformity equal to

∏n
i=1 δi.

Proof For any a ∈ Fqn , with a = β1a1 + · · ·+ βnan, we have

F (x+ a)− cF (x) =
n∑

k=1

βkfk(xk + ak)− c

n∑
k=1

βkfk(xk)

=

n∑
k=1

βk(fk(xk + ak)− cfk(xk)).

So if we consider b = β1b1 + · · ·+ βnbn we have

F (x+ a)− cF (x) = b, that is, fk(xk + ak)− cfk(xk) = bk, for all k.

The equation fk(xk + ak) − cfk(xk) = bk admits at most δk solutions for any ak
and bk in Fq, and there exist some ak and bk for which we have δk solutions. So, we
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obtain that F (x+ a)− cF (x) = b admits at most
∏n

i=1 δi solutions and we can find
a, and b for which we obtain exactly

∏n
i=1 δi solutions. □

Using the previous result, we can construct a PcN function over Fqn from n
PcN functions over Fq.

Corollary 3.2 Let c ∈ Fq \ {1} and let f1, . . . , fn be n functions over Fq that are
PcN. Then F (x) =

∑n
k=1 βkfk(Lk(x)) is PcN.

4 Concluding remarks

In this work we extended some of the results given in [5] to the case of the
c-differential uniformity. We piece together (in several ways) subfunctions and
provide upper bounds for the c-differential uniformity of the obtained function.
As a byproduct, we improve some prior results of [16]. Further, we look at
concatenations of functions with low differential uniformity and check how
their c-differential uniformity changes. In particular, we prove that given βi (a
basis of Fqn over Fq), some functions fi of c-differential uniformities δi, and
some specific linearized polynomials Li defined in terms of βi, 1 ≤ i ≤ n, then

F (x) =

n∑
i=1

βifi(Li(x)) has c-differential uniformity equal to

n∏
i=1

δi. We believe,

it would also be of interest to investigate these constructions for the case of
the newly defined generalized boomerang uniformity, as in [14] (see also [15],
for other characterizations).
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