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The c-differential uniformity and boomerang
uniformity of two classes of permutation

polynomials
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Abstract—The Difference Distribution Table (DDT) and the
differential uniformity play a major role for the design of
substitution boxes in block ciphers, since they indicate the func-
tion’s resistance against differential cryptanalysis. This concept
was extended recently to c-DDT and c-differential uniformity,
which have the potential of extending differential cryptanalysis.
Recently, a new theoretical tool, the Boomerang Connectivity
Table (BCT) and the corresponding boomerang uniformity
were introduced to quantify the resistance of a block cipher
against boomerang-style attacks. Here we concentrate on two
classes (introduced recently) of permutation polynomials over
finite fields of even characteristic. For one of these, which is
an involution used to construct a 4-uniform permutation, we
explicitly determine the c-DDT entries and BCT entries. For
the second type of function, which is a differentially 4-uniform
function, we give bounds for its c-differential and boomerang
uniformities.

Index Terms—Finite fields, permutation polynomials, c-
differential uniformity, boomerang uniformity, perfect and
almost perfect c-nonlinearity
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I. INTRODUCTION

Let Fq be the (binary) finite field with q = 2n elements,
where n is a positive integer. We denote by F∗q , the multi-
plicative cyclic group of non-zero elements of the finite field
Fq . Let f be a function from the finite field Fq to itself. It is
well-known that any function f : Fq → Fq can be uniquely
represented as a univariate polynomial of degree less than
q. Therefore, we shall always consider f as a polynomial
in Fq[X]. A polynomial f ∈ Fq[X] is called a permutation
polynomial (PP) of Fq if the mapping X 7→ f(X) is a
permutation of Fq .

Differential cryptanalysis, introduced by Biham and
Shamir [3], is one of the most powerful attacks on block
ciphers. To quantify the ability of a given function to resist
the differential attack, Nyberg [23] introduced the notion of
differential uniformity which is defined as follows. For any
function f : Fq → Fq and for any a ∈ Fq , the derivative of
f in the direction a, denoted by Df (X, a), is defined as

Df (X, a) := f(X + a) + f(X) for all X ∈ Fq.
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For any a, b ∈ Fq , the Difference Distribution Table (DDT)
entry at point (a, b), denoted by ∆f (a, b), is defined as
∆f (a, b) := |{X ∈ Fq | Df (X, a) = b}|. The differential
uniformity of f , denoted by ∆f , is defined as ∆f :=
max{∆f (a, b) | a, b ∈ Fq, a 6= 0}. If ∆f = δ, we say that
the function f is δ-uniform. When δ = 1, 2, we say that
the function f is perfect nonlinear (PN) and almost perfect
nonlinear (APN), respectively. Denote wi := |{(a, b) ∈
F∗q × Fq | ∆f (a, b) = i}|. The differential spectrum of f
is defined as the multiset Ωf := {w0, w1, . . . , wδ}, where
δ is the differential uniformity of f . It is easy to see that
for finite fields of even characteristic, wi = 0 for odd i. For
further details concerning vectorial Boolean functions and
their cryptographic properties, one may refer to the recent
book of Carlet [8].

Motivated by a practical differential attack based on a new
differential as introduced by Borisov et al. [5], Ellingsen
et al. [13] proposed a new type of differential known
as multiplicative differential defined as follows. For any
function f : Fq → Fq and a, c ∈ Fq , the (multiplicative)
c-derivative of f at point a is defined as

cDf (X, a) := f(X + a) + cf(X), for all X ∈ Fq.

For any a, b ∈ Fq , the c-Difference Distribution Table (c-
DDT) entry c∆f (a, b) at point (a, b) is the number of
solutions X ∈ Fq of the equation cDf (X, a) = b. The
c-differential uniformity of f , denoted by c∆f , is given by
c∆f := max {c∆f (a, b) | a, b ∈ Fq, and a 6= 0 when c =
1}. When c∆f = δc, we say that c-differential uniformity
of f is δc. When δc = 1, 2, we say that the function f
is perfect c-nonlinear (PcN) and almost perfect c-nonlinear
(APcN), respectively. It is straightforward to see that the
classical notion of differential uniformity can be obtained by
putting c = 1. For some more recent results on c-differential
uniformity, one may refer to [1], [14], [22], [27], [28], [31],
[34].

In a block cipher, the nonlinearity of a function f :
Fq → Fq is also an important property. Let F : F2n → F2

be a Boolean function. The Walsh-Hadamard transform is
defined as the integer-valued function

WF (u) :=
∑

X∈F2n

(−1)F (X)+Tr(uX), u ∈ F2n ,

where Tr : F2n → F2 is the absolute trace function, given
by Tr(X) =

∑n−1
i=0 X

2i . The (vectorial) Walsh transform
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Wf (a, b) of a function f : F2n → F2n at (a, b) ∈ F2n×F2n

is the Walsh-Hadamard transform of its component function
Tr(bf(X)) at a, that is,

Wf (a, b) :=
∑

X∈F2n

(−1)Tr(bf(X)+aX).

The nonlinearity of f , denoted by NL(f), is defined by

NL(f) := 2n−1 − 1

2
max

(a,b)∈F2n×F∗
2n

|Wf (a, b)|.

We slightly deviate to discuss about a different type of
attack known as boomerang attack. The boomerang attack
on block ciphers was proposed by Wagner [32]. Recently, at
EUROCRYPT-2018, Cid et al. [10] introduced a systematic
approach which is known as the Boomerang Connectivity
Table (BCT), to analyze boomerang style attacks. Boura and
Canteaut [6] further studied the BCT and coined the term
boomerang uniformity, which is essentially the maximum
value in the BCT, to quantify the resistance of a function
against the boomerang attack. Later, Li et al. [19] proposed
an equivalent technique to compute the BCT as follows. For
any function f : Fq → Fq , the BCT entry Bf (a, b) at point
(a, b) ∈ Fq×Fq is the number of solutions (X,Y ) ∈ Fq×Fq
of the following system{

f(X) + f(Y ) = b

f(X + a) + f(Y + a) = b.
(1)

The boomerang uniformity of the function f , denoted by
Bf , is given by Bf := max {Bf (a, b) | a, b ∈ F∗q}. We
note that this equivalent formulation does not require the
compositional inverse of the function f and hence enables
us to compute the BCT for non-permutations as well. It is
easy to observe that for a permutation function f : Fq →
Fq , Bf (a, 0) = q = Bf (0, b), irrespective of values of a
and b, therefore while computing boomerang uniformity, we
exclude the first row and the first column of the BCT.

Cid et al. [10, Lemma 4] showed that for APN permu-
tations, the BCT is the same as the DDT, except for the
first row and the first column. Thus APN permutations offer
an optimal resistance to both differential and boomerang
attacks. For any permutation f , Cid et al. [10, Lemma 1]
showed that Bf (a, b) ≥ ∆f (a, b) for all (a, b) ∈ Fq × Fq .
Later, Mesnager et al. [21] showed that it holds for non-
permutation functions, as well.

Since the seminal work of Cid et al. [10], functions with
low boomerang uniformity have attracted a lot of attention
in the last couple of years (see [7], [16], [18], [19], [20],
[21], [30], [33] and the references therein). It is not quite
clear what bounds on the differential and/or boomerang
uniformities would allow a (modified) differential attack to
work. It is known that the boomerang uniformity is not in-
variant under (some) linear layers (general EA-equivalence),
so there are no general upper bounds on these uniformities
to ensure security against a modified differential attack
(we want to point out that even a differential uniformity
of 8 is encountered in standard ciphers; e.g., the Russian

standard, Kyuznechik (GOST R 34.12-2015) – see [4] and
the references therein).

We shall now give the structure of the paper. We
first recall some definitions and results in Section II. In
Section III, we consider the c-differential uniformity of an
involution over the finite field F2n , which has been used to
construct a class of differentially 4-uniform functions [2] and
we prove that the c-differential uniformity of this involution
is bounded above by 2 for all the values of c in the ambient
finite field except for 0 and 1. Moreover, in Section IV,
we give a complete description of the BCT entries of this
involution and show that there are only two different entries
in its BCT. The c-differential uniformity of a differentially
4-uniform function studied by Tan et al. [29], has been
considered in Section V, and a bound for its boomerang
uniformity is discussed in Section VI. Finally, we end with
some concluding remarks in Section VII.

II. PRELIMINARIES

In the study of finite fields, permutation polynomials are
very important objects as they are used in a variety of theo-
retical and practical applications. Therefore, the construction
of infinite classes of permutation polynomials over finite
fields is an interesting problem and a lot of research has been
done in this direction in recent years. A permutation poly-
nomial f(X) is called a complete permutation polynomial
if both X 7→f(X) and X 7→f(X)+X are permutations. In
view of this, an interesting problem is to add some simple
functions in a given permutation polynomial and to check
for its permutation behaviour.

Recently, Beierle and Leander [2] considered the pertur-
bation of a linear function by a trace function and showed
that it is an involution. More precisely, the authors showed
that the function G(X) = X + Tr(αX + X2k+1), where
Tr(α) = 1 and gcd(k, n) = 1 is an involution of the finite
field F2n , n ≥ 3 odd. Here, Tr is the absolute trace function.
Recall that the power function f(X) = X2k+1 over F2n ,
0 ≤ k < n is the Gold function [12] and if gcd(k, n) =
gcd(2k, n), then it is a permutation of F2n . Nyberg [23]
showed that when gcd(k, n) = s, the Gold function is
differentially 2s-uniform. Thus, when gcd(k, n) = 1 and n
odd, the Gold function is an APN permutation. Beierle and
Leander [2] considered the composition of the involution
G(X) with the monomial X`, where ` = (2k + 1)−1

(mod 2n − 1) with gcd(k, n) = 1, and showed that it is
a differentially 4-uniform permutation with trivial nonlin-
earity 0. More precisely, the authors proved the following
result.

Lemma 1. [2, Proposition 1] Let n ≥ 3 be odd, α ∈ F2n

with Tr(α) = 1 and ` = (2k + 1)−1 (mod 2n − 1)
with gcd(k, n) = 1. Then the function Gα,`(X) = X` +
Tr(αX`+X) is a differentially 4-uniform permutation with
null nonlinearity over F2n .
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We explicitly determine the c-DDT entries of the invo-
lution G(X) for all c ∈ F2n in Section III. Moreover, we
compute BCT entries of the involution G(X) in Section IV.

We shall now turn our focus towards another interesting
function. A systematic study of the permutation behaviour
of the functions of the form f(X) = g(X)+γTr(h(X)) has
been done by Charpin and Kyureghyan [9] where the au-
thors gave necessary conditions on γ ∈ F2n , g, h ∈ F2n [X]
for which g(X) + γTr(h(X)) is a permutation polynomial.
More precisely, authors gave the following two classes of
permutation polynomials.

Lemma 2. [9, Corollary 1] For any β, γ ∈ F2n and h(X) ∈
F2n [X], the polynomials

(1) f1(X) = X + γTr(h(X2 + γX) + βX); and
(2) f2(X) = X + γTr(h(X) + h(X + γ) + βX)

are permutation polynomials if and only if Tr(βγ) = 0.

From the above lemma, it is easy to see that if β = 0, γ =

1 and h(X) = X−1, the function f ′1(X) = X+Tr
(

1
X2+X

)
is a permutation of F2n . Tan et al. [29] showed that when n
is even, the permutation polynomial H(X) = f ′1(X−1) =

X−1 + Tr
(
X2

X+1

)
is differentially 4-uniform. With regard

to inverses of elements in the finite field, we shall use the
convention that for any non-zero a ∈ F2n , a−1 := 1

a and
0−1 := 0 in the definition of H(X) as well as in the
rest of the paper. Recall that when n is even, the inverse
mapping X−1 is a differentially 4-uniform permutation
of F2n (see [23, Proposition 6]). Thus, the permutation
behaviour and differential uniformity remain the same even
after adding the term Tr

(
X2

X+1

)
in the inverse mapping

X−1. The c-differential uniformity of the inverse function
has been studied by Ellingsen et al. [13]. In Section V, we
shall consider the c-differential uniformity of the function

H(X) = X−1 + Tr

(
X2

X + 1

)
over F2n for 1 6= c ∈ F2n ,

to see the effect of the addition of the trace term Tr
(
X2

X+1

)
on the c-differential uniformity. We shall also consider the
boomerang uniformity of the function H(X) in Section VI.

We shall later use the following result [13, Lemma 11].

Lemma 3. Let n be a positive integer. The equation X2 +
aX + b = 0, with a, b ∈ F2n , a 6= 0, has two solutions X
in F2n if Tr

(
b
a2

)
= 0, and no solutions otherwise.

In [26] and [28], the authors used a Weil sums technique
in computing the c-BCT and c-DDT entries, respectively.
Here we recall the general technique to express the number
of solutions of a given equation or a system of two equations
over finite fields in terms of Weil sums for the convenience
of the reader.

Let χ1 : Fq → C be the canonical additive character of
the additive group of Fq defined as follows

χ1(X) := exp

(
2πiTr(X)

2

)
= (−1)Tr(X).

It is easy to observe (see, for instance [26]) that the number
of solutions (X1, X2, . . . , Xn) ∈ Fnq of the equation

f(X1, X2, . . . , Xn) = b,

denoted by N(b), is given by

N(b)

=
1

q

∑
X1,X2,...,Xn∈Fq

∑
β∈Fq

χ1(β(f(X1, X2, . . . , Xn)− b))

=
1

q

∑
X1,X2,...,Xn∈Fq

∑
β∈Fq

(−1)Tr(β(f(X1,X2,...,Xn)−b)).

(2)

Similarly, the number of solutions (X1, X2, . . . , Xn) ∈ Fnq
of the system {

f1(X1, X2, . . . , Xn) = b1

f2(X1, X2, . . . , Xn) = b2,

denoted by N̂(b), where b = (b1, b2), is given by

N̂(b)

=
1

q2

∑
X1,X2,...,Xn∈Fq

∑
β∈Fq

χ1(β(f1(X1, . . . , Xn)− b1))

∑
γ∈Fq

χ1(γ(f2(X1, . . . , Xn)− b2))

=
1

q2

∑
X1,X2,...,Xn∈Fq

∑
β∈Fq

(−1)Tr(β(f1(X1,...,Xn)−b1))

∑
γ∈Fq

(−1)Tr(γ(f2(X1,...,Xn)−b2)).

(3)

III. THE c-DIFFERENTIAL UNIFORMITY OF A CLASS OF
INVOLUTIONS

In this section, first we shall consider the c-differential
uniformity of the involution G(X) = X+Tr(αX+X2k+1)
over F2n , where n ≥ 3 is odd, α ∈ F2n with Tr(α) = 1

and gcd(k, n) = 1. Let f(X) = Tr(X2k+1) be the trace of
the Gold function. For c ∈ Fq , c /∈ {0, 1}, the following
result gives the c-DDT entries of the involution G(X).

Theorem 4. Let n ≥ 3 be odd, α ∈ F2n with Tr(α) = 1

and let G(X) = X+Tr(αX+X2k+1) with gcd(k, n) = 1.
Then for any a, b, c ∈ F2n , c /∈ {0, 1}, the c-DDT entry
c∆G(a, b) of G(X) at (a, b) is given by

c∆G(a, b) =


0 if A = 1 and B = 1

1 if B = 0

2 if A = 0 and B = 1,

where A = Tr

(
(a+b)(a2

−k
+a2

k
)

1+c + αa+ a2
k+1

)
and B =

Tr
(
a2

−k
+a2

k

1+c

)
.
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Proof. Recall that the c-DDT entry c∆G(a, b) at the point
(a, b) of the function G(X) is given by the number of
solutions X ∈ Fq of the following equation

b = G(X + a) + cG(X)

= X + a+ Tr
(
α(X + a) + (X + a)2

k+1
)

+ c
(
X + Tr(αX +X2k+1)

)
= (1 + c)

(
X + Tr(αX +X2k+1)

)
+ a

+ Tr(αa+ a2
k+1) + Tr(X2ka+Xa2

k

),

which can be further written as

(1 + c)G(X) + Tr(X2ka+Xa2
k

) +G(a) + b = 0. (4)

Now from (2), the number of solutions X ∈ Fq of the above
Equation (4) is given by

c∆G(a, b)

=
1

2n

∑
β∈F2n∑

X∈F2n

(−1)
Tr

(
β
(
(1+c)G(X)+Tr(X2ka+Xa2

k
)+G(a)+b

))

=
1

2n

∑
β∈F2n

(−1)Tr(β(G(a)+b))

∑
X∈F2n

(−1)
Tr

(
β(1+c)G(X)+βTr(X2ka+Xa2

k
)
)

=
1

2n

∑
β∈F2n

(−1)Tr(β(G(a)+b))

∑
X∈F2n

(−1)Tr(β(1+c)G(X))+Tr(β)Tr(X2ka+Xa2
k
)

=
1

2n
(M0 +M1),

where M0 and M1 are the sums corresponding to Tr(β) = 0
and Tr(β) = 1, respectively. We shall now compute M0 and
M1, separately. The first sum M0 is given by

M0 =
∑
β∈Fq

Tr(β)=0

(−1)Tr(β(G(a)+b))

∑
X∈F2n

(−1)Tr(β(1+c)G(X))+Tr(β)Tr(X2ka+Xa2
k
)

=
∑
β∈Fq

Tr(β)=0

(−1)Tr(β(G(a)+b))
∑

X∈F2n

(−1)Tr(β(1+c)G(X))

= 2n +
∑
β∈F∗

q

Tr(β)=0

(−1)Tr(β(G(a)+b))

∑
X∈F2n

(−1)Tr(β(1+c)G(X))

= 2n,

where the last equality holds because β(1 + c) 6= 0 and
G(X) is a permutation of F2n , which makes the inner sum
zero. Similarly, we can compute the second sum M1, which
is given by

M1

=
∑
β∈Fq

Tr(β)=1

(−1)Tr(β(G(a)+b))

∑
X∈F2n

(−1)Tr(β(1+c)G(X))+Tr(β)Tr(X2ka+Xa2
k
)

=
∑
β∈Fq

Tr(β)=1

(−1)Tr(β(G(a)+b))

∑
X∈F2n

(−1)Tr(β(1+c)(X+Tr(αX+X2k+1)))+Tr(X(a2
−k

+a2
k
))

=
∑
β∈Fq

Tr(β)=1

(−1)Tr(β(G(a)+b))

∑
X∈F2n

(−1)Tr(β(1+c)X)+Tr(β(1+c))Tr(αX+X2k+1)+Tr(X(a2
−k
+a2

k
))

=
∑
β∈Fq

Tr(β)=1

(−1)Tr(β(G(a)+b))

∑
X∈F2n

(−1)Tr(β(1+c))Tr(αX+X2k+1)+Tr(X(a2
−k
+a2

k
+β(1+c))).

Now we shall consider two cases, namely, Tr(β(1+c)) = 0
and Tr(β(1+c)) = 1, respectively. Equivalently, Tr(βc) = 1
and Tr(βc) = 0, respectively. We shall denote the sums
corresponding to Tr(βc) = 1 and Tr(βc) = 0 by M1,1 and
M1,0, respectively.
Case 1. Let Tr(βc) = 1. In this case,

M1,1 =
∑
β∈Fq

Tr(βc)=1=Tr(β)

(−1)Tr(β(G(a)+b))

∑
X∈F2n

(−1)Tr(X(a2
−k

+a2
k
+β(1+c)))

=
∑
β∈Fq

Tr(βc)=1=Tr(β)

(−1)Tr((a+b)β+βTr(αa+a
2k+1))

∑
X∈F2n

(−1)Tr(X(a2
−k

+a2
k
+β(1+c)))

=
∑
β∈Fq

Tr(βc)=1=Tr(β)

(−1)Tr((a+b)β)+Tr(β)Tr(αa+a2
k+1)

∑
X∈F2n

(−1)Tr(X(a2
−k

+a2
k
+β(1+c)))

=
∑
β∈Fq

Tr(βc)=1=Tr(β)

(−1)Tr((a+b)β+αa+a
2k+1)

∑
X∈F2n

(−1)Tr(X(a2
−k

+a2
k
+β(1+c))).
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Notice that the inner sum will have a contribution if and
only if β(1 + c) = a2

−k

+ a2
k

. Therefore, we have

M1,1 =

0 if Tr
(
a2

−k
+a2

k

1+c

)
= 0

2n · (−1)A if Tr
(
a2

−k
+a2

k

1+c

)
= 1,

where A = Tr

(
(a+b)(a2

−k
+a2

k
)

1+c + αa+ a2
k+1

)
.

Case 2. Let Tr(βc) = 0. In this case,

M1,0 =
∑
β∈Fq

Tr(β)=1
Tr(βc)=0

(−1)Tr(β(G(a)+b))

∑
X∈F2n

(−1)
Tr

(
X2k+1+X(a2

−k
+a2

k
+β(1+c)+α)

)

=
∑
β∈Fq

Tr(β)=1
Tr(βc)=0

(−1)Tr(β(G(a)+b))Wf (u),

where u = a2
−k

+a2
k

+β(1+c)+α. We now apply an old
result of Gold [12] (see also [17, Theorem 4]) which states
that when n is odd and gcd(k, n) = 1, the Walsh coefficient
of the trace of the Gold function f : X 7→ X2k+1 is given
by

Wf (u) =

{
0 if Tr(u) = 0

(−1)Tr(γ
2k+1)Wf (1) if Tr(u) = 1,

where γ is the unique element in F2n of trace 0 such that
u = γ2

k

+ γ2
−k

+ 1, completed with one of Dillon and
Dobbertin’s results [11] (see also [17, Theorem 5]), which
gives the Walsh-Hadamard coefficient

Wf (1) =

{
+2

n+1
2 if n ≡ ±1 (mod 8)

−2
n+1
2 if n ≡ ±3 (mod 8).

It is easy to see that Tr(u) = Tr(a2
−k

+a2
k

+β(1+c)+α) =
0. Therefore M1,0 = 0. This completes the proof.

The case c = 0 is considered in the following remark.

Remark 5. Let n ≥ 3 be odd, α ∈ F2n with Tr(α) = 1.
Then for c = 0, the function G(X) = X+Tr(αX+X2k+1),
where gcd(k, n) = 1, is PcN.

The following theorem gives the differential uniformity
(the case c = 1) of the function G(X).

Theorem 6. Let n ≥ 3 be odd, α ∈ F2n with Tr(α) = 1.
Then the DDT entries ∆G(a, b) at point (a, b) ∈ F∗2n ×
F2n of the function G(X) = X + Tr(αX +X2k+1), where
gcd(k, n) = 1, is given by

∆G(a, b) =


2n if (a, b) = (1, 1)

2n−1 if (a, b) 6=(1, 1), G(a)∈{b, b+ 1}
0 otherwise.

Proof. Recall that the DDT entry ∆G(a, b) at the point
(a, b) ∈ F∗2n × F2n of the function G(X) = X + Tr(αX +

X2k+1) is given by the number of solutions X ∈ Fq of the
following equation

G(X + a) +G(X) = b

⇐⇒ X + a+ Tr
(
α(X + a) + (X + a)2

k+1
)

+X + Tr(αX +X2k+1) = b

⇐⇒ a+ Tr(αa+ a2
k+1) + Tr(X2ka+Xa2

k

) = b

⇐⇒ Tr(X2ka+Xa2
k

) = G(a) + b

⇐⇒ Tr(X(a2
−k

+ a2
k

)) = G(a) + b

Notice that when a = 1, then G(a) = 1 and in this case the
above equation has 2n solutions if b = 1 and no solution
otherwise. For a /∈ {0, 1}, we have a2

−k

+ a2
k 6= 0 as

gcd(k, n) = 1 and n is odd. In this case the above equation
has 2n−1 solutions if G(a) ∈ {b, b+1} and has no solution,
otherwise.

IV. THE BOOMERANG UNIFORMITY OF A CLASS OF
INVOLUTIONS

In this section, we shall consider the boomerang unifor-
mity of the involution G(X). The following theorem gives
the BCT entries of the involution G(X) over the finite field
F2n .

Theorem 7. Let n ≥ 3 be odd and α ∈ F2n with Tr(α) =
1. Then the BCT entry BG(a, b) at point (a, b) ∈ F∗2n ×
F∗2n of the function G(X) = X + Tr(αX +X2k+1), where
gcd(k, n) = 1, is given by

BG(a, b) =

{
2n if Tr((ak + a−k)b) = 0

0 if Tr((ak + a−k)b) = 1.

Proof. Recall that the BCT entry of G(X) at point (a, b) ∈
F∗2n × F∗2n is the number of solutions (X,Y ) ∈ F2n × F2n

of the following system{
G(X) +G(Y ) = b

G(X + a) +G(Y + a) = b,

that is,
X + Y + Tr(α(X + Y )) + Tr(X2k+1 + Y 2k+1) = b

X + Y + Tr(α(X + Y ))

+Tr((X + a)2
k+1 + (Y + a)2

k+1) = b.
(5)

Now adding both the equations in the above System (5), we
have

0 = Tr
(

(X + a)2
k+1 +X2k+1 + (Y + a)2

k+1 + Y 2k+1
)

= Tr
(
X2ka+Xa2

k

+ Y 2ka+ Y a2
k
)

= Tr
(

(X + Y )2
k

a+ (X + Y )a2
k
)
.

Therefore, System (5) is equivalent to the following systemX + Y + Tr
(
α(X + Y ) +X2k+1 + Y 2k+1

)
= b

Tr
(

(X + Y )2
k

a+ (X + Y )a2
k
)

= 0,
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and so,
X + Y + Tr

(
α(X + Y ) + (X + Y )2

k+1
)

+Tr
(
X2kY +XY 2k

)
= b

Tr
(

(X + Y )2
k

a+ (X + Y )a2
k
)

= 0.

(6)

Taking Y = X + Z, the above System (6) becomesZ+Tr
(
αZ+Z2k+1

)
+Tr

(
X2kZ +XZ2k

)
= b

Tr
(
Z2ka+ Za2

k
)

= 0,

which can be written asG(Z) + Tr
(
X(Z2−k

+ Z2k)
)

= b

Tr
(
a(Z2−k

+ Z2k)
)

= 0.
(7)

Now from (3), the number of solutions (X,Z) ∈ Fq × Fq
of the above System (7), denoted as BG(a, b), is given by

BG(a, b)

=
1

22n

∑
X,Z∈F2n

∑
β∈F2n

(−1)Tr(β(G(Z)+Tr(X(Z2−k
+Z2k ))+b))

∑
γ∈F2n

(−1)Tr(γTr(a(Z
2−k

+Z2k )))

=
1

22n

∑
X,Z∈F2n

∑
β∈F2n

(−1)Tr(β(G(Z)+b))+Tr(β)Tr(X(Z2−k
+Z2k ))

∑
γ∈F2n

(−1)Tr(γ)Tr(a(Z
2−k

+Z2k ))

=
1

22n

∑
β,γ∈F2n

(−1)Tr(βb)

∑
Z∈F2n

(−1)Tr(βG(Z))+Tr(γ)Tr(a(Z2−k
+Z2k ))

∑
X∈F2n

(−1)Tr(β)Tr(X(Z2−k
+Z2k ))

=
1

22n
(S0 + S1),

(8)

where S0 and S1 are the sums corresponding to Tr(β) = 0
and Tr(β) = 1, respectively. We shall now compute S0 and
S1 separately. We first consider the sum S0 given by

S0 =
∑
β∈Fq

Tr(β)=0

(−1)Tr(βb)
∑
γ∈F2n∑

Z∈F2n

(−1)Tr(βG(Z))+Tr(γ)Tr(a(Z2−k
+Z2k ))

∑
X∈F2n

(−1)Tr(β)Tr(X(Z2−k
+Z2k ))

= 2n
∑
β∈Fq

Tr(β)=0

(−1)Tr(βb)
∑
γ∈F2n∑

Z∈F2n

(−1)Tr(βG(Z))+Tr(γ)Tr(a(Z2−k
+Z2k ))

= 2n
∑
β∈Fq

Tr(β)=0

(−1)Tr(βb)(S0,0 + S0,1), (9)

where S0,0 and S0,1 are the sums corresponding to Tr(γ) =
0 and Tr(γ) = 1, respectively. We shall now compute S0,0

and S0,1, separately. Consider

S0,0 =
∑
γ∈Fq

Tr(γ)=0

∑
Z∈F2n

(−1)Tr(βG(Z))+Tr(γ)Tr(a(Z2−k
+Z2k ))

=
∑
γ∈Fq

Tr(γ)=0

∑
Z∈F2n

(−1)Tr(βG(Z))

= 2n−1
∑
Z∈F2n

(−1)Tr(βG(Z)).

Similarly,

S0,1

=
∑
γ∈Fq

Tr(γ)=1

∑
Z∈F2n

(−1)Tr(βG(Z))+Tr(γ)Tr(a(Z2−k
+Z2k ))

=
∑
γ∈Fq

Tr(γ)=1

∑
Z∈F2n

(−1)Tr(βG(Z))+Tr(a(Z2−k
+Z2k))

= 2n−1
∑
Z∈F2n

(−1)Tr(βZ+βTr(αZ+Z2k+1))+Tr(a(Z2−k
+Z2k))

= 2n−1
∑
Z∈F2n

(−1)Tr(βZ)+Tr(β)Tr(αZ+Z2k+1)+Tr(a(Z2−k
+Z2k))

= 2n−1
∑
Z∈F2n

(−1)Tr(βZ)+Tr(Z(a2
−k

+a2
k
))

= 2n−1
∑
Z∈F2n

(−1)Tr(Z(a2
−k

+a2
k
+β)).

Now putting the values of S0,0 and S0,1 into Equation (10),
we have

S0 = 22n−1
∑
β∈Fq

Tr(β)=0

(−1)Tr(βb)

 ∑
Z∈F2n

(−1)Tr(βG(Z)) +
∑
Z∈F2n

(−1)Tr(Z(a2
−k

+a2
k
+β))



= 22n−1

2n +
∑
β∈F∗

q

Tr(β)=0

(−1)Tr(βb)
∑
Z∈F2n

(−1)Tr(βG(Z))

+
∑
β∈Fq

Tr(β)=0

(−1)Tr(βb)
∑
Z∈F2n

(−1)Tr(Z(a2
−k

+a2
k
+β))


= 23n−1
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+ 22n−1

 ∑
β∈Fq

Tr(β)=0

(−1)Tr(βb)
∑
Z∈F2n

(−1)Tr(Z(a2
−k
+a2

k
+β))


= 23n−1 + 23n−1(−1)Tr(b(a

2−k
+a2

k
)),

where the second last equality holds because G(Z) is a
permutation of F2n . The last equality holds as the inner
sum will contribute if and only if β = a2

−k

+ a2
k

.
Now, we shall calculate S1 which is given by

S1 =
∑
β∈Fq

Tr(β)=1

(−1)Tr(βb)

∑
γ∈F2n

∑
Z∈F2n

(−1)Tr(βG(Z))+Tr(γ)Tr(a(Z2−k
+Z2k ))

∑
X∈F2n

(−1)Tr(β)Tr(X(Z2−k
+Z2k ))

=
∑
β∈Fq

Tr(β)=1

(−1)Tr(βb)

∑
γ∈F2n

∑
Z∈F2n

(−1)Tr(βG(Z))+Tr(γ)Tr(a(Z2−k
+Z2k ))

∑
X∈F2n

(−1)Tr(X(Z2−k
+Z2k ))

=
∑
β∈Fq

Tr(β)=1

(−1)Tr(βb)(S1,0 + S1,1),

(10)

where S1,0 and S1,1 are the sum corresponding to Tr(γ) = 0
and Tr(γ) = 1, respectively. We shall now compute S1,0 and
S1,1 separately. Consider

S1,0

=
∑
γ∈Fq

Tr(γ)=0

∑
Z∈F2n

(−1)Tr(βG(Z))+Tr(γ)Tr(a(Z2−k
+Z2k ))

∑
X∈F2n

(−1)Tr(X(Z2−k
+Z2k ))

=
∑
γ∈Fq

Tr(γ)=0

∑
Z∈F2n

(−1)Tr(βG(Z))
∑

X∈F2n

(−1)Tr(X(Z2−k
+Z2k ))

=2n−1
∑
Z∈F2n

(−1)Tr(βG(Z))
∑

X∈F2n

(−1)Tr(X(Z2−k
+Z2k ))

=

 ∑
Z∈F2n

Z/∈{0,1}

(−1)Tr(βG(Z))
∑

X∈F2n

(−1)Tr(X(Z2−k
+Z2k ))


2n−1 + 22n−1 + 22n−1(−1)Tr(βG(1))

= 22n−1 + 22n−1(−1)Tr(β(1+Tr(α+1))

= 22n−1 + 22n−1(−1)Tr(β),

where the second to last identity holds because Z2−k

+
Z2k = 0, or equivalently, Z22k + Z = 0 if and only if
Z ∈ {0, 1}. For Z ∈ F2n\{0, 1}, Z2−k

+Z2k 6= 0 and as a
consequence, the inner sum will be equal to zero. The last
equality holds because Tr(α) = 1. Similarly,

S1,1 =
∑
γ∈Fq

Tr(γ)=1

∑
Z∈F2n

(−1)Tr(βG(Z))+Tr(γ)Tr(a(Z2−k
+Z2k ))

∑
X∈F2n

(−1)Tr(X(Z2−k
+Z2k ))

=
∑
γ∈Fq

Tr(γ)=1

∑
Z∈F2n

(−1)Tr(βG(Z))+Tr(a(Z2−k
+Z2k ))

∑
X∈F2n

(−1)Tr(X(Z2−k
+Z2k ))

=2n−1
∑
Z∈F2n

(−1)Tr(βG(Z))+Tr(a(Z2−k
+Z2k ))

∑
X∈F2n

(−1)Tr(X(Z2−k
+Z2k ))

=22n−1 + 22n−1(−1)Tr(βG(1))

+ 2n−1
∑
Z∈F2n

Z/∈{0,1}

(−1)Tr(βG(Z))+Tr(a(Z2−k
+Z2k ))

∑
X∈F2n

(−1)Tr(X(Z2−k
+Z2k ))

=22n−1 + 22n−1(−1)Tr(β+βTr(α+1))

=22n−1 + 22n−1(−1)Tr(β).

Now putting the values of S1,0 and S1,1 in Equation (12),
we have

S1 =
∑

β∈Fq,Tr(β)=1

(−1)Tr(βb)
(

22n + 22n · (−1)Tr(β)
)

= 0.

Now putting the values of S0 and S1 into Equation (8), we
have

BG(a, b) = 2n−1 + 2n−1 · (−1)
Tr

(
b
(
a2

−k
+a2

k
))
.

This completes the proof.

V. THE c-DIFFERENTIAL UNIFORMITY OF A PERTURBED
INVERSE FUNCTION

In this section, we shall consider the c-differential uni-

formity of the function H(X) = X−1 + Tr

(
X2

X + 1

)
over

F2n , for all positive integers n and 1 6= c ∈ Fq . We shall
first recall the following lemma (we have slightly modified
the statement as per our requirements), which gives the c-
differential uniformity of the inverse mapping.
Lemma 8. [13, Theorem 12] Let n be a positive integer and
c ∈ F2n\{0, 1}. For any a, b ∈ F2n , the solutions X ∈ Fq
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of the equation (X + a)−1 + cX−1 = b are described as
follows:

{ ac1+c} if b = 0

{b−1(1 + c)} if a = 0, b 6= 0

{0} if ab = 1 and Tr(1/c) = 1

{0, two more solutions} if ab = 1 and Tr(1/c) = 0

{a} if ab = c and Tr(c) = 1

{a, two more solutions} if ab = c and Tr(c) = 0

{
(
ac
b

)2n−1

} if ab = 1 + c

{two solutions} if ab 6= 1, c, 1 + c

and Tr
(

abc
(ab)2+c2+1

)
= 0

no solution otherwise.

The following theorem gives a bound for the c-differential
uniformity of the function H(X) over F2n , for all positive
integers n and 1 6= c ∈ Fq .

Theorem 9. Let 1 6= c ∈ F2n and H : F2n → F2n be

defined by H(X) = X−1 + Tr

(
X2

X + 1

)
. We have:

(i) If c = 0, then H(X) is PcN;
(ii) If Tr(c) = 1 = Tr(1/c), then c∆H ≤ 8;

(iii) Otherwise, c∆H ≤ 9.

Proof. For any fixed 1 6= c ∈ F2n , the c-differential

uniformity of the function H(X) = X−1 + Tr

(
X2

X + 1

)
equals the maximum number of solutions X ∈ Fq of the
following equation

(X+a)−1+Tr

(
X2 + a2

X + a+ 1

)
+cX−1+cTr

(
X2

X + 1

)
= b,

(11)
where a, b ∈ F2n . Notice that when c = 0, the above
Equation (13) reduces to

(X + a)−1 + Tr

(
X2 + a2

X + a+ 1

)
= b,

which has exactly one solution for each pair (a, b) ∈ F2n ×
F2n as the left hand side is a PP. Let c /∈ {0, 1}. For any
fixed c /∈ {0, 1}, if a = 0, Equation (13) reduces to

X−1 + Tr

(
X2

X + 1

)
= b(1 + c)−1,

which has exactly one solution for each b ∈ F2n as the left
hand side is a PP. Now for any (a, b) ∈ F∗2n × F2n , to find
the solutions of Equation (13), we shall split the analysis
into four cases.

Case 1. Let Tr

(
X2 + a2

X + a+ 1

)
= 0 = Tr

(
X2

X + 1

)
. In this

case, Equation (13) reduces to

(X + a)−1 + cX−1 = b. (12)

Notice that if 0 is a solution of Equation (13) then either
ab = 1 and Tr

(
a2

a+1

)
= 0 or a(b+1) = 1 and Tr

(
a2

a+1

)
=

1. Similarly, if a is a solution of Equation (13) then either

ab = c and Tr
(
a2

a+1

)
= 0 or a(b+ c) = c and Tr

(
a2

a+1

)
=

1. From Lemma 8, we know that if ab = 1 and Tr(1/c) = 0,
then the Equation (14) has three solutions and one among
them is zero. Similarly, if ab = c and Tr(c) = 0, then the
Equation (14) has three solutions and one among them is
a. In rest of the cases Equation (14) can have at most two
solutions. From here we conclude that for any fixed c ∈
F2n\{0, 1}, Equation (13) can have at most three solutions if
either Tr(1/c) = 0, Tr

(
a2

a+1

)
= 0 and ab = 1, or Tr(c) =

0, Tr
(
a2

a+1

)
= 0 and ab = c. Otherwise, there can be at

most two solutions of Equation (13) from this case.

Case 2. Let Tr

(
X2 + a2

X + a+ 1

)
= 1 = Tr

(
X2

X + 1

)
. In this

case, Equation (13) reduces to

(X + a)−1 + cX−1 = b+ c+ 1. (13)

Again, by Lemma 8, if a(b+ c+ 1) = 1 and Tr(1/c) =
0, then the Equation (15) has three solutions and one
among them is zero. It is easy to see that when X = 0,
Tr
(
X2

X+1

)
= 0. Therefore 0 can not be a solution of

Equation (13). Similarly, if a(b+ c+ 1) = c and Tr(c) = 0,
then Equation (15) has three solutions and one among them
is a. Notice that, when X = a, we have Tr

(
X2+a2

X+a+1

)
= 0.

Therefore a can not be a solution of Equation (13). Thus,
we can get at most two solutions of Equation (13) from this
case.
Case 3. Let Tr

(
X2 + a2

X + a+ 1

)
= 0 and Tr

(
X2

X + 1

)
= 1.

Then Equation (13) reduces to

(X + a)−1 + cX−1 = b+ c. (14)

From Lemma 8, we know that if a(b+ c) = 1 and
Tr(1/c) = 0, then Equation (16) has three solutions and
one among them is 0. As we are in the case Tr

(
X2

X+1

)
= 1,

the solution X = 0 of Equation (16) will not be a solution
of Equation (13). Similarly, if a(b+ c) = c and Tr(c) = 0,
then Equation (16) has three solutions and one among them
is a. It is easy to see that the solution X = a of (16) will be a
solution of Equation (13) if and only if Tr

(
a2

a+1

)
= 1. Thus,

for any fixed c ∈ F2n\{0, 1}, if Tr(c) = 0, Tr
(
a2

a+1

)
= 1

and a(b + c) = c, then there can be at most 3 solutions of
Equation (13) from this case, otherwise there can be at most
2 solutions.
Case 4. Let Tr

(
X2 + a2

X + a+ 1

)
= 1 and Tr

(
X2

X + 1

)
= 0.

Then Equation (13) reduces to

(X + a)−1 + cX−1 = b+ 1. (15)

Again, by Lemma 8, if a(b+ 1) = 1 and Tr(1/c) = 0, then
Equation (17) has three solutions and one among them is
0. Notice that the solution X = 0 of Equation (17) will be
a solution of Equation (13) if and only if Tr

(
a2

a+1

)
= 1.

Similarly, if a(b+ 1) = c and Tr(c) = 0, then Equation (17)
has three solutions and one among them is a. Notice that so-
lution X = a of (17) will not be a solution of Equation (13)
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as Tr
(
X2+a2

X+a+1

)
6= 1. Thus, for any fixed c ∈ F2n\{0, 1},

if Tr(1/c) = 0, Tr
(
a2

a+1

)
= 1 and a(b+ 1) = 1 then there

can be at most 3 solutions of Equation (13) from this case,
otherwise there can be at most 2 solutions. This completes
the proof.

Table I gives the maximum possible value of c∆H , where
c /∈ {0, 1}, of the function H(X) over F2n for some small
values of n.

Remark 10. It remains an open question to investigate if
the bound for the c-differential uniformity of the perturbed
inverse function H(x) in Theorem 9 could indeed be at-
tained.

VI. THE BOOMERANG UNIFORMITY OF A PERTURBED
INVERSE FUNCTION

Boura and Canteaut [6] studied the BCT entries of the
inverse mapping and proved the following lemma. We
are also including the proof here (however, our technique
is slightly different from the one given in [6]), for the
convenience of the reader.

Lemma 11. [6, Proposition 6] Let f(X) = X−1 be a map
from F2n to itself with n even. Then for any (a, b) ∈ F∗2n ×
F∗2n , the boomerang system{

X−1 + Y −1 = b

(X + a)−1 + (Y + a)−1 = b
(16)

has the following solutions if n ≡ 2 (mod 4)

{(0, a), (a, 0), (aω, aω2), (aω2, aω)} if ab = 1

{(0, aω2), (aω2, 0), (a, aω), (aω, a)} if ab = ω

{(0, aω), (aω, 0), (a, aω2), (aω2, a)} if ab = ω2

{(X1, X1 + a), (X1 + a,X1)}, X2
1 + aX1 + a

b = 0

if Tr( 1
ab ) = 0, and ab 6= 1, ω, ω2

no solution otherwise,

where ω ∈ F4 \ F2 is a primitive cube root of unity. When
n ≡ 0 (mod 4), then there are the following additional
solutions

{(X2, X2 + a), (X2 + a,X2)},
X2

2 + aX2 + a2ω2 = 0 if ab = ω

{(X3, X3 + a), (X3 + a,X3)},
X2

3 + aX3 + a2ω = 0 if ab = ω2.

Proof. It is easy to see that (0, 0) and (a, a) can not be a
solution of Equation (18) as b 6= 0. Now we shall divide our
discussion into the following different cases.
Case 1. Let X = 0. In this case, System (18) reduces to{

Y = b−1

(b−1 + a)−1 = b+ a−1.
(17)

It is easy to see that if ab = 1 then (0, a) is the solution of
above System (19). If ab 6= 1 then System (19) reduces to

0 = (b−1 + a)(b+ a−1) + 1

= 1 + a−1b−1 + ab

= (ab)2 + ab+ 1.

Thus ab 6= 1 is a root of X3 + 1 = 0, hence a primitive
element of F22 , say ω, ω2. When ab = ω, Equation (19)
has exactly one solution (0, aω2). Similarly, when ab =
ω2, Equation (19) has exactly one solution (0, aω). If ab /∈
{1, ω, ω2}, then System (19) has no solution.
Case 2. Let X = a. In this case, System (18) reduces to{

Y = (b+ a−1)−1

((b+ a−1)−1 + a)−1 = b.
(18)

It is easy to see that if ab = 1 then (a, 0) is the solution
of above System (20). Also notice that if ab 6= 1 then (b+
a−1)−1 + a 6= 0 as b 6= 0. Thus, for ab 6= 1 System (20)
reduces to

(b+ a−1)−1 = a+ b−1

(a+ b−1)(a−1 + b) = 1

(ab)2 + ab+ 1 = 0.

Thus ab 6= 1 is a root of X3 + 1 = 0, hence a primitive
element of F22 . When ab = ω, System (20) has exactly
one solution (a, aω). Similarly, when ab = ω2, System (20)
has exactly one solution (a, aω2). If ab /∈ {1, ω, ω2}, then
System (20) has no solution.
Case 3. Let Y = 0. Since System (18) is symmetric in the
variables X and Y , this case directly follows from Case 1.
Thus, System (18) has exactly one solution (a, 0), (aω2, 0)
and (aω, 0) when ab ∈ {1, ω, ω2}, respectively. If ab /∈
{1, ω, ω2}, then System (18) has no solution with Y = 0.
Case 4. Let Y = a. Since System (18) is symmetric in the
variables X and Y , this case directly follows from Case 2.
Thus, System (18) has exactly one solution (0, a), (aω, a)
and (aω2, a) when ab ∈ {1, ω, ω2}, respectively. If ab /∈
{1, ω, ω2}, then System (18) has no solution with Y = a.
Case 5. Let X 6∈ {0, a} and Y 6∈ {0, a}. Now, System (18)
becomes {

X + Y = bXY

X + Y = b(XY + aX + aY + a2),
(19)

which is equivalent to{
X + a = Y

X2 + aX + a
b = 0.

(20)

Now if ab = 1, then the second equation of System (22)
reduces to X2 + aX + a2 = 0, which has two solutions
aω, aω2. Thus, System (21) has two solutions, namely
(aω, aω2) and (aω2, aω). If ab = ω, then the second
equation of System (22) becomes X2 + aX + a2ω2 = 0,
which has two solutions if and only if Tr(ω2) = Tr(ω) = 0.
Here, one may note that Tr(ω) = 0 if and only if n ≡ 0



10

TABLE I: Maximum value of c∆H over the finite field F2n .
n when Tr(c) = 0 = Tr( 1

c ) or Tr(c) + Tr( 1
c ) = 1 when Tr(c) = 1 = Tr( 1

c )

2 1 1

3 3 1

4 5 4

5 6 6

6 7 6

7 7 6

8 8 7

(mod 4). Similarly, if ab = ω2, the second equation of
System (22) becomes X2 + aX + a2ω = 0, which has
two solutions if and only if Tr(ω) = 0. Again, Tr(ω) = 0
if and only if n ≡ 0 (mod 4). When X,Y 6∈ {0, a} and
ab 6∈ {1, ω, ω2}, then System (22) has two solutions if and
only if Tr

(
1
ab

)
= 0.

The following is an immediate corollary of Lemma 11.

Corollary 12. Let f(X) = X−1 be a map from F2n to itself
with n even. Then the boomerang uniformity of f is given
by

Bf =

{
4 if n ≡ 2 (mod 4)

6 if n ≡ 0 (mod 4).

Now we shall consider the boomerang uniformity of
the differentially 4-uniform permutation H(X) = X−1 +

Tr

(
X2

X + 1

)
over F2n with n even in the following theo-

rem.

Theorem 13. Let n be even and H(X) = X−1 +

Tr

(
X2

X + 1

)
be a map from F2n to itself. Then the

boomerang uniformity of H is less than or equal to 12.

Proof. For any a, b ∈ F∗2n , the Boomerang Connectivity
Table (BCT) entry BH(a, b) of H at point (a, b) is the
number of solutions (X,Y ) ∈ Fq × Fq of the following
system

X−1 + Y −1 + Tr

(
X2

X + 1
+

Y 2

Y + 1

)
= b;

(X + a)−1 + (Y + a)−1

+Tr
(
X2+a2

X+a+1 + Y 2+a2

Y+a+1

)
= b.

(21)

We shall now give the strategy of the proof. De-
pending upon the values of Tr

(
X2

X+1 + Y 2

Y+1

)
and

Tr
(
X2+a2

X+a+1 + Y 2+a2

Y+a+1

)
, we shall split the analysis of so-

lutions of the above System (23) into two parts. In the
first part, we shall consider two cases, namely, Case 1

and Case 2 corresponding to Tr
(
X2

X+1 + Y 2

Y+1

)
= 0 =

Tr
(
X2+a2

X+a+1 + Y 2+a2

Y+a+1

)
and Tr

(
X2

X+1 + Y 2

Y+1

)
= 1 =

Tr
(
X2+a2

X+a+1 + Y 2+a2

Y+a+1

)
, respectively. We then compute the

maximum number of solutions (X,Y ) ∈ Fq × Fq of
the system of equations in each of these cases, in-
dividualy. Next, we compute the maximum number of
solutions of System (23) that can be obtained from
Case 1 and Case 2. In the second part also, we shall
consider two cases, namely, Case 3 corresponding to
Tr
(
X2

X+1 + Y 2

Y+1

)
= 0 and Tr

(
X2+a2

X+a+1 + Y 2+a2

Y+a+1

)
=

1, and Case 4 corresponding to Tr
(
X2

X+1 + Y 2

Y+1

)
=

1 and Tr
(
X2+a2

X+a+1 + Y 2+a2

Y+a+1

)
= 0. We then compute the

maximum number of solutions (X,Y ) ∈ Fq × Fq of the
system of equations in each of these cases, individualy and
then we compute the maximum number of solutions of
System (23) that can be obtained from Case 3 and Case
4. Finally, combining the first and second part, we compute
the maximum number of solutions of System (23).

Case 1. Let Tr

(
X2

X + 1
+

Y 2

Y + 1

)
= 0 =

Tr

(
X2 + a2

X + a+ 1
+

Y 2 + a2

Y + a+ 1

)
. In this case, System (23)

reduces to {
X−1 + Y −1 = b

(X + a)−1 + (Y + a)−1 = b.
(22)

From Lemma 11, we know that the above System (24) has
four solutions if ab = 1; four solutions if ab ∈ {ω, ω2} and
n ≡ 2 (mod 4); six solutions if ab ∈ {ω, ω2} and n ≡ 0
(mod 4); two solutions if Tr( 1

ab ) = 0 and ab 6∈ {1, ω, ω2};
and no solutions, otherwise.

Case 2. Let Tr

(
X2

X + 1
+

Y 2

Y + 1

)
= 1 =

Tr

(
X2 + a2

X + a+ 1
+

Y 2 + a2

Y + a+ 1

)
. In this case, System (23)
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reduces to{
X−1 + Y −1 = b+ 1

(X + a)−1 + (Y + a)−1 = b+ 1.
(23)

Again, from Lemma 11, we know that the above System (25)
has four solutions if a(b+1) = 1; four solutions if a(b+1) ∈
{ω, ω2} and n ≡ 2 (mod 4); six solutions if a(b + 1) ∈
{ω, ω2} and n ≡ 0 (mod 4); two solutions if Tr( 1

a(b+1) ) =

0 and a(b+ 1) 6∈ {1, ω, ω2} and no solutions, otherwise.
We shall now compute the maximum number of solutions

of Equation (23) that can be obtained from Case 1 and
Case 2.
(i) Let ab = 1. In this subcase, if ab + a = 1, a = 0
which is not possible as a 6= 0. If ab + a = ω, we have
(a, b) = (ω2, ω). For (a, b) = (ω2, ω), the four solutions
of System (24) are {(0, ω2), (ω2, 0), (1, ω), (ω, 1)}. It is
easy to verify that all these four solutions are solutions
of System (23). For (a, b) = (ω2, ω), System (25) has
four solutions {(0, ω), (ω, 0), (1, ω2), (ω2, 1)}, when n ≡ 2
(mod 4) and there will be two additional solutions when
n ≡ 0 (mod 4). A simple calculation shows that none of
these four solutions satisfies System (23). If ab + a = ω2,
we have (a, b) = (ω, ω2). For (a, b) = (ω, ω2), the four
solutions of System (24) are {(0, ω), (ω, 0), (1, ω2), (ω2, 1)}
and one can easily verify that these four solutions are
solutions of System (23). For (a, b) = (ω, ω2), we have
four solutions of (25), when n ≡ 2 (mod 4), which are
given by {(0, ω2), (ω2, 0), (1, ω), (ω, 1)} and there will be
two additional solutions when n ≡ 0 (mod 4). A routine
calculation shows that none of these four solutions are solu-
tions of System (23). If ab+a 6∈ {1, ω, ω2}, System (25) has
two solutions if Tr

(
1

1+a

)
= 0 and no solution, otherwise.

(ii) Let ab = ω. In this subcase, if ab+ a = 1 then (a, b) =
(ω2, ω2). For (a, b) = (ω2, ω2), System (24) has four solu-
tions {(0, ω), (ω, 0), (1, ω2), (ω2, 1)} if n ≡ 2 (mod 4) and
there are two additional solutions if n ≡ 0 (mod 4). A sim-
ple calculation shows that all these four solutions are also a
solution of equation (23). For (a, b) = (ω2, ω2), the four so-
lutions of System (25) are {(0, ω2), (ω2, 0), (1, ω), (ω, 1)}.
A simple calculation shows that none of these four solutions
satisfies System (23). If ab + a = ω then a = 0 which
is not possible as a 6= 0. Now if ab + a = ω2, we
have (a, b) = (1, ω). For (a, b) = (1, ω), System (24)
has four solutions {(0, ω2), (ω2, 0), (1, ω), (ω, 1)} if n ≡ 2
(mod 4) and there will be two additional solutions if n ≡ 0
(mod 4). A simple calculation yields that all these four
solutions are solutions of System (23). For (a, b) = (1, ω),
the four solutions of (25), when n ≡ 2 (mod 4), are
{(0, ω), (ω, 0), (1, ω2), (ω2, 1)} and there will be two ad-
ditional solutions when n ≡ 0 (mod 4). It is easy to
verify that none of these four solutions are solutions of
System (23). If ab + a 6∈ {1, ω, ω2}, System (25) has two
solutions if Tr

(
1

a+ω

)
= 0 and no solution, otherwise.

(iii) Let ab = ω2. In this subcase, if ab + a = 1, we have
(a, b) = (ω, ω). For (a, b) = (ω, ω), System (24) has four

solutions {(0, ω2), (ω2, 0), (ω, 1), (1, ω)} if n ≡ 2 (mod 4)
and there are two additional solutions if n ≡ 0 (mod 4). It
can be easily shown that all these four solutions are solutions
of System (23). For (a, b) = (ω, ω), the four solutions
of System (25) are {(0, ω), (ω, 0), (1, ω2), (ω2, 1)} and a
routine calculation shows that none of these four solutions
satisfies System (23). If ab + a = ω, we have (a, b) =
(1, ω2). Now for (a, b) = (1, ω2), System (24) has four
solutions {(0, ω), (ω, 0), (1, ω2), (ω2, 1)} if n ≡ 2 (mod 4)
and there are two additional solutions if n ≡ 0 (mod 4). It
is easy to verify that all these four solutions are solutions of
System (23). For (a, b) =(1, ω2), the four solutions of (25),
when n ≡ 2 (mod 4), are {(0, ω2), (ω2, 0), (1, ω), (ω, 1)}
and there will be two additional solutions when n ≡ 0
(mod 4). One can easily verify that none of these four
solutions are solutions of System (23). If ab + a = ω2,
then a = 0 which is not possible as a 6= 0. Now, if
ab + a 6∈ {1, ω, ω2}, System (25) has two solutions if
Tr
(

1
a+ω2

)
= 0 and no solution, otherwise.

From the above discussion, we arrive at the following
conclusion.
(I) If ab ∈ {1, a + 1}, we can get at most 6 solutions of

System (23) from Case 1 and Case 2.
(II) If ab ∈ {ω, ω2, a + ω, a + ω2}, we can get at most 6

(respectively 8) solutions of System (23) from Case 1
and Case 2, if n 6≡ 2 (mod 4) (respectively n ≡ 0
(mod 4)).

(III) If ab 6∈ {1, ω, ω2, a + 1, a + ω, a + ω2}, we can get
at most 4 solutions of System (23) from Case 1 and
Case 2.

We shall now move towards the second part of the
analysis.

Case 3. Let Tr

(
X2

X + 1
+

Y 2

Y + 1

)
= 0 and

Tr

(
X2 + a2

X + a+ 1
+

Y 2 + a2

Y + a+ 1

)
= 1. In this case,

System (23) reduces to{
X−1 + Y −1 = b

(X + a)−1 + (Y + a)−1 = b+ 1.
(24)

It is easy to see that when b = 1, System (26) is inconsistent,
as in this case, the second equation of System (26) would
imply X = Y and the first equation of System (26) cannot
have solutions of this type as b 6= 0. Now, we shall calculate
the number of solutions of the above System (26) in the
following cases.

Subcase 3.1. Let X = 0. In this case System (26) reduces
to {

Y = b−1

(Y + a)−1 = a−1 + b+ 1,

which is equivalent to{
Y = b−1

(b−1 + a)−1 = a−1 + b+ 1.
(25)
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Notice that if ab = 1, then the above system is inconsistent.
If ab 6= 1 then (0, b−1) will be a solution of System (26) if
and only if a2b2 + a2b+ ab+ a+ 1 = 0.

Subcase 3.2. Let X = a. In this case System (26) reduces
to {

Y = (a−1 + b)−1

(Y + a)−1 = b+ 1,

which is equivalent to{
Y = (a−1 + b)−1

((a−1 + b)−1 + a)−1 = b+ 1.
(26)

Notice that if ab = 1 then the equation above is inconsistent.
If ab 6= 1 then (a, (a−1 + b)−1) will be a solution of
System (26) if and only if a2b2 + a2b+ ab+ 1 = 0.

Subcase 3.3. Let Y = 0. As System (26) is symmetric
in the variables X and Y , this subcase directly follow from
Subcase 3.1. Therefore System (26) has no solution if ab =
1 and if ab 6= 1 then (b−1, 0) is a solution of System (26)
if and only if a2b2 + a2b+ ab+ a+ 1 = 0.

Subcase 3.4. Let Y = a. This subcase directly follows
from Subcase 3.2. Therefore System (26) has no solution if
ab = 1 and if ab 6= 1 then ((a−1 + b)−1, a) is a solution of
System (26) if and only if a2b2 + a2b+ ab+ 1 = 0.

Subcase 3.5. Let X 6∈ {0, a} and Y 6∈ {0, a}. In this
case, System (26) reduces to{

X + Y = bXY

X + Y = (b+ 1)(X + a)(Y + a).
(27)

Now adding the first and the second equation of the above
system, we have

XY + (ab+ a)(X + Y + a) = 0

bXY + (ab2 + ab)(X + Y + a) = 0

(ab2 + ab+ 1)(X + Y ) + a2b2 + a2b = 0,

when ab2 + ab + 1 = 0, then the above equation will be
inconsistent, as a2b2 + a2b 6= 0 (since b 6∈ {0, 1}). When

ab2+ab+1 6= 0, we let X+Y = t, where t =
a2b2 + a2b

ab2 + ab+ 1
.

Now putting Y = X + t, the first equation of System (29)
transforms into

X2 + tX +
t

b
= 0. (28)

The above equation has two solutions if and only if
Tr
(

1
tb

)
= 0, say X1 and X1 + t. Thus, we can get at most

two solutions, namely, (X1, X1 + t) and (X1 + t,X1) of
System (29), where X1 is a root of Equation (30).

Case 4. Let Tr

(
X2

X + 1
+

Y 2

Y + 1

)
= 1 and

Tr

(
X2 + a2

X + a+ 1
+

Y 2 + a2

Y + a+ 1

)
= 0. In this case,

System (23) reduces to{
X−1 + Y −1 = b+ 1

(X + a)−1 + (Y + a)−1 = b,
(29)

It is obvious that if (X,Y ) is a solution of System (26) then
(X + a, Y + a) will be a solution of System (31). Also it
is easy to observe that if solution (X,Y ) of System (26) is
a solution of System (23) then solution (X + a, Y + a) of
System (31) will also be a solution of System (23). Thus,
in order to compute the maximum number of solutions of
System (23) from Case 3 and Case 4, it is sufficient to
compute the maximum number of solutions of System (23)
obtained from Case 3. The maximum number of solutions
of System (23) from Case 3 and Case 4 can be then obtained
by just doubling this number.

In the following, we shall compute the maximum number
of solutions of System (23) that can be obtained from Case
3.

(i) When ab ∈ {1, ω, ω2}, then there is no solution of
System (23) from Subcase 3.1, 3.2, 3.3 and 3.4. When ab ∈
{1, ω, ω2}, at most two solutions of System (23) can be
obtained from Subcase 3.5 if and only if Tr

(
1
a+1

)
= 0,

Tr
(
a+1
a+w

)
= 0 and Tr

(
a+1
a+w2

)
= 0, respectively.

(ii) When ab ∈ {a + 1, a + ω, a + ω2}, then there is no
solution of System (23) from Subcase 3.1, 3.2, 3.3 and 3.4.
When ab ∈ {a+ 1, a+ω, a+ω2}, at most two solutions of
System (23) can be obtained from Subcase 3.5 if and only if
Tr
(

1
a2+1

)
= 0, Tr

(
ω(a+1)
a2+ω2

)
= 0 and Tr

(
a+1

ω(a2+ω)

)
= 0,

respectively.
(vii) When ab 6∈ {1, ω, ω2, 1+a, a+ω, a+ω2}, then it is

easy to see that for any fixed (a, b) ∈ F∗q ×F∗q , there can be
at most two solutions of System (23) from Subcase 3.1, 3.2,
3.3 and 3.4 as a2b2 +a2b+ab+a+1 = a2b2 +a2b+ab+1
implies a = 0, a contradiction. As we have seen earlier, we
can get at most two solutions of System (23) from Subcase
3.5. Thus, we can get at most 4 solutions of System (23)
from Case 3.

Combining the first and the second part of the analysis,
the maximum number of solutions of System (23) are listed
in Table II.

This completes the proof.

Table III gives the boomerang uniformity BH of the
function H(X) over F2n with n even, for some small values
of n.

Remark 14. It would be interesting to see if the bound
for the boomerang uniformity of the function H(x) in
Theorem 13 could indeed be attained.

VII. CONCLUDING REMARKS

In this paper we compute the c-Difference Distribution
Table entries, as well as the Boomerang Connectivity Table
entries, for an involution which has been used to construct
a class of differentially 4-uniform permutations, by Beierle
and Leander [2]. We consider the c-differential uniformity
and boomerang uniformity of yet another function which
is a differentially 4-uniform function as shown by Tan et
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TABLE II: Maximum number of solutions of System (23).

Condition on (a, b) Maximum number of solu-
tions of System (23) from
Case 1 and Case 2

Maximum num-
ber of solutions
of System (23)
from Case 3 and
Case 4

Maximum number of solu-
tions of System (23)

ab = 1 6 4 10

ab = ω 6 if n ≡ 2 (mod 4) and
8 if n ≡ 0 (mod 4)

4 10 if n ≡ 2 (mod 4) and
12 if n ≡ 0 (mod 4)

ab = ω2 6 if n ≡ 2 (mod 4) and
8 if n ≡ 0 (mod 4)

4 10 if n ≡ 2 (mod 4) and
12 if n ≡ 0 (mod 4)

ab = a+ 1 6 4 10

ab = a+ ω 6 if n ≡ 2 (mod 4) and
8 if n ≡ 0 (mod 4)

4 10 if n ≡ 2 (mod 4) and
12 if n ≡ 0 (mod 4)

ab = a+ ω2 6 if n ≡ 2 (mod 4) and
8 if n ≡ 0 (mod 4)

4 10 if n ≡ 2 (mod 4) and
12 if n ≡ 0 (mod 4)

ab 6∈ {1, ω, ω2, a+1, a+ω, a+ω2} 4 8 12

TABLE III: Boomerang uniformity of the function H(X)
over finite field F2n .

n 2 4 6 8

BH 4 6 8 10

al. [29] and we give bounds for its c-differential uniformity
and boomerang uniformity. The c-differential uniformity
concept, introduced barely a year ago, has proven to be
quite interesting and attractive, mathematically, and one
expects it will soon be applied in a modification of the
differential attack. We hope other classes of functions will
be investigated via this concept, and perhaps even via the
c-boomerang uniformity notion, as introduced in [24] and
further studied in [15], [25], [26].
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