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Abstract

In this paper, we construct some piecewise defined functions, and
study their c-differential uniformity. As a by-product, we improve upon
several prior results. Further, we look at concatenations of functions
with low differential uniformity and show several results. For exam-
ple, we prove that given B; (a basis of Fgn over Fq), some functions
fi of c-differential uniformities d;, and L; (specific linearized poly-
nomials defined in terms of 3;), 1 < ¢ < mn, then F(x) =
> 1 Bifi(Li(x)) has c-differential uniformity equal to []i—, ;.
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1 Introduction and basic definitions

Let p be a prime number and n be a positive integer. We let Fj,» be the finite
field with p™ elements, and F}. = F» \ {0} be its multiplicative group.

We call a function from Fp« (or F)) to F) a p-ary function on n variables.
For positive integers n and m, any map F' : Fyn — Fpm (or Fy — F}?)
is called a wectorial p-ary function, or an (n,m)-function. When m = n, F
can be uniquely represented as a univariate polynomial over Fy» of the form
F(x) = f;;l a;x’, a; € Fpn, whose algebraic degree is then the largest weight
in the p-ary expansion of ¢ (that is, the sum of the digits of the exponents %)

Motivated by [3], who extended the differential attack on some ciphers by
using a new type of differential, in [9], the authors introduced a new differ-
ential and Difference Distribution Table, in any characteristic, along with the
corresponding perfect/almost perfect c-nonlinear functions and other notions
(this was also developed independently in [2] where the authors introduce the
concept of quasi planarity). In [1, 9, 10, 13], various characterizations of the c-
differential uniformity were found, and some of the known perfect and almost
perfect nonlinear functions have been investigated.

For a p-ary (n,m)-function F' : Fyn — Fpm, and ¢ € Fpm, the
(multiplicative) c-derivative of F' with respect to a € Fpn is the function

eDoF(2) = F(z +a) — cF(x), for all z € Fpn.

For an (n,n)-function F, and a,b € F,n, we let the entries of the c-
Difference Distribution Table (¢-DDT) be defined by (Ap(a,b) = #{z € Fpn :
F(z+a) — cF(x) = b}. We call the quantity

0pc =max{:Ar(a,b) : a,b€Fpn, and a # 0 if c = 1},

the c-differential uniformity of F. If g . = §, then we say that F' is differen-
tially (c,0)-uniform (or that F has c-uniformity §). If § = 1, then F is called a
perfect c-nonlinear (PcN) function (certainly, for ¢ = 1, they only exist for odd
characteristic p; however, as proven in [9], there exist PcN functions for p = 2,
for all ¢ # 1). If § = 2, then F is called an almost perfect c-nonlinear (APcN)
function. It is easy to see that if F' is an (n, n)-function, that is, F' : Fpn — Fpn,
then F' is PcN if and only if .D,F' is a permutation polynomial.

For ¢ = 1, we recover the classical derivative, PN, APN, differential
uniformity and DDT.

In the last years, several constructions of low differentially uniform permu-
tations have been introduced by modifying some functions on a subfield (see
for instance [5, 12, 17, 18]).

There are many works constructing cryptographic Boolean functions (bent,
plateaued, APN, etc.) starting with good such objects on smaller environments.
In this work we will do the same, concentrating on subfields, and extend some
of the results given in [5] to the case of the c-differential uniformity. From this
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generalization, we are also able to improve the upper bound obtained in [16]
for the case of a Gold APN function in even characteristics. Moreover, these
results can be used also for providing an upper bound on the c-differential uni-
formity of several differentially 4-uniform functions constructed by modifying
the inverse functions on a subfield, such as those in [12, 17, 18].

2 An upper bound on the differential
uniformity of a piecewise defined function

Here, we shall give a general result concerning an upper bound for the c-
differential uniformity of a piecewise defined function, thus generalizing a result
of [5].

Before considering the case of the c-differential uniformity, we will give a
property for some functions having ér; = 4 when p = 2. Indeed, recently
in [7], Carlet noticed that for an APN function F € Fa:[z] defined on an
extension Foms, with m odd, we have that the equation F(z +a) + F(z) = b
does not admit solutions x ¢ Fas, whenever a € F3, and b € Fas. This result
can be extended to the case of differentially 2k-uniform functions, under some
conditions on the extension.

Proposition 2.1 Let n = sm, where s and m are integers, and let F' € Fas[z] be a
differentially (1,2k)-uniform function over Fon, with k > 2. If m is not divisible by
any integer 2 < t < k, then F(x+a)+F(x) = b does not admit solutions © € Fan \Fas,
whenever a,b € Fas, a # 0.

Remark 2.2 We restrict to k > 2 for ease of notation with the constrain 2 <t < k,
but the result is true for k =1 if m is odd, as proven in [7]. For m odd, this gives an
extension of the result of 7], not only for APN functions, but also for 4-differential
uniform functions.

Proof Let us consider a,b € Fas,a # 0. Without loss of generality, we can suppose
that the equation F(x) + F(x + a) = b admits 2k solutions, that can be denoted by
T1,...,Tk, 21 +a,..., Tk + a. Suppose x1 ¢ Fos and consider the set Oz, = {xlw :
0<i<m-1} = {a? : 0 < i < 2k— 1}. This last equality holds since the
polynomial F(x)+ F(z + a)+b has all coefficients in Fas. If x is a solution, then also
22" is a solution. )

Now, if |Ogz, |< k, then there exists 0 < ¢ < k such that m% = x1, implying
x1 € Fas, which gives us a contradiction.

If |Oz, |> k, consider J = {j : z;,2;+a € Oz, }. We have J # (), and there must

exists j € J for which there exist 0 < 7 < k such that x?” = z; +a. Indeed, consider
the sequence
25
T1,X1 4...
and suppose that for all the pairs x;,z; + a in this sequence we cannot have x?w =
xj + a, for i < k. Then, up to relabeling the solutions, we would have that the first
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k elements of the sequence are

98
r1,22(=21 ),..., Tk
Now, for the next element we need to have one among z1 +a, . .., T}, +a. So, we would

obtain a pair x;, z;+a for which there exists i < k such that :c?ls = x;j+a. Therefore,
227',5

Zj

= z; for some ¢ < k and so z; € Fas, implying 1 € Fas, contradiction. O

From Proposition 2.1, we can simplify Theorem 4.1 from [5] for some
dimensions.

Theorem 2.3 Let n = sm, where s and m are integers. Let f and g be two polyno-
mials with coefficients in Fas, that is, f,g € Fas[z], and g permuting Fan. Suppose
that f is a o5 1-uniform function over Fas= and g is a d41-uniform function over Fan,
and m is not divisible by any integer 2 <t < k, where k = 5-"2'1 . Then, the function
f(flj), ’Lfl'e]ng7
g($)7 wa ¢ ]FQS

F(x) = f(@) + (f(2) + 9(@)) (@ +a)* 7! = {
is such that, for any b € Fan,

1AF(a b) < max{éfah(s%l}v if a € Fos,
) - 59’1 + 27 Zfa ¢ FQS_

From Theorem 2.3, we have that all the results given in [5] for the differen-
tially 4-uniform Gold and Bracken-Leander functions can be extended to other
functions, such as the differentially 4-uniform Kasami function [4, 6, 8, 11].
Indeed, the assumption on the solutions of the derivatives of the modified
function is needed for applying Theorem 4.1 in [5]. In particular, we have the
following result.

Theorem 2.4 Let n = sm, with s even such that s/2 and m are odd. Let k be such
that ged(k,n) = 2 and f(z) = A1 o Inv o Ay(z), with Inv(z) = z~ 1 (where 0 — 0)
and Ay, Az are affine permutations over Fos. Then

iy v [f@), ifo € Far,
F(a) = @) + (@) +2” 2 +2)? 1‘{3522’“—2’““7 i

is a differentially (1, 6)-uniform permutation over Fon. Moreover, if s > 2, then the
algebraic degree of F' is n — 1. The nonlinearity of F' is at least on—l _ 95+l _9%,

Proof The proof follows in a similar way as in [5, Theorem 4.2, Proposition 4.1].
d

Theorem 4.1 in [5] can be extended to the case of p-ary functions and ¢ # 1.
In the following result, we do not request any condition on the solutions of the
derivatives of our functions. Furthermore, we shall consider piecing more than
two functions, but we prefer to state the result for two functions separately
since it is the usual subfield modification, and the general case will be more
evident.
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Theorem 2.5 Let p is a prime, n > 2 be an integer, s be a divisor ofn, 1 # ¢ € Fpn
fized, and F : Fpn — Fpn be a p-ary (n,n)-function defined by

Py = [F@)
g(LE), ’Lf:rgéFpS,
where f is an (s,s)-function of ¢’ -differential uniformity 65 . (for all ¢') and g €
Fpn[2] is an (n,n)-function of ¢ -differential uniformity dg,cr (for all c'). Then, the
c-differential uniformity of F is

5)00—1—(590, ifc=0,
6Fc S ’ ’ S ;
! max {8fc, + 6g.c,0g,c +2p°8g.0}, ifc#0,

where ¢ = > ¢igi, with ¢; € Fps and {g1 = 1,92,...,9m} is a basis of the
extension Fpn over Fps.

NB: Note that, if ¢ € s, we have ¢ = ¢1, and 07, = 05,

Proof We first observe that the polynomial representation of F is F(z) = f(x) +
(9(x) — f(x))(aP" — x)P" =1 (here, we consider the embedding of f as an (n,n)-
function, by taking f(x) = 0 for = ¢ Fps). We consider the c-differential equation,
F(z+a) — cF(z) = b, of F at (a,b) € Fpn x Fpn,
. . pr—1
fa+a)+ (gz+a) = flz+a) (7 —2+a” —a)

—cf (@) —elg(@) = f@@) (" —2)" "' =b.
If ¢ = 0, the equation is either f(x + a) = b, or g(z + a) = b, depending upon z + a
being in Fps or not. The first claim follows.

If ¢ # 0, we consider several cases.
Case 1. Let a € Fps. If © € Fps, Equation (1) becomes

flz+a) - ef(z) = b
Since Fpn is an extension of degree m over Fps, we can write c =Y :"; ¢;g; and

b=3""b;g;, where b;,¢; € Fps and {g1 = 1,92,...,9m]} is a basis of the extension.
Then, the equation above becomes

f@+a)— (Z Cigi) fl) =" bigi,
i=1 i=1

(1)

which implies

flx+a)—cif(x) =b1 and —c¢;f(z) =b;, Vi=2,...,m.

This gives a (probably loose, though the b;, and therefore the 2—2, go through all

values) bound for the number of solutions given by d¢ ¢, .
NB: Note that, if ¢ € Fps, we have ¢ = c1, and this bound becomes df ..
If x ¢ Fps, Equation (1) transforms into

9(z +a) —cg(x) =0,

which has at most dg,c solutions. Therefore, in this case we get at most df ., + dg,c
solutions for (1).
Case 2. Let a ¢ Fps. If z + a € Fps, xz ¢ Fps, then Equation (1) becomes

f(z+a) —cg(z) =0 (2)
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We raise Equation (2) to the power p® and get f(z + a) — ¢ g(z)?" = b’ (using
the fact that (f(z + a))ps = f(x + a), since z + a € Fps and f is an (s, s)-function),
which combined with (2) renders

s b —b

glw) =& Tgla)” = . (3)

The polynomial P ~1XP" _ X is a linearized polynomial whose kernel is of dimension

b —b
c )

s. Thus, there are at most p®dg o (since, for any root Xg of D (N g
there are at most 040 values of z such that g(x) = Xp) solutions to Equation (3).

Next, if x + a ¢ Fps,x € Fps, then (1) becomes g(z + a) — cf(z) = b, and an
argument similar to the one above gives

g(x—f—a)ps —cp£7lg(m+a) = — Py,

with at most p®dg 0 solutions.

It remains to consider x,x + a ¢ Fps. In this case, Equation (1) transforms into
g(z+a) —cg(xz) = b, which has at most dg,c solutions. Putting these counts together,
we obtain the result claimed on the theorem.

(]

Remark 2.6 In the proof above, if g € Fps[z], when a ¢ Fps we can get: for the case
x+a € Fps at most 6g,1/cp571 = 5g7cp571 solutions; and for the case x € Fps, we get
at most 6, .ps—1 solutions. Indeed, from Equation (2) we would have (recalling that
z+aeFps)

1 B »° 1 b=
—Fg(x)_g(x—i—a—a )_cpsflg(ﬁU)— PR

g(x)
The number of solutions x ¢ Fps such that © + a € Fps is upper bounded by
g.1/cps—1 = Og cos—1. The same is true for the case x € Fps and x4+ a ¢ Fps.

Therefore, for c # 0, we get p . < max {5f,c1 + 0g,c,0g,c + 25gvcps,1 }
We can generalize this result as follows:

Theorem 2.7 Let t > 2, k;|kit1, 1 <i<t—1, kt =n, be a sequence of integer
divisors, and f;, 1 < i < t, be some (k;, k;)-functions of ¢ -differential uniformity
df,.cr (for all d'). Further, let ¢ € Fpn be fized, and Fy : Fpn — Fpn be a p-ary
(n, n)-function defined by

f1($)7 ifxerku
fo(x), fxe Fpk2 \Fpkl,

Fi(z) =

fi(x), ifxerkt \Fpkt—1~
Then, the c-differential uniformity of f is

t—1 t—i—1
ki
OF,c < O0f,c+ E :maX 6f,-,c(i>»2p E 0f,0 ¢
i=1 j=1

where ¢V are the projections of ¢ onto ]Fpki , via some bases of Fpn over ]Fpki.
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Proof We use induction on t. The case of t = 2 was treated in the proof of Theorem
2.5, and the general case follows similarly.

If ¢ = 0, the same argument as before will show that dp, o < 22:1 d5,.0- Using
the notation

fiw),  ifz el

i , ifxel i, F &,
Frip1(z) = firr (@), Az €F ey \Fpe

fe(z), ifmerkt \Fe-1,
and applying the induction assumption, we find that
k
0F e SO0F, et max{éfl,c<1>72p Y0F,_1,0h

if ¢ # 0. By the proof of Theorem 2.5, df, , o < Zf;% d¢,,0- Moreover, dp, | . <
O0F, _o,c+ max{5f2’c(2) ,2ph2 Zf;% d¢t,.0}, and by iteration we see that

t—1 t—i—1
ki
5Ft,C < 5ft,C+ZmaX 6f7‘,70(i>’2p Z 5fja0
i=1 =1
The proof is done. O

Surely, there are other ways of piecing a function together, and we look at
such a way below.

Theorem 2.8 Let p is a prime, n > 2 be an integer, n = st, and ged(s,t) = 1. Let
1# c€Fpn fized, and F : Fpn — Fpn be a p-ary (n,n)-function defined by

f(x)v ifmG]Fpta
F(m) = g($)7 if v € FPS \Fiﬂv
h(.%‘), if T ¢ (FPS UFptL
where f is a (t,t)-function of ¢ -differential uniformity 64 . (for all '), g is an (s, s)-
function of ¢ -differential uniformity dg.c (for all c), and h is an (n,n)-function of
¢ -differential uniformity On,er (for all c'). Then, the c-differential uniformity of F is
upper bounded by
37,0+ 09,0 + g0, if =0,
8p.c + max {5f,c1 + 8,15 0f.cq +2D°01,0,2p 0,0 + 2min{p’6y0,p°55 0}

+8g,61, 2min{p'8g.0,p°87,0} + (29 + 2p8)5h,0} L ife#0,

where ¢ = Y7 cigi = 25:1 chgl, with ¢; € Fpn,c;; € Fps, and {g1 = 1,92,...,9s},
{g/1 = 1,9/2, . 7gg} are bases of the extension Fpn over ., respectively, Fpn over
Fps.

pts

Proof We need to investigate the number of solutions of
F(x+a) —cF(z) =b.

If ¢ = 0, for any a, b, the equation is either f(x+a) = b, g(x+a) = bor h(x+a) =b.
The first claim follows.
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Let now ¢ # 0 and a € Fp. We can distinguish three cases:
Case 1) x € Fpi: In this case, the equation is

flz+a) - ef(z) = b
As in the proof of Theorem 2.5, this implies that the number of solutions is upper
bounded by ¢ ¢, , where ¢ = > ¢igi, where ¢; € Fpe and {g1 = 1,g2,...,9s} is a
basis of the extension of Fp» over F.
Case 2) x € Fps \ Fp: In this case, the equation is

ow +a) — cglx) = b.

Similarly as in case 1), the number of solutions is upper bounded by § where

g,c/1 5
c= 25:1 cigh, where ¢ € Fps and {g] = 1,g5,...,9g:} is a basis of the extension of
Fpn over Fps.

Case 3) x € Fpn \ (Fpe UFps): In this case, the equation is

h(z + a) — ch(z) =b.
The upper bound is here 6, .

Let now ¢ # 0 and a € Fp: \ Fp. We can distinguish four cases:
Case 1. x € Fpe, x + a € Fye: In this case the equation is

f(a+a) - cf(x) = b.
As above, this implies that the number of solutions is upper bounded by é ., .
Case 2. x € Fps \Fp, x +a € Fpn \ (Fpr UFps): In this case, the equation is

h(z + a) — cg(xz) = 0.
Raising to the power p® and subtracting, we obtain the equation
(h(z+a)? — P 'h(z+a)=b" — P b,

which has as a solution set b+ Fps (note that, if ¢ € ]F;;s, Pl = 1, and, if b € Fps,
b+ Fps = Fps, so this covers all cases (with nonzero c¢)). The number of solutions is
thus upper-bounded by p*dp, o.
Case 3. x € Fpn \ (Fpt UFps), x4+ a € Fps \ Fp: In this case, the equation is

g(z +a) —ch(z) =0.

By similar arguments as the previous case, we obtain the bound p®dj, o.
Case 4. x,x 4 a € Fpn \ (Fpe UFps): In this case, the equation is

h(z +a) — ch(z) = b,
so we have at most dy, . solutions.

Let now ¢ # 0,a € Fps \ Fp. We have now six cases:
Case A. x € Fp, x + a € Fps \ Fp. In this case, the equation is

g(@ +a) — cf(z) = b.

If we raise to p', we see that the number of solutions is upper-bounded by ptdgyo.
However, raising to p°, we obtain an upper bound of p55f70. From this case, then,

we get min{ptég,o,pséfyo},
Case B. x € Fp \Fp, x +a € Fpn \ (Fpe UFps): In this case, the equation is

h(z +a) — cf(z) = b,

which has at most ptéh,o solutions.
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Case C. x € Fps \ Fp, x + a € Fpe: this case is only possible if z + a € Fp. Here the
equation is
f(z+a) —cg(z) =0
Similarly as in Case A, we get min{ptégyo,pséf,o}.
Case D. z,x + a € Fps \ Fp: Here the equation is
g(z+a) —cg(z) = b,
which gives an upper bound of 6g7c/1.
Case E. z € Fpn \ (Fpt UFps),z + a € Fpe: Here the equation is
f(z +a) — ch(z) = b,

which has at most ptéh,o solutions.
Case F. z,x +a € Fpn \ (Fpe UFps). In this case, the equation is

h(z +a) — ch(z) = b,
which gives an upper bound of §j, .
Now, let us consider the case ¢ # 0,a € Fpn \ (F,t UFps). We consider here seven
cases:
Case a. © € Fpe, x + a € Fps \ Fp. Here the equation is
g($+ Ll) - Cf(x) = b7

which gives an upper bound of min{ptég)o,pséf,o}.
Case b. x € Fpe, v+ a € Fpn \ (Fpe UFps). Here the equation is

h(z +a) — cf(x) = b,

which gives an upper bound of ptéh)o.
Case c. ©x € Fps \Fp, x + a € Fp:. Here the equation is

f(z+a)—cg(z) =b,

which gives an upper bound of min{ptég)o,pséf,o}.
Case d. x € Fps \Fp, x + a € Fpn \ (Fpe UFps). Here the equation is

h(z + a) — cgla) = b,

which gives an upper bound of p®dp, ¢.
Case e. x € Fpn \ (F,e UFps), x + a € Fp:. Here the equation is

f(z+a) — ch(z) = b,

which gives an upper bound of pt5h70.
Case f. v € Fpn \ (Fpt UFps), x4 a € Fps \ Fp. Here the equation is

glx +a) - ch(z) = b,

which gives an upper bound of p®dp, ¢.
Case g. x,x 4+ a € Fpn \ (F,e UFps). Here the equation is

h(z + a) — ch(z) = b,

which gives an upper bound of §j, . |

Remark 2.9 Note that, if c € Fjs and h € Fps[z] or c € F: and h € Fyt[z] we can
reduce the bound, in a similar way as in Remark 2.6.
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If we introduce some extra conditions on the solutions of the derivatives
of the function g, we can obtain another upper bound on the c-differential
uniformity of the modified function.

Theorem 2.10 Letp be a prime, n > 2 be an integer, s be a divisor of n, 1 # ¢ € Fps
fized, and F : Fpn — Fpn be a p-ary (n,n)-function defined by
F(l‘ _ f(m)v Z:fl?GFpS,
g(z), if x ¢ Fps,
where f is an (s, s)-function of c-differential uniformity 07 . and g € Fps[x] is an
(n, n)-function of c-differential uniformity, déq.c. Suppose that:
or any a € F*. and b € F,s the equation g(z+a)—g(x) = b has no solution
H1 ]F; dbe Ty th ti + bh luti
mn Fpn \ Fps .
or any a € F,s and b € Fys the equation g(x+a)—cg(x) = b has no solution
H?2 F, dbec Ty th ti + bh luti
mn Fpn \ Fps .
Then, the c-differential uniformity of F' is
max{(sf,m 69;C}7 ifa € Fps,

Ap(a,b) <
eAr(a )—{(Sg,ew.ég@, ifadFpe.

Proof In order to get the c-differential uniformity of F', we need to check the number
of solutions of the equation

F(x +a) — cF(z) =b. (4)
Let us consider a € Fps. Then, for a solution x, we can have that both z and x 4+ a
are in Fps or none is in Fps. In the first case, (4) becomes

f@+a) —cf(x) =b,
which has at most d7 . solutions if b € Fps and none when b ¢ Fps.

In the second case, we obtain

g( +a) — cg(x) = b.

From (H2) we have no solution in Fpn \ Fps if b € Fps. If b ¢ Fps, the number of

solutions is at most dg,c. Then, for a € Fps= we can have at most 6 = max{d¢,dg,c}.
Let a ¢ Fps. Given a solution z of (4), we can have the following cases:

1. ¢ Fps and & +a € Fps;
2. x €Fps and z + a ¢ Fps;
3. both x and x + a are not in IFps.

Let us consider Case 1. Then, (4) becomes
fxz+a)—cg(x) =0 (5)
Let us note that b ¢ Fps, otherwise we cannot have a solution of this type since

g(z) ¢ Fps, which is derived from (H2) with a = 0.
From this, raising (5) by p® and substracting (5), we obtain

9(2)" — glx) = - (b>ps 4o

C
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Denoting by y = g(z) and by b’ = fg, we obtain
ypS —y= b/P‘ _.

The solutions of this last equation are the elements of the coset b + Fps.
Now, z € a + Fps. Therefore, we need to check how many elements we have in
gla 4+ Fps) N (b +Fps), where g(a + Fps) = {g(z) : = € a+ Fps}. Suppose
that |g(a + Fps) N (6" +Fps)| > 2. Then, there exist z1,x2,y1,y2 € Fps such that
V' +y1 =gla+z1), b’ +y2 = g(a+z2) and x1 # 22, y1 # yo. Thus,

gla+z1) —gla+x2) =y1 — 2.
Denoting by &’ = a + x2 ¢ Fps and a =z —x0 € Fps, we obtain that
g(a' +a') —g(@') = y1 — 2.
This is not possible by (H1). Therefore, |g(a +TFps)N (b/ + Fps) < 1, implying that
we have at most d4 o solutions in Case (1), since for any element y in g(a + Fp=) we

have |g~*(y)|< dg,0-
For Case 2, we obtain, in a similar way, that |g(a + Fps) N (b4 Fps)|< 1, which
implies that we have at most d4,0 solutions.
In the last case, we obtain the equation
gw+a) — cg(z) = b,

which admits at most dg,c solutions for any b. Then, for a ¢ Fps, Equation (4) admits
at most dg,c +2 - 59’0 solutions. O

Remark 2.11 We can note that if we remove condition (H2) in Theorem 2.10, we
would obtain that

5.+ g ifa € Fps
Sg.c+2-050 ifadFpe.

Moreover, if g permutes Fpn then we have also that §g0 = 1.

cAF(av b) < {

For PcN and APcN functions we have a similar result as in Proposition 2.1.

Proposition 2.12 Let n = sm, with s and m positive integers. Let ¢ € Fps and
F € Fpsz]. Then,

i) if F is PcN, F(x 4+ a) — cF(z) = b does not admit solution © € Fpn \ Fps,
whenever a,b € Fps (a #0, if c =1).

it) if F is APcN and m is odd, F(x + a) — cF(z) = b does not admit solution
x € Fpn \ Fps, whenever a,b € Fps (a #0, if c=1).

Proof Suppose that F is APcN and m is odd. We have then that the polynomial
F(z + a) — cF(z) — b admits at most 2 roots for any a and b. Then, if a,b € Fyps,
we have that if 21 is a solution so is m’fé, since F(x + a) — cF(z) — b is a polynomial
with coefficients over Fps (a # 0, if ¢ = 1).
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Suppose next that z; ¢ Fps. Then, xfs = x9, where x2 is the second root. So,

xgs must be equal to x1, implying m[f% = x1. Therefore 21 € Fp2s NFpn = Fps,
which gives us a contradiction.

For the PcN case, we have no restriction on m since we have only one root z; of
F(z +a) — cF(x) — b, and thus :zrzfs must be equal to z7. O

As for the case of the differential uniformity we can extend the previous
result as follows.

Proposition 2.13 Let n = sm, ¢ € Fps, and F is a 6f. c-differentially uniform
function over Fpn, with coefficients on the subfield Fps. Then, if for any prime q¢ <
dF.c, 1 m, the equation F(x 4 a)—cF(x) = b does not admit solution x € Fpn \ Fps,
whenever a,b € Fps.

Proof Let x be a solution of F'(z + a) — cF(x) = b. Then, all the elements in Oz =
{zP" : 0 <i < m—1} are solutions of this equation. Moreover, since |Oz|< 0p, ¢, for

some integer j < dp . we have 2" = z, implying that z € Fpecais,m) = Fps. O

We can use Theorem 2.10 to provide an upper bound on the c-differential
uniformity of several functions that have been introduced in the recent years,
such as the 4-uniform functions given in [12, 17, 18]. In particular, we have the
following result, which includes the functions defined in [12, 17, 18].

Theorem 2.14 Let n = sm with m odd. Let B and v in Fos, with  # 0. Let
A : Fos — Fas be an affine permutation, and consider the function

[ BA@)? 24y, ifx€Fas
F(z) = {x_l, o ¢ Fye

Then, we have:

® 0pc <4, for c € Fo: \ Fa such that Tr(c) = Tr(1/c) = 1;
® if3tm, dp. <4 for c € Fa: \ Fo such that Tr(c) =0 or Tr(1/c) = 0.

Proof Let us note that for any function f(zx), the c-differential uniformity of the
function f'(x) = Bf(A(z)) + v is equal to the c-differential uniformity of f. Indeed,
the number of solutions of

fl@+a) —cf'(x)=1b
is the same as for the equation
b+ (c—1)y
— 5

Now, for the inverse function ™!, from Theorem 12 in [9], we have that the c-
differential uniformity is 2 if Tr(c) = Tr(1/c¢) = 1, and 3 if Tr(c) = 0 or Tr(1/c) = 0.
Therefore, from Proposition 2.13 and Theorem 2.10 we have our claim. Indeed, for
the case Tr(c) = Tr(1/c) = 1, we have immediately the upper bound since ,,-1 ., = 2.

f(z + A(a) + A(0)) — cf (x) =
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When Tr(c) = 0 or Tr(1/c) = 0, we have that J,-1 . = 3, so we would have the
upper bound §,,-1 . +2 = 5 from Theorem 2.10. However, from the proof of Theorem
2.10, in the last case, we should count the solutions for which both z and x + a (with
a ¢ Fas) are not in Fas. From the proof of Theorem 12 in [9], when the equation

(x+a)" ' = cx b =b

admits three solutions, then one of these is 0 or a. In our case, these solutions do not
have to be counted. So, we have at most two solutions with  and = 4 a not in Fas,
and thus §p . < 4. |

2.1 Shifting Gold-like functions on a subfield

In [16], the author studied the c-differential uniformity of the modified Gold
function. In particular he obtained the following result.

Theorem 2.15 Let n = sm. Let
x2k+1 +a, ifx € Fos,
x2k+17 Zfl' ¢ F257

where 1 < k < n, ged(k,n) = 1, o € F3s. Then, for c # 1, the c—differential
uniformity of G is 6g,. < 9.

Glz)=2* T +a@® +0)% T 4a= {

Remark 2.16 The c-differential uniformity of a Gold function g(x) = :rzhrl has
been characterized in [13, Theorem 4]. In particular, for ¢ # 1 we have dg,c <

280d(k:n) 11 Applying Theorem 2.5 and Remark 2.6 we obtain that the c-differential
k s n
uniformity of G(z) = z* 1 + a(z® +2)* ~1 + a satisfies
2. (2294 1) ife=0
dg,e < cd(k,n) .
’ 3. (28N 4 1) 4fe#0.

Therefore, the upper bound in Theorem 2.15 can be obtained applying Theorem 2.5
and Remark 2.6. Indeed, for gcd(k,n) =1 we have

5Gc§ 0 chzo
' 9 ifc#0.

For a Gold-like function defined over Fan, we can observe the following.

Proposition 2.17 Let n = sm, with m odd. For a Gold function g(x) = x2k+1 with
ged(n, k) =t such that For C Fas, we have that

gz +a)+g(z) =0

does not admit solutions in Fan \ Fas, whenever a € F5. and b € Fas.
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Proof The proof follows in a similar way as Lemma 4.1 in [5]. Indeed, we can consider

just the equation

k
z? +x =0

If b € Fos we obtain that (ka +2)? = o2+ z, which implies #> + z € Fox.
E] E] s E] 2s
Therefore, 22 + z € Fot C Fos. Then, (az2 + x)2 + 2% +z = 0 implies 2% =z,

and thus z € Fgy2s NFan = Fas. O

Remark 2.18 Note that the above proposition cannot be derived directly from Propo-
sition 2.1, for t > 2. Indeed, the Gold-like function g(x) = 22"+ with ged(n, k) =t
has differential uniformity equal to 2. So, for applying Proposition 2.1 we need i tm
forany 2 <i < 2t_1, while in Proposition 2.17 we just require 2 m. For t = 1, the
result follows from [7].

Theorem 2.19 Let n = sm, with m odd. For a Gold function g(x) = w2k+1, with
ged(n, k) = t such that For C Fas, and n/t odd, n/t > 3 (n > 3). Then, for any
fized a € F3., G(z) = 221 4 a(z? +2)?" 7' + « is such that dg,c <3, for any
ceFy \ {1}

Proof From Proposition 2.17, we have that g(z) = 22"+ satisfies (H1) in Theorem
2.10.

Since n/t is odd we have that g is a permutation of Fan, so 64,0 = 1. Moreover,
from Theorem 4 in [13] we have that g is PcN for ¢ € For \ {1}.

From Proposition 2.12 we have that (H2) holds. Therefore, éz . < 3 by Theorem
2.10. (]

Theorem 2.20 Let n = sm, with n odd. Given the Gold function g(z) = 22" +1
with ged(n, k) = 1, then, for any fized a € F3., G(z) = 2T pat a(e? +2)?" 1
is such that 0g . < 6, for any c € Fas \ {1}. Moreover, if 31 m, then ég . < 5.

Proof If 3t m, then since the map is 3 c-differentially uniform from Proposition 2.13
we have that (H2) in Theorem 2.10 is satisfied. The same for (H1) by Proposition
2.1. Therefore, from Theorem 2.10 we have that ég . < 5 (64,0 = 1).

If 3 | m, then we cannot guarantee that (H2) in Theorem 2.10 is satisfied, but
applying Remark 2.11 we have §g . < 6. (]

Remark 2.21 Theorem 2.20 improves the upper bound obtained by Stanicd in [16],
albeit when c is restricted to the subfield Fas.
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3 Concatenating functions with low
c-differential uniformity

In this section we will show how it is possible to obtain a function over Fyn»,
with low c-differential uniformity, concatenating n functions defined over F,.
Let {f1,...,0n} be a basis of Fygn as vector space over F,. Let

n—1

CC
g | 2o
B BT - BT

The matrix A is non-singular, so we let A™! = (a; ); ;
Let us denote by e; the column vector composed by all zeros but one in
position &, for 1 < k < n. We define the linear polynomial

—1 n—1
galkxq (z,29,...,29 ) A" e

Any element x € Fyn can be written as ¢ = fi121+- - -+ Bpzy, with x; € F,.
So, we have

= (Zﬁzx“ .. .,Z,Bfllxi) A7 be, = (x1,... ,xn)-A-A*l-e;€ = .
i=1 i=1

That is, Ly is the projection of the k-th component of z.
So we obtain the following result.

Theorem 3.1 Let ¢ € Fg \ {1} and let f1,..., fn be n functions over Fyq with c-
differential uniformity 61, . . ., dn, respectively. Let B1,. .., Bn, Ly, be defined as before.
Then F(z) = Y 11 Brfr(Lik(z)) has c-differential uniformity equal to [ 6;.

Proof For any a € Fgn, with a = f1a1 + -+ + Bnan, we have

F(z+a)—cF(x Zﬁkfkwk+ak —025kfkl’k

k=1 k=1

M:

k(fr(zr +ag) — cfi(zg))-

So if we consider b = B1b1 + - + Bnbn we have
F(z+a) — cF(xz) =b, that is, fi(zr + ar) — cfx(xg) = by, for all k.

The equation fi(zg + ar) — cfr(zr) = by admits at most d; solutions for any ay
and by in Fy, and there exist some a; and by for which we have §; solutions. So, we
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obtain that F(z + a) — cF(z) = b admits at most [];"_; §; solutions and we can find
a, and b for which we obtain exactly []"_; d; solutions. |

Using the previous result, we can construct a PcN function over Fy» from n
PcN functions over F,.

Corollary 3.2 Let c € Fg \ {1} and let f1,..., fn be n functions over Fq that are
PcN. Then F(z) = > 31 Brfe(Lg(x)) is PcN.

4 Concluding remarks

In this work we extended some of the results given in [5] to the case of the
c-differential uniformity. We piece together (in several ways) subfunctions and
provide upper bounds for the c-differential uniformity of the obtained function.
As a byproduct, we improve some prior results of [16]. Further, we look at
concatenations of functions with low differential uniformity and check how
their e-differential uniformity changes. In particular, we prove that given f; (a
basis of Fyn over F,), some functions f; of c-differential uniformities d;, and
some speciﬁc linearized polynomials L; defined in terms of Bi, 1 <i < n, then

Z Bifi(L;(x)) has c-differential uniformity equal to H d;. We believe,

i=1
it Would also be of interest to investigate these constructions for the case of

the newly defined generalized boomerang uniformity, as in [14] (see also [15],
for other characterizations).
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