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Abstract

In this paper we want to estimate the nonlinearity of Boolean func-
tions, by probabilistic methods, when it is computationally very ex-
pensive, or perhaps not feasible to compute the full Walsh transform
(which is the case for almost all functions in a larger number of vari-
ables, say more than 30). Firstly, we significantly improve upon the
bounds of Zhang and Zheng [14] on the probabilities of failure of affin-
ity tests based on nonhomomorphicity, in particular, we prove a new
lower bound that we have previously conjectured. This new lower
bound generalizes the one of Bellare et al. [1] to nonhomomorphicity
tests of arbitrary order. Secondly, we prove bounds on the probability
of failure of a proposed affinity test that uses the BLR linearity test.
All these bounds are expressed in terms of the function’s nonlinearity,
and we exploit that to provide probabilistic methods for estimating the
nonlinearity based upon these affinity tests. We analyze our estimates
and conclude that they have reasonably good accuracy, particularly so
when the nonlinearity is low.

*This is a substantially revised and extended version of the article [11] that appeared
in the proceedings of Sequences and Their Applications – SETA 2020. In particular,
Section 4 and Proposition 13 are new.
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1 Introduction and motivation

Boolean functions are defined on a vector space over the binary finite field F2

with output in F2. For many cryptographic applications it is important that
functions are not affine, and not even close (with respect to the Hamming
distance, defined in (3)) to being affine. The nonlinearity of a function f ,
denoted dA(f), defined as the minimum Hamming distance to any affine
function, is therefore an important cryptographic property. This indicator
can be computed by using the Walsh transform (also called Walsh-Hadamard
or discrete Fourier transform). The Walsh transform of a function f in n
variables can be computed from its truth table by an algorithm similar to
the fast Fourier transform in time O(n2n). Computing the Walsh transform
is not feasible in practice when the number of variables is large (e.g., it is
not feasible for function in 80 variables; functions which model an output
of a stream or block cipher as a function of the key would have a number
of variables equal to the length of the key, i.e. at least 80 variables) and
the function is given as a “black box” (or given by an algorithm or formula
which is not amenable to simple manipulation for the purpose of computing
the Walsh transform).

The motivation of this paper is to probabilistically estimate the nonlin-
earity of f to a reasonable degree of accuracy. The main idea is as follows.
Consider a probabilistic test (we will see some examples shortly) which has
a success/fail outcome based on the values of f at some fixed number k of
points in Fn

2 (f can therefore be given as a “black box” function). Denote
by T (f) the probability of failing the test (with the probability taken over
all possible choices of k inputs in Fn

2 ). We assume T (f) is positively cor-
related, to some extent, with the nonlinearity dA(f) and can be bounded
by some functions in dA(f), say Lower(dA(f)) ≤ T (f) ≤ Upper(dA(f)). If
we can obtain T (f) with reasonable accuracy by practical statistical testing
(e.g. binomial proportion confidence interval), we can then estimate the
nonlinearity as:

dA(f) ∈ [min(Upper−1(T (f))),max(Lower−1(T (f)))], (1)

(we use F−1(x) to denote the preimage of x under F ), or, if the preimage
has only one element,

dA(f) ∈ [Upper−1(T (f)),Lower−1(T (f))]. (2)
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To obtain an accurate estimate, it is important that T (f) depends strongly
on dA(f) and that the bounds are very good. We will examine several
probabilistic tests, improve some of the existing bounds, and analyze the
accuracy of the resulting estimation.

The linearity test most commonly used is based on the textbook defini-
tion of a linear function, namely f(u + v) = f(u) + f(v) (often called the
BLR test from [3]): what it means is that we pick u, v ∈ Fn

2 uniformly at
random, compute u+ v, query the black box to extract f(u), f(v), f(u+ v),
and check if the aforementioned condition holds. If f passes this test for
many pairs (u, v), then f is probably linear. If f fails the test for at least one
pair, then f is certainly not linear. We denote by P2(f) the probability of f
failing the test (with probability taken over all pairs (u, v) ∈ Fn

2 × Fn
2 ) and

by dL(f) the normalized Hamming distance of f to the closest linear func-
tion. Several authors have determined upper and lower bounds for P2(f) as
a function of dL(f) (see [1, 9] and the references therein).

For cryptographic applications we are not so much interested in whether
the function is linear, but rather whether it is affine. For example, such
tests play a crucial role in the cube and AIDA attacks (see [6, 12]), which
are refined high-order differential attacks, targeted at primitives in stream
and block ciphers based on low-degree components. The probabilistic test
used in [6] for deciding whether a function f is affine is to check whether
f(u+w)+f(u)+f(w)+f(0) = 0 holds (for u,w chosen uniformly at random),
which can be viewed as using the BLR test to check whether f(u)− f(0) is
linear. The functions of interest f are functions in many variables (typically
at least 80 variables), obtained as higher-order derivatives of a function g
which describes, for example, the first output bit of the stream cipher as a
function of the key and initialisation vector. Although explicit algorithms
are available for computing g and f (in the case of the Trivium cipher,
the algorithm for computing g starts with some relatively simple functions,
of algebraic degree two, which are iteratively composed 1152 times for the
full cipher, or about 700 times for reduced versions of the cipher), it is not
feasible in practice to compute their algebraic normal form, or truth table,
or nonlinearity, or Walsh transform. Instead, g is treated as a “black box”
function, and f can be evaluated at any given input using several calls to g.

Another test used in the literature for deciding whether a Boolean func-
tion is affine is to check whether the equation f(u+ v+w) + f(u) + f(v) +
f(w) = 0 holds, for some u, v, w ∈ Fn

2 chosen uniformly at random. Like
in the case of the linearity test, if f passes the test for many triples u, v, w,
then f is probably affine. We denote by P3(f) the probability of f failing
this affinity test (with the probability taken over all triples (u, v, w) ∈ F3n

2 ).
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As in the case of the linearity tests, a natural question is whether P3(f) is
related to dA(f), the distance to the closest affine function (note that this
is the nonlinearity of f). A lower bound for P3(f) in terms of dA(f) was
given in Bellare et al. [1].

A generalization of the tests above was proposed by Zhang and Zheng
in [14], where the authors defined the notion of (k + 1)-st order nonhomo-
morphicity of a function f as the probability Pk(f) of failing the test

f(u1 + · · ·+ uk) + f(u1) + · · ·+ f(uk) = 0,

with the probability taken over all tuples (u1, . . . , uk) ∈ (Fn
2 )k (see Defini-

tion 1). It was shown that for k odd, f is affine if and only if Pk(f) = 0;
for k even, f is linear if and only if Pk(f) = 0; also, still for k even, f is
affine if and only if Pk(f) ∈ {0, 1}. Furthermore, some bounds on Pk(f)
with respect to dA(f), for k odd, were given in [14].

In this paper, we firstly improve both the upper and lower bounds pre-
sented by Zhang and Zheng in [14] for Pk(f) with k odd (see Sections 3
and 4). Our lower bound holds for arbitrary k and generalizes the lower
bound proven in [1] for k = 2, 3. The proofs use the techniques employed
in [1] as well as additional combinatorial manipulation. We also prove the
lower bound we conjectured in [11].

Secondly, we consider the following probabilistic test for affine functions.
We can use any probabilistic linearity test, and test whether f is linear or
f+1 is linear. If either of these holds, then f is affine. For the nonhomomor-
phicity test with k even, this is equivalent to testing whether Pk(f) ∈ {0, 1}.
The fact that f is affine if and only if Pk(f) ∈ {0, 1} was proven in [14].
However, when f is not affine no results were given regarding how the prob-
ability of failing this test depends on the nonlinearity of f . In Section 5
we show that upper and lower bounds can be obtained for the value of
min(Pk(f), Pk(f + 1)) in the case k = 2 (i.e. the BLR test). Namely, using
the bounds on failing the BLR linearity test from [1], which depend on the
distance to the closest linear function, we show that similar bounds hold for
min(P2(f), P2(f + 1)), but this time the bounds depend on the distance to
the closest affine function. We also show that the refinements of the bounds
in [1] given in [9] can be applied to our bounds too.

The nonlinearity of a function f can be estimated by first using any of the
above tests and a practical statistical method to estimate the probability of
failing that test (as demonstrated in [14]). Then, using (1) or (2), we obtain
an estimate for the nonlinearity of f . In Section 6 we analyze the accuracy of
the estimation. There are functions f, g such that f has higher probability
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of failing the test than g, even though f has lower nonlinearity than g. This
was shown in [2] for the BLR test and in [14] for the tests based on the
(k+1)-st order nonhomomorphicity with k odd. However, the estimates get
more accurate as k increases. For example, for k = 7, for any given value of
P7(f) we can estimate the nonlinearity as being within an interval of length
0.011 or less if P7(f) ≤ 0.49 and length 0.053 or less if P7(f) ∈ [0.49, 0.5].

Other nonlinearity tests were proposed for reducing the number of eval-
uations needed for the black box function, such as [7, 13] (the latter being
also useful to estimate the algebraic degree of f). The (k+ 1)-st order non-
homomorphicity for k = 3 was used for attacks on actual ciphers in [10]. We
intend to push further the connection between the probability of failing these
tests and the nonlinearity, as well as look at estimating the nonlinearity of
functions of cryptographic interest.

2 Preliminaries

We recall definitions and known results needed for the rest of the paper.
Throughout, n will denote a positive integer. Boolean functions in n

variables are functions f : Fn
2 → F2, where F2,Fn

2 are the binary field,
respectively, the n dimensional vector space over F2. It is well known that
any such function can be uniquely represented in its ANF (Algebraic Normal
Form), i.e. as a polynomial in F2[x1, . . . , xn] of degree at most 1 in each
variable. The total degree of the ANF representation is called the algebraic
degree of f . Functions of algebraic degree at most one are called affine; affine
functions with zero constant term are called linear. We will denote by A
the set of affine functions and by L the set of linear functions in n variables
over F2, if the dimension is understood from the context.

In this paper, like in [1], it will be convenient to use the normalized
version of the Hamming distance and weight. More precisely, we define
the (normalized) Hamming distance and Hamming weight for vectors a =
(a1, . . . , at) and b = (b1, . . . , bt) in Ft

2, as well as the distance of a vector
a ∈ Ft

2 to a set of vectors S ⊆ Ft
2 as:

d(a, b) =
1

t
|{i : 1 ≤ i ≤ t, ai 6= bi}| ,

w(a) =
1

t
|{i : 1 ≤ i ≤ t, ai 6= 0}| , (3)

dS(a) = min
s∈S

d(a, s).

In the literature, the Hamming weight and distance are more often used
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without normalization (i.e. in the definitions above the division by the length
of the vector is not done) but we will explain shortly why normalization
is useful for our purpose. The truth table of a function f is the vector
TT (f) = (f(v0), . . . , f(v2n−1)), where vi are all the elements of Fn

2 in some
fixed order, e.g., lexicographical order. The (normalized) Hamming weight,
denoted by w(f), of a Boolean function f is w(TT (f)) and the distance,
denoted by d(f, g), between two Boolean functions f, g is d(TT (f), TT (g)).

Of particular importance will be the distance of a function f to the set of
affine or of linear functions. The minimum distance to any affine function,
dA(f), is called the (normalized) nonlinearity of f and is a very important
cryptographic indicator. It is easy to see that dA(f) = min(dL(f), dL(f+1)).
Our motivation for using the normalized version of nonlinearity (based on
the normalized version of Hamming distance) is that it allows a meaningful
comparison of the nonlinearity of two functions which might not have the
same number of variables.

The Fourier-Hadamard transform of a function f : Fn
2 → R (the 0/1

values of a Boolean functions are viewed as real numbers for this purpose)
is the function W (f) : Fn

2 → R defined as

W (f)(v) =
1

2n

∑
u∈Fn

2

f(u)(−1)v·u,

where the dot product can be defined as u · v =
∑n

i=1 uivi. Note that
we use a normalized version of the transform here. If f is replaced by its
sign function, f̂ , defined by f̂(u) = (−1)f(u), then W (f̂) is customarily
referred to as the Walsh (or Walsh-Hadamard) transform of f , and the
values W (f̂)(v) for v ∈ Fn

2 are called the Walsh coefficients. We will refer
to the sequence of output values of the Walsh transform (when the input is
ordered lexicographically) as the Walsh spectrum.

We will be using later Parseval’s identity (see [5] for example):∑
v∈Fn

2

(W (f̂)(v))2 = 1, (4)

which holds for any Boolean function f .
It is well-known [5] and easy to see that the Walsh transform of a Boolean

function f expresses its distance to the set of linear functions, and conse-
quently the distance of f to the set of affine functions. Denoting `a(u) = a·u,
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the nonlinearity of f is related to the Walsh transform as follows:

d(f, `a) =
1

2

(
1−W (f̂)(a)

)
,

d(f, `a + 1) =
1

2

(
1 +W (f̂)(a)

)
,

dL(f) =
1

2

(
1−max

v∈Fn
2

W (f̂)(v)

)
,

dA(f) =
1

2

(
1−max

v∈Fn
2

|W (f̂)(v)|
)
.

(5)

Note that 0 ≤ dL(f) ≤ 1
2 . It is known [5] that 0 ≤ dA(f) ≤ 1

2

(
1− 1

2
n
2

)
.

We call a function f : Fn
2 → F2 (n ≥ 2) bent if its nonlinearity is exactly

1
2

(
1− 1

2
n
2

)
(they exist only for even integers n). It is known [5] that f is

bent if and only if the absolute values of all of its Walsh coefficients satisfy
|W (f̂)(v)| = 2−

n
2 .

Definition 1. [14] Let f : Fn
2 → F2 be a Boolean function in n variables

and let k ≤ 2 be an integer. The (k + 1)-st order nonhomomorphicity of f ,
denoted Pk(f), is defined as the probability that the equation f(u1 + · · · +
uk) + f(u1) + · · ·+ f(uk) = 0 does not hold, with the probability taken over
all tuples (u1, . . . , uk) ∈ Fkn

2 i.e.

Pk(f) =
|{(u1, . . . , uk) ∈ Fkn

2 : f(u1 + · · ·+ uk) + f(u1) + · · ·+ f(uk) 6= 0}|
2kn

.

In other words, Pk(f) is the normalised Hamming weight of the function F :
Fkn
2 → F2, F (u1, . . . , uk) = f(u1+· · ·+uk)+f(u1)+· · ·+f(uk). Equivalently,

considering U1, . . . , Uk independent uniformly distributed random variables
in Fn

2 , we can define Pk(f) = P [f(U1 + · · ·+Uk) + f(U1) + · · ·+ f(Uk) 6= 0].

Note that the BLR test corresponds to the particular case of k = 2.

3 Improved bounds on the probability of failure
of existing affinity tests

We consider the test of whether a function is affine by checking whether
f(u1 + · · ·+ uk) + f(u1) + · · ·+ f(uk) = 0, for some fixed odd integer k. We
examine the relationship between the probability Pk(f) of failing this test
and dA(f), the nonlinearity of f . It is well known, and easy to prove, that
f is affine if and only if Pk(f) = 0.
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A lower bound for P3(f) was proven in [1, Lemma 5.1] (with x = dA(f)):

P3(f) ≥ max

(
8x(1− x)

(
1

2
− x
)
, 2x(1− x)

)
=

{
8x(1− x)

(
1
2 − x

)
if x ≤ 1

4

2x(1− x) if x > 1
4 .

(6)

The following lower and upper bounds were given in [14] for k odd (we
reformulated them to use the normalized version):

1

2

(
1− 2n (1− 2 dA(f))k+1

)
≤ Pk(f) ≤ 1

2

(
1− 1

2(k−1)n/2

)
. (7)

We improve on the bounds (7) as follows:

Theorem 2. Let f : Fn
2 → F2 and let k ≥ 2 be an integer. Then:

1

2

(
1− (1− 2x)k−1

)
≤ Pk(f), (8)

where x = dA(f) if k is odd, and x = dL(f) if k is even.
For k odd we have the upper bound Pk(f) ≤ Upperk(dA(f)), where

Upperk(x) =
1

2

(
1− (1− 2x)k+1

)
. (9)

If we allow the bound to also depend on n, we have the improved bound
Pk(f) ≤ Uppern,k(dA(f)), where

Uppern,k(x) =
1

2

(
1− (1− 2x)k+1 − 1

(2n − 1)
k−1
2

(4x(1− x))
k+1
2

)
. (10)

Proof. In [8, Theorem 3.1], [14, Theorem 2] (and, for k ≤ 3, in [1]) the
following expression for Pk is obtained (we reformulate it for the normalized
versions of the Walsh transform and nonhomomorphicity):

Pk(f) =
1

2

1−
∑
u∈Fn

2

(W (f̂)(u))k+1

 , (11)

where f̂(x) = (−1)f(x) and W (f̂) is the Walsh transform of f .
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In order to obtain the lower bound in the statement we need an upper
bound on the sum

∑
u∈Fn

2
(W (f̂)(u))k+1, which we obtain by a technique

similar to the one of [1]:∑
u∈Fn

2

(
W (f̂)(u)

)k+1

≤ max
u∈Fn

2

(
W (f̂)(u)

)k−1 ∑
u∈Fn

2

(W (f̂)(u))2 = max
u∈Fn

2

(
W (f̂)(u)

)k−1
where the last equality uses Parseval’s identity (4). Using (5), we obtain (8)
as follows:

max
u∈Fn

2

(
W (f̂)(u)

)k−1
=


(

maxu∈Fn
2
W (f̂)(u)

)k−1
if k even(

maxu∈Fn
2
|W (f̂)(u)|

)k−1
if k odd

=

{
(1− 2 dL(f))k−1 if k even

(1− 2 dA(f))k−1 if k odd.

When k is odd (so the exponent k+ 1 is even), all the terms in the sum
in (11) are non-negative, so a simple lower bound for this sum is

∑
u∈Fn

2

(
W (f̂)(u)

)k+1

≥ max
u∈Fn

2

(
W (f̂)(u)

)k+1

=

(
max
u∈Fn

2

|W (f̂)(u)|
)k+1

= (1−2 dA(f))k+1,

which gives the upper bound (9). For the bound (10), let u0 ∈ Fn
2 be such

that |W (f̂)(u0)| = maxu∈Fn
2
|W (f̂)(u)|. We have

∑
u∈Fn

2

(
W (f̂)(u)

)k+1
= |W (f̂)(u0)|k+1 +

∑
u∈Fn

2 \{u0}

((
W (f̂)(u)

)2) k+1
2

.

Recall that the weighted power means inequality states that for any integers
m ≥ 1, j ≥ 2 and any positive real numbers a1, . . . , am we have

∑m
i=1

1
ma

j
i ≥(

1
m

∑m
i=1 ai

)j
(see for example [4, Chapter III]). Using this inequality and

Parseval’s identity, we obtain

∑
u∈Fn

2 \{u0}

((
W (f̂)(u)

)2) k+1
2

≥ 2n − 1

(2n − 1)
k+1
2

 ∑
u∈Fn

2 \{u0}

(W (f̂)(u))2

 k+1
2

=
1

(2n − 1)
k−1
2

(
1− |W (f̂)(u0)|2

) k+1
2
.

Substituting |W (f̂)(u0)| = 1− 2 dA(f), we obtain (10).
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Note that for k ≥ 3 odd, the bounds in the theorem above are better
than the bounds (7). The lower bound in (7) is negative when dA(f) <
1
2

(
1− 1

2
n

k+1

)
, so it does not provide any useful information in that range.

When it is positive, it is still always smaller than the lower bound in (8), only

reaching equality when dA(f) attains its maximum value, namely 1
2

(
1− 1

2
n
2

)
.

The upper bound in (7) does not depend on dA(f), whereas the one in (10)

increases continuously from 0 to 1
2

(
1− 1

2(k−1)n/2

)
as dA(f) increases from 0

to 1
2

(
1− 1

2
n
2

)
.

We examine the tightness of the bounds in Theorem 2. The upper
bound (9) cannot be reached (except for the trivial case dA(f) = 0 and
Pk(f) = 0) because Uppern,k(x) < Upperk(x) for 0 < x < 0.5. Note how-
ever that Upperk(x) is the limit of Uppern,k(x), as n → ∞. We found
experimentally functions f for which Pk(f) is very close to the upper bound
Upperk(dA(f)), while dA(f) covers many values throughout the interval
(0, 0.5), see the last graph in the Appendix. We suspect therefore that this
upper bound cannot be improved much (as a bound which is independent
of n).

The examples below present functions for which the upper bound (10)
as well as the lower bound in Theorem 2 are attained.

Example 3. For n even and k odd, consider a bent function in n variables,
for example f(x1, . . . , xn) = x1x2 + x3x4 + · · · + xn−1xn. The nonlinearity
achieves the maximum possible value for a function in n variables, namely

dA(f) = 1
2

(
1− 1

2
n
2

)
. All the Walsh coefficients of a bent function are equal

to ± 1

2
n
2

, with 2n−1 + 2
n
2
−1 having one sign and 2n−1 − 2

n
2
−1 the opposite

sign. Using (11) we can compute

Pk(f) =
1

2

(
1− 2n

(
1

2
n
2

)k+1
)

=
1

2

(
1−

(
1

2
n
2

)k−1
)

=
1

2

(
1− (1− 2 dA(f))k−1

)
.

Note that in this case

1

2

(
1− (1− 2 dA(f))k−1

)
= Pk(f) = Uppern,k(dA(f))

so both the lower bound (8) and the upper bound (10) are attained.
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Example 4. Consider the function f(x1, . . . , xn) = x1x2 · · ·xn with n ≥ 2.
The Walsh coefficients can be easily computed directly from the definition:

W (f̂)(u1, . . . , un) =

{
1− 1

2n−1 if (u1, . . . , un) = (0, . . . , 0)
1

2n−1 (−1)1+
∑n

i=1 ui otherwise.

The nonlinearity is dA(f) = 1
2n . Using (11) we have for k odd

Pk(f) =
1

2

(
1−

(
1− 1

2n−1

)k+1

− (2n − 1)

(
1

2n−1

)k+1
)

=
1

2

(
1− (2n−1 − 1)k+1 + (2n − 1)

2(n−1)(k+1)

)
.

One can verify that in this case Pk(f) = Upperk,n(dA(f)) so the upper
bound (10) is attained.

Example 5. Consider an arbitrary function in m variables, f ′(x1, . . . , xm).
We can view it as a function in a larger number n of variables for any n ≥ m
by defining f(x1, . . . , xn) = f ′(x1, . . . , xm). We show that f and f ′ have the
same nonlinearity and Pk(f) = Pk(f ′). To this end, we examine the Walsh
transform. Denoting x′ = (x1, . . . , xm) and x′′ = (xm+1, . . . , xn), as well as,
y′ = (y1, . . . , ym) and y′′ = (ym+1, . . . , yn), we have

W (f̂)(x1, . . . , xn) =
1

2n

∑
(y′,y′′)∈Fn

2

(−1)f(y
′,y′′)+x′·y′+x′′·y′′

=

 1

2n−m

∑
y′′∈Fn−m

2

(−1)x
′′·y′′

 1

2m

∑
y′∈Fm

2

(−1)f
′(y′)+x′·y′


= W (f̂ ′)(x′)

1

2n−m

∑
y′′∈Fn−m

2

(−1)x
′′·y′′

=

{
W (f̂ ′)(x′) if x′′ = 0

0 otherwise,

(12)

by using [5, Lemma 2.9]. Therefore we conclude that dA(f) = dA(f ′) us-
ing (5); also Pk(f) = Pk(f ′) using (11).

We consider now the function f(x1, . . . , xn) = x1x2+x3x4+· · ·+xm−1xm
with m even and m ≤ n and let k be odd. Using the argument above
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and the computation in Example 3 we know that dA(f) = 1
2

(
1− 1

2
m
2

)
and

Pk(f) = 1
2

(
1− (1− 2 dA(f))k−1

)
, so this function reaches the lower bound

in Theorem 2, as well.

Summarising the examples above, for each fixed number of variables n
and each odd k, the upper bound Uppern,k in Theorem 2 is reached at

nonlinearity 1
2n (which is the lowest possible non-zero nonlinearity) and if

n is even, also at 1
2

(
1− 1

2
n
2

)
(which is the highest possible nonlinearity).

The lower bound in Theorem 2 is reached for nonlinearities 1
2n as well as all

nonlinearities of the form 1
2

(
1− 1

2
m
2

)
for m even, m ≤ n, i.e. 1

4 ,
3
8 ,

7
16 , . . .,

for m = 2, 4, 6, . . ., respectively. In between these values, the lower bound
might not be tight. Indeed for dA(f) < 1

4 , Equation (6) provides a better
lower bound for k = 3.

We conjectured in [11] that the lower bound (6) can be generalized to
arbitrary odd k ≥ 3, as follows:

Conjecture 6 ([11]). For any odd k ≥ 3, putting x = dA(f), we have

Pk(f) ≥ 1

2
max

(
1− (1− 2x)k+1 − 2k+1xk(1− x), 1− (1− 2x)k−1

)
=

{
1
2

(
1− (1− 2x)k+1 − 2k+1xk(1− x)

)
if x ≤ 1

4
1
2

(
1− (1− 2x)k−1

)
if x > 1

4 .

(13)

In the next section we will prove this conjecture.

4 Reformulated conjecture and its proof

Theorem 7. Let f be a Boolean function in n variables, k ≥ 2 an integer
and ` a linear function in n variables if k is even or an affine function if k
is odd. Then

Pk(f) =
1

2

(
1− (1− 2d(f, `))k+1 + (−1)k+12k+1

(
d(f, `)k+1 − sl(f, `)

))
,

(14)
where for any Boolean function h in n variables sl(f, h) (called the “slack”
in [1]) is defined as

sl(f, h) = P

(
f(u1) 6= h(u1), . . . , f(uk) 6= h(uk), f

(
k∑

i=1

ui

)
6= h

(
k∑

i=1

ui

))
with the probability taken over all u1, . . . , uk ∈ Fn

2 .

12



Proof. The first part of the proof follows the lines of [1, Lemma 2.3]. Denote
x = d(f, `). Let u1, . . . , uk ∈ Fn

2 and denote uk+1 =
∑k

i=1 ui. The function f
fails the test f(u1+· · ·+uk)+f(u1)+· · ·+f(uk) = 0 exactly for those values
u1, . . . , uk for which an odd number of the values f(u1)−`(u1), . . . , f(uk+1)−
`(uk+1) are equal to 1 (note that ` always passes the test). Denote the
probability that the first j of these k + 1 values are equal to 1 and the rest
are equal to 0, i.e.

Aj := P (g(u1) = 1, . . . , g(uj) = 1, g(uj+1) = 0, . . . , g(uk+1) = 0) ,

where, for ease of notation, we denoted g = f − `, and the probability is
taken over all the 2kn elements of the set V = {(u1, . . . , uk+1) ∈ (Fn

2 )k+1 :∑k+1
i=1 ui = 0}. For any subset I ⊆ {1, . . . , k + 1} of cardinality j, Aj also

equals the probability (again over all (u1, . . . , uk+1) ∈ V ) that g(ui) = 1 for
all i ∈ I and g(ui) = 0 for all i ∈ {1, . . . , k + 1} \ I. Therefore, taking into
account that there are

(
k+1
j

)
subsets of cardinality j, we obtain

Pk(f) =
∑

1≤j≤k+1
j odd

(
k + 1

j

)
Aj .

For each fixed i, the probability P (f(ui)− `(ui) = 1) over all ui ∈ Fn
2 equals

x = d(f, `). For any j with 0 ≤ j ≤ k we have

Aj = P (g(u1) = 1, . . . , g(uj) = 1, g(uj+1) = 0, . . . , g(uk) = 0)

−P (g(u1) = 1, . . . , g(uj) = 1, g(uj+1) = 0, . . . , g(uk) = 0, g(uk+1) = 1)

= xj(1− x)k−j −Aj+1 = . . .

=
k∑

i=j

(−1)i−jxi(1− x)k−i + (−1)k−j+1Ak+1.

We obtain

Pk(f) =
∑

1≤j≤k+1
j odd

(
k + 1

j

) k∑
i=j

(−1)i−jxi(1− x)k−i

+Ak+1

∑
1≤j≤k+1

j odd

(−1)k−j+1

(
k + 1

j

)
.

(15)

In the second part of the proof we will obtain a closed form for the
formula above. Firstly, let us process the inner sum in (15); we replace

13



the index of summation by u = i− j and then use the well-known identity
an − bn = (a− b)(an−1 + an−2b+ · · ·+ bn−1):

k∑
i=j

(−1)i−jxi(1− x)k−i =

k−j∑
u=0

(−1)uxu+j(1− x)k−j−u

= xj
k−j∑
u=0

(−x)u(1− x)k−j−u

= xj
(1− x)k+1−j − (−x)k+1−j

(1− x)− (−x)

= xj(1− x)k+1−j − (−1)k+1−jxk+1.

Substituting this in (15) and since (−1)k+1−j = −(−1)k+1, when j is odd,
we obtain

Pk(f) =
∑

1≤j≤k+1
j odd

(
k + 1

j

)
xj(1−x)k+1−j +(−1)k+1(xk+1−Ak+1)

∑
1≤j≤k+1

j odd

(
k + 1

j

)
.

(16)

We note that the first sum consists of alternating terms of a binomial
expansion. The following result is therefore useful:∑

0≤j≤m
j odd

(
m

j

)
ajbm−j =

1

2
((a+ b)m − (−a+ b)m) , (17)

where m ≥ 1 is an integer and a, b indeterminates. This is a known result,
but for a quick proof, we denote by A and B the following quantities

A =
∑

0≤j≤m
j odd

(
m

j

)
ajbm−j = −

∑
0≤j≤m
j odd

(
m

j

)
(−a)jbm−j ,

B =
∑

0≤j≤m
j even

(
m

j

)
ajbm−j =

∑
0≤j≤m
j even

(
m

j

)
(−a)jbm−j ,

and use the fact that A + B = (a + b)m and −A + B = (−a + b)m. For
a = b = 1, Equation (17) becomes∑

0≤j≤m
j odd

(
m

j

)
= 2m−1. (18)
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Using Equations (17), (18) and Ak+1 = sl(f, `) in (16), we obtain (14):

Pk(f) =
1

2

(
(x+ 1− x)k+1 − (−x+ 1− x)k+1

)
+ (−1)k+12k(xk+1 −Ak+1)

=
1

2

(
1− (1− 2x)k+1 + (−1)k+12k+1(xk+1 − sl(f, `))

)
.

This concludes the proof.

We are now ready to prove Conjecture 6; we will, in fact, prove a more
general result that also includes the case of k even.

Corollary 8. For odd k we have Pk(f) ≥ Lowerk(dA(f)) and for even k we
have Pk(f) ≥ Lowerk(dL(f)) where

Lowerk(x) =

{
1
2 max

(
1− (1− 2x)k+1 − 2k+1xk(1− x), 1− (1− 2x)k−1

)
if k odd

1
2 max

((
1− (1− 2x)k+1 − 2k+1xk+1

)
, 1− (1− 2x)k−1

)
if k even.

In more detail, for k odd we have

Lowerk(x) =

{
1
2

(
1− (1− 2x)k+1 − 2k+1xk(1− x)

)
if x < 1

4
1
2

(
1− (1− 2x)k−1

)
if x ≥ 1

4 .

Proof. Put Hk(x) = 1
2

(
1− (1− 2x)k−1

)
and

Gk(x) =

{
1
2

(
1− (1− 2x)k+1 − 2k+1xk(1− x)

)
if k odd

1
2

((
1− (1− 2x)k+1 − 2k+1xk+1

))
if k even.

The Hk(x) component of the lower bound was proven in Theorem 2, so we
concentrate on the Gk(x) component.

For k even, Theorem 7 gives

Pk(f) =
1

2

(
1− (1− 2d(f, `))k+1 − 2k+1d(f, `)k+1 + 2k+1sl(f, `)

)
, (19)

for any linear function `. Using the fact that sl(f, `) ≥ 0 and choosing `
to be a linear function whose distance to f is minimal, we obtain Pk(f) ≥
Gk(dL(f)) as required.

For any function h (affine or not) we have

sl(f, h) ≤ P (f(u1) 6= h(u1), . . . , f(uk) 6= h(uk)) = d(f, h)k
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with the probability taken over all tuples (u1, . . . , uk) ∈ (Fn
2 )k. Combining

this inequality with Theorem 7 for k odd gives

Pk(f) ≥ 1

2

(
1− (1− 2d(f, `))k+1 + 2k+1

(
d(f, `)k+1 − d(f, `)k

))
, (20)

for any affine function `. Choosing ` to be an affine function whose distance
to f is minimal, we obtain Pk(f) ≥ Gk(dA(f)) as required.

Surely, we can ask ourselves whether it is possible that another affine/linear
function (for k odd/even) say `1, which is further from f , i.e. d(f, `1) >
d(f, `0), could yield a better lower bound, i.e. Gk(d(f, `1)) > Gk(d(f, `0)).
This is not the case, and we give a sketch of the proof for k odd. Firstly,
the reader can verify that Gk(x) ≥ 0 on [0, 0.5], Gk(x) ≤ 0 on [0.5, 1], and
that on the interval [0.25, 0.5], the function Gk is monotonically decreasing.
Therefore, when d(f, `0) ≥ 0.25, keeping in mind that 0 ≤ d(f, `0) < 0.5
and d(f, `0) < d(f, `1) ≤ 1, we have indeed Gk(d(f, `1)) ≤ Gk(d(f, `0)).
Secondly, when d(f, `0) < 0.25, the triangle inequality gives

d(f, `1) ≥ d(`1, `0)− d(f, `0) ≥ 0.5− d(f, `0) ≥ 0.25.

Therefore Gk(d(f, `1)) ≤ Gk(0.5−d(f, `0)), by the same argument as above.
To show that Gk(0.5− d(f, `0)) ≤ Gk(d(f, `0)) we compute

Gk(x)−Gk(0.5− x) = 2x(1− 2x)((1− 2x)k−1 − (2x)k−1),

which is greater than or equal to zero on [0, 0.25].
Finally, the more explicit expression (19) for k odd is obtained by veri-

fying that Gk(x) > Hk(x) when x ∈
[
0, 14
)
, Gk(x) < Hk(x) when x ∈

[
1
4 ,

1
2

]
,

and Gk(14) = Hk(14). A similar situation happens for k even, but the inter-
section of the two functions does not occur at 1

4 , but at a point whose value
depends on k, and is in the interval

[
1
4 ,

1
3

]
.

The new lower bound in Corollary 8 is attained for k odd by some func-
tions with nonlinearity in the range 0 < dA(f) < 1

4 and for k even by some
functions with 0 < dL(f) < 1

4 :

Example 9. Let f(x1, x2, . . . , xn) = x1x2 · · ·xm with 3 ≤ m ≤ n. Using the
computations in Example 4 and the same arguments as in Example 5 we see
that dA(f) = dA(L) = 1

2m and the Walsh spectrum consists of one element
equal to 1− 1

2m−1 , 2m−1 elements equal to 1
2m−1 , and 2m−1−1 elements equal

to − 1
2m−1 , the remaining elements being zero.
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For k odd, like in Example 4 we compute

Pk(f) =
1

2

(
1− (2m−1 − 1)k+1 + (2m − 1)

2(m−1)(k+1)

)
.

On the other hand, computing Lowerk(x) defined in Corollary 8 for x =
dA(f) = 1

2m we obtain

Lowerk(dA(f)) =
1

2

(
1−

(
1− 1

2m−1

)k+1

− 2k+1 1

2mk

(
1− 1

2m

))

=
1

2

(
1− (2m−1 − 1)k+1 + (2m − 1)

2(m−1)(k+1)

)
,

so the lower bound is attained.
For k even we compute using (11)

Pk(f) =
1

2

(
1−

(
1− 1

2m−1

)k+1

− 2m−1
(

1

2m−1

)k+1

+ (2m−1 − 1)

(
1

2m−1

)k+1
)

=
1

2

(
1−

(
1− 1

2m−1

)k+1

−
(

1

2m−1

)k+1
)

= Lowerk

(
1

2m

)
,

so again the lower bound is attained.
This shows that for each fixed n our lower bound is attained at nonlin-

earity (for k odd) or dL(f) (for k even) equal to 1
8 ,

1
16 ,

1
32 , . . . ,

1
2n , but in

between these values, the bound might not be tight.

While not the purpose of this paper, we get an interesting consequence
of the previous theorem, namely an upper bound for the moments of the
Walsh coefficients.

Corollary 10. For any integer k ≥ 2, the (k+ 1)-st moments of the Walsh
transform satisfy∑

u∈Fn
2

(W (f̂)(u))k+1 ≤

{
min(yk+1 + (1− y)k(1 + y), yk−1) if k odd

min(yk+1 + (1− y)k+1, yk−1) if k even,

where y = maxu∈Fn
2
|W (f̂)(u)| for k odd and y = maxu∈Fn

2
(W (f̂)(u)) for k

even.

Proof. The claim follows by using (5), (11) and the previous corollary.
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5 Affinity tests using linearity tests and bounds
on the probability of failure

In this section we focus on the test f(u1 + · · ·+uk)+f(u1)+ · · ·+f(uk) = 0
for k even, and on the probability Pk(f) of failing this test. It is shown in [14]
that f is linear if and only if Pk(f) = 0; moreover, f is affine if and only
if Pk(f) ∈ {0, 1}. The test can therefore be used as a probabilistic affinity
test as follows: run the test several times on f , and if f always passes the
test (suggesting a probability of failure Pk(f) = 0), or f always fails the test
(suggesting that Pk(f) = 1), then declare f to be affine. Note that f + 1
passes the linearity test above for some given tuples if and only if f fails the
test for those same tuples; therefore we have Pk(f+1) = 1−Pk(f). Another
way of looking at this affinity test is that we are testing both f and f+1 for
linearity, and if one of them passes all the tests and is declared linear then
f can be declared affine. Any other linearity test could be used this way as
an affinity test.

When f is not affine however (and therefore neither f nor f + 1 are
linear), there are to our knowledge no results regarding the relationship of
the probability Pk(f) of failing the test (for k even) and the nonlinearity
dA(f) of f ; the existing lower and upper bounds on Pk(f) depend on dA(f),
the distance of f to the set of linear functions. Since this affinity test is
equivalent to testing both f and f + 1 for linearity, it seems natural to
consider both Pk(f) and Pk(f + 1) when examining a connection to dA(f).
We define

P k(f) := min(Pk(f), Pk(f + 1)) = min(Pk(f), 1− Pk(f)).

and study its relation to dA(f). Further motivation for this choice is given
in Remark 12. For k = 2, we will prove lower and upper bounds for P 2(f)
in terms of the nonlinearity of f .

In Bellare et al. [1] lower and upper bounds were given for P2(f) in terms
of dL(f). Namely, it was proven that

Lower2(dL(f)) ≤ P2(f) ≤ Upper2(dL(f))), (21)

where Lower2,Upper2 : [0, 12 ]→ R. The function Lower2(x) is defined as

Lower2(x) =


3x− 6x2 if 0 ≤ x ≤ 5

16
45
128 if 5

16 ≤ x ≤
45
128

x if 45
128 ≤ x ≤

1
2

(22)
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(observe that 3
16 ,

5
16 are the two solutions of the equation 3x − 6x2 = 45

128 ,
and so, since 45

128 > 5
16 , then the value Lower2(x) = 45

128 is greater than
3x − 6x2 on the interval 5

16 ≤ x ≤ 45
128). The function Upper2(x) is defined

as Upper2(0) = 0 and for x > 0

Upper2(x) = 3x− 6x2 + 22blog2 xc+2 + 12
(
x− 2blog2 xc

)2
. (23)

We now prove bounds for P 2(f) in terms of dA(f), the distance to the
closest affine function, which is the natural parameter to consider when
testing if a function is affine. Note that in the following theorem, although
the bounds look similar to the bounds in (21) above, there is a subtle and
important difference: the bounds are now a function of dA(f), the distance
to the closest affine function, whereas in (21) the bounds are expressed in
terms of dL(f), the distance to the closest linear function.

Theorem 11. Let P 2(f) = min(P2(f), 1−P2(f)), where P2(f) is the prob-
ability of failure of the BLR test. We have

Lower2 (dA(f)) ≤ P 2(f) ≤ min

(
1

2
,Upper2(dA(f))

)
, (24)

where dA(f) is the nonlinearity of f and Lower2(x), Upper2(x) are as de-
fined above in (22), respectively, (23).

Proof. We know that dA(f) = min(dL(f), dL(f + 1)). We can assume,
without loss of generality, that dL(f) ≤ dL(f + 1) (otherwise, we can just
replace f by f + 1, and P 2(f) is unchanged) and therefore dA(f) = dL(f).

First, let us examine the function Upper2(x) more closely. If 1
4 ≤ x <

1
2

then blog2 xc = −2 so a simple computation shows that Upper2(x) = 6x2 −
3x+ 1 in this case. If 1

8 ≤ x <
1
4 then blog2 xc = −3 so Upper2(x) = 6x2 + 1

4
in this case. One can check that the function Upper2(x) is monotonically
increasing on the domain

[
0, 12
]
. (It is continuous, and the derivative exists

at all points except those of the form x = 1
2m for some integer m ≥ 1. The

derivative is greater than zero at all points where it exists.) The equation
Upper2(x) = 1

2 has only one solution in the interval
[
0, 12
]
, namely x =

1
2
√
6
∈
[
1
8 ,

1
4

)
. Therefore Upper2(x) ≤ 1

2 if and only if x ≤ 1
2
√
6

(see the first

graph in the Appendix).
For the upper bound, from (21) we have

P2(f) ≤ Upper2 (dL(f)) ,

1− P2(f) = P2(f + 1) ≤ Upper2 (dL(f + 1)) .
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Therefore, using the fact that Upper2 is monotonic and the assumption
dL(f) ≤ dL(f + 1) we obtain

P 2(f) = min(P2(f), 1− P2(f))

≤ min(Upper2(dL(f)),Upper2(dL(f + 1)))

= Upper2(dL(f)) = Upper2(dA(f)).

The bound P 2(f) ≤ 1
2 is immediate from P 2(f) = min(P2(f), 1− P2(f)).

Now let us deal with the lower bound. If P2(f) ≤ 1 − P2(f) (in other
words, P2(f) ≤ 1

2), then P 2(f) = P2(f) ≥ Lower2(dL(f)) = Lower2(dA(f))
and we are done. Let us assume P2(f) > 1 − P2(f) i.e. P2(f) > 1

2 .
From the behaviour of Upper2(x) discussed above, we see that this can
only happen when dL(f) ≥ 1

2
√
6
. We have to prove that in this case

1− P2(f) ≥ Lower2(dL(f)).
Let us first consider the case 1

2
√
6
≤ dL(f) ≤ 1

4 . We have

P2(f) ≤ Upper2 (dL(f)) = 6 (dL(f))2 +
1

4
, (25)

therefore

1− P2(f) ≥ 1− 6 (dL(f))2 − 1

4
=

3

4
− 6 (dL(f))2

≥ 3 dL(f)− 6 (dL(f))2 = Lower2 (dL(f)) ,

where the last inequality uses the fact that dL(f) ≤ 1
4 .

Next assume that 1
4 < dA(f). Consider first the subcase 1

4 ≤ dA(f) < 5
16 .

We have:
P2(f) ≤ Upper2 (dL(f))

and therefore using the fact that Upper2(x) = 6x2 − 3x+ 1 when x ≥ 1
4 we

have

1− P2(f) ≥ 1−Upper2 (dL(f)) = 3 dL(f)− 6 (dL(f))2 = Lower2 (dL(f)) .
(26)

Finally, let us consider the subcase dA(f) ≥ 5
16 . We have

1− P2(f) = P2(f + 1) ≥ Lower2 (dL(f + 1)) ≥ Lower2 (dL(f)) , (27)

with the last inequality based on the fact that 5
16 < dL(f) ≤ dL(f + 1) and

Lower2(x) is monotonically increasing when the argument is above 5
16 .
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Remark 12. One might wonder if the situation where dL(f) ≤ dL(f + 1)
and P2(f) > P2(f +1), which is the non-straightforward case in the proof of
Theorem 11, does even happen in practice. Experimentally, we did find such
functions, but they seemed to be relatively rare. For example, for n = 6 and
n = 7, we generated several random functions for each possible nonlinearity
and we only observed that behaviour in a proportion of less than 0.06 of
them. Therefore it is a reasonable heuristic, but only a heuristic, to assume
that whichever of the functions f and f + 1 achieves min(P2(f), P2(f + 1))
also achieves min(dL(f), dL(f + 1)). It also justifies our choice to examine
min(P2(f), P2(f + 1)) for its correlation to dA(f) = min(dL(f),dL(f + 1)).

As a byproduct of the proof of Theorem 11, we can also obtain bounds
on how large the difference P2(f)− P2(f + 1) can be when dL(f) ≤ dL(f +
1). Namely, denoting x = dL(f), we have the following cases. When x ∈[
0, 1

2
√
6

]
we cannot have P2(f) > P2(f + 1). When x ∈

(
1

2
√
6
, 12

]
both

P2(f) ≤ P2(f+1) and P2(f) > P2(f+1) are possible. If the latter happens,

when x ∈
(

1
2
√
6
, 14

]
we obtain from (25) that P2(f)− P2(f + 1) = 2P2(f)−

1 ≤ 12x2 − 1
2 ≤

1
4 ; when x ∈

(
1
4 ,

1
2

]
we obtain from (26) and (27) that

P2(f)− P2(f + 1) = 2P2(f)− 1 ≤ 1− 2Lower2(x) ≤ 38
128 ≈ 0.296.

By contrast, for arbitrary functions f, g such that dL(f) < dL(g) but
P2(f) > P2(g), the difference P2(f) − P2(g) can be larger, approaching
0.5. For example, for any integer t ≥ 2 consider the functions f(x) =
1+x1x2 · · ·xt and g(x) = x1x2+x3x4+. . .+x2t−1x2t. Using the calculations
in Examples 3, 4, 5 and 9, we have that dL(f) = 1

2 −
1
2t <

1
2 −

1
2t+1 = dL(g),

and P2(f) > P2(g) with a difference

P2(f)− P2(g) =
1

2
− 3

2t
+

13

22t+1
−→
t→∞

1

2
.

An improvement of the lower bound for the BLR linearity test (21) is
given in [9]. Namely, it is shown that P2(f) ≥ H(dL(f)), where

H(x) =

{
3x− 6x2 if 0 ≤ x < 5

16

max
(

45
128 ,min(g1(x), g2(x))

)
if 5

16 ≤ x ≤
1
2 ,

(28)

where for any constant 0 < c ≤ 1
2 , g1, g2 are defined as

g1(x) = x+ cx(1− 2x)4,

g2(x) = x+ 212
(

1− 5

4
c+

1

8
c2
)
x3(1− 2x)12.

21



Note that this is indeed an improved lower bound as Lower2(x) ≤ H(x) and
the inequality is strict on the interval

(
45
128 ,

1
2

)
. The analogue of Theorem 11

holds for this improved bound as well.

Proposition 13. With the notations in Theorem 11, we have P 2(f) ≥
H (dA(f)), where H(x) is as defined above in (28).

Proof. Examining the proof of Theorem 11 we see that for the lower bound in
the interval

[
5
16 ,

1
2

]
the only property that is used is that it is monotonically

increasing. It suffices therefore to show that min(g1, g2) is monotonically
increasing. We compute g′1 and g′2, the derivatives of g1 and g2 and show
that they are positive on the specified domain. Namely, 0 < c ≤ 1

2 implies
0 < 1− 5

4c+ 1
8c

2 ≤ 1; further, 5
16 ≤ x ≤ 1

2 implies 1− 2x ≤ 3
8 , 10x− 1 ≤ 4

and x(1− 2x) ≤ 15
27

. Therefore,

g′1(x) = 1− c(1− 2x)3(10x− 1) ≥ 1− 1

2
· 33

83
· 4 = 1− 33

28
> 0,

g′2(x) = 1− 3 · 212
(

1− 5

4
c+

1

8
c2
)
x2(1− 2x)11(10x− 1)

≥ 1− 3 · 212 · 152

214
· 39

89
· 4 = 1− 312 · 52

227
> 0.

This concludes the proof.

6 Estimating nonlinearity

The above affinity tests can be used to estimate the nonlinearity of a Boolean
function. The probability of failing a test can be estimated by running
the test several times and using statistical methods such as the binomial
proportion confidence interval (see [14]). The bounds will then allow to give
an interval for the value of the nonlinearity as per (1) and (2). For simplicity,
we will assume that we have obtained an exact value for Pk(f) (in practice
we will actually obtain a confidence interval). We will examine each test in
turn. The graphs in the Appendix will aid the discussion.

We first look at the affine test based on the BLR test, as described in
Section 5. The first graph in the Appendix displays the lower and upper

bound described in Theorem 11. Thus, for values of 0 ≤ P 2(f) < y
(2)
1 =

45
128 = 0.3515625 we can estimate the nonlinearity with good precision as
being in the interval dA(f) ∈

[
Upper2

−1(P 2(f)),Lower2
−1(P 2(f))

]
. The

length of this interval increases with P 2(f) to a length of approximately
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0.058. For P 2(f) = 45
128 we get

dA(f) ∈
[
Upper2

−1
(

45

128

)
,

3

16

]
∪
[

5

16
,

45

128

]
.

For 45
128 < P 2(f) < 1

4 , Lower2
−1(P 2(f)) = {α(2)(P 2(f)), β(2)(P 2(f)), P 2(f)},

where 0 < α(2)(y) ≤ β(2)(y) < 5
16 are the two roots of the equation

3x− 6x2 = y in this domain. We obtain two disjoint intervals where dA(f)
might be:

dA(f) ∈
[
Upper2

−1(P 2(f)), α(2)(P 2(f))
]
∪
[
β(2)(P 2(f)), P 2(f)

]
.

Finally, for P 2(f) ≥ 1
4 , the interval for dA(f) is

[
Upper2

−1(P 2(f)), P 2(f)
]
.

The estimate for dA(f) becomes less and less precise (the interval length
increases) as P 2(f) increases. When P 2(f) reaches 1

2 , we obtain dA(f) ∈[
1

2
√
6
, 12

)
, an interval of length approximately 0.295.

Next we look at the nonhomomorphicity test f(u1 + · · ·+ uk) + f(u1) +
· · ·+f(uk) = 0 with odd k ≥ 3. We use the upper bound Upperk described in
Theorem 2 and the lower bound Lowerk described in Corollary 8, illustrated
for k = 3, 5 in the second and third graph in the Appendix.

As x increases in the interval [0.0.5], Upperk(x) increases, whereas Lowerk(x)

first increases from 0 to a local maximum y
(k)
2 , then decreases to a value of

y
(k)
1 = 1

2

(
1− 1

2k−1

)
(reached for x = 1

4) and increases again to 0.5. Conse-

quently, we have three cases. When 0 ≤ Pk(f) < y
(k)
1 we have that

dA(f) ∈
[

1

2

(
1− k+1

√
1− 2Pk(f)

)
, α(k)(Pk(f))

]
,

where for each 0 ≤ y ≤ 0.5 we denote by 0 < α(k)(y) ≤ β(k)(y) < 1
2 the two

roots of the equation 1
2

(
1− (1− 2x)k+1 − 2k+1xk(1− x)

)
= y. The length

of this interval increases as Pk(f) increases from 0 to y
(k)
1 (for illustration, it

increases to a value of 0.028, 0.016 and 0.011 for k = 3, 5 and 7, respectively).

When y = Pk(f) ∈ [y
(k)
1 , y

(k)
2 ], we have that

dA(f) ∈
[

1

2

(
1− k+1

√
1− 2y

)
, α(k)(y)

]
∪
[
β(k)(y),

1

2

(
1− k−1

√
1− 2y

)]
.

Finally, for y
(k)
2 < Pk(f) ≤ 0.5, we have

dA(f) ∈
[

1

2

(
1− k+1

√
1− 2Pk(f)

)
,
1

2

(
1− k−1

√
1− 2Pk(f)

)]
. (29)
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Note that the less tight bounds (7) from [14] would give the considerably
less accurate estimate

dA(f) ∈

[
0,

1

2

(
1− k+1

√
1− 2Pk(f)

2n

)]
.

The length of the interval produced by our estimate (29) is

1

2

(
k+1
√

1− 2Pk(f)− k−1
√

1− 2Pk(f)
)
.

This quantity has a unimodal behavior: the length increases as a function
of Pk(f), peaking at a value of

1

2

((
k − 1

k + 1

) k−1
2

−
(
k − 1

k + 1

) k+1
2

)
,

achieved when

Pk(f) =
1

2

1−
(
k − 1

k + 1

) k2−1
2

 ,

and then decreases to 0, when Pk(f) reaches 0.5. For example, if k = 3, 5, 7,
the length of the interval peaks at a value of 0.125, 0.0741 and 0.05273,
respectively (achieved when Pk(f) = 0.469, 0.496 and 0.4995, respectively).
The maximum length of the interval is achieved when Pk(f) is quite close
to 0.5; the larger the value of k, the smaller the maximum length of the
interval, that is, the more precisely we can estimate the nonlinearity.

We summarize these results in Table 1, which contains, for different
values of k, the maximum length of the interval obtained when estimating
the nonlinearity. The length is displayed firstly, for low values of Pk(f),

namely the values in the interval [0, y
(k)
1 ] discussed above. Secondly, the

last column displays the maximum length of the interval for the remaining
(higher) values of Pk(f).
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k Length of interval for dA Length of interval for dA
when Pk is low when Pk is high

2 ≤ 0.058 ≤ 0.295

P 2 ≤ 0.3515625 0.3515625 ≤ P 2 ≤ 0.5

3 ≤ 0.028 ≤ 0.125
P3 ≤ 0.375 0.375 ≤ P3 ≤ 0.5

5 ≤ 0.016 ≤ 0.0741
P5 ≤ 0.46875 0.46875 ≤ P5 ≤ 0.5

7 ≤ 0.011 ≤ 0.05273
P7 ≤ 0.492188 0.492188 ≤ P7 ≤ 0.5

Table 1: Precision of estimating the nonlinearity

We also present in Table 2 the estimate of the nonlinearity dA that
would be obtained by this method for a few examples of functions, and
compare it with the true value of the nonlinearity. The examples in this
table are the ones in Example 5, f(x1, . . . , xn) = x1x2 + · · · + xm−1xm
with m = 2, 4, 6, 8 and n ≥ m and the functions in Example 9 of the type
f(x1, . . . , xn) = x1x2 · · ·xm with m = 3, 4, 5, 6 and n ≥ m. We observe that
for all these functions, the true value of the nonlinearity is at the top end of
the estimated interval.

We also examined experimentally random functions in up to 9 variables
(see the fourth figure in the Appendix), plotting the probability of failure
P3(f) as a function of the nonlinearity dA(f). To obtain data for each
possible value of the nonlinearity we started by randomly generating several
functions for each possible weight lower than 0.5. We then computed their
nonlinearity (for weights lower than 0.25 it is equal to the weight of the
function, as the function is closer to the all-zero function than to any other
affine function; for higher weights, the nonlinearity can be different from the
weight, but many functions will have a nonlinearity close to their weight).
We noticed that for functions in 7 or more variables most of the functions
in our data have probability P3 of failing the test close to the upper bound
for P3. This translates to the true value of the nonlinearity being at the low
end of the estimated interval. We observed a similar situation for k = 5, 7.
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Function dA k = 3, estimated dA k = 5, estimated dA k = 7, estimated dA
x1x2

1
4

[
1
4
− 0.10355, 1

4

] [
1
4
− 0.06498, 1

4

] [
1
4
− 0.0473, 1

4

]
x1x2 + x3x4

3
8

[
3
8
− 0.125, 3

8

] [
3
8
− 0.07343, 3

8

] [
3
8
− 0.05178, 3

8

]
x1x2 + x3x4

7
16

[
7
16

− 0.11428, 7
16

] [
7
16

− 0.06250, 7
16

] [
7
16

− 0.04261, 7
16

]
+x5x6

x1x2 + x3x4
31
32

[
7
16

− 0.09375, 7
16

] [
7
16

− 0.04750, 7
16

] [
7
16

− 0.03125, 7
16

]
+x5x6 + x7x8

x1x2x3
1
8

[
1
8
− 7.85 · 10−3, 1

8

] [
1
8
− 5.98 · 10−4, 1

8

] [
1
8
− 5.00 · 10−5, 1

8

]
x1x2x3x4

1
16

[
1
16

− 6.82 · 10−4, 1
16

] [
1
16

− 9.30 · 10−6, 1
16

] [
1
16

− 1.42 · 10−7, 1
16

]
x1 · · ·x5

1
32

[
1
32

− 7.17 · 10−5, 1
32

] [
1
32

− 2.13 · 10−7, 1
32

] [
1
32

− 7.09 · 10−10, 1
32

]
x1 · · ·x6

1
64

[
1
64

− 8.26 · 10−6, 1
64

] [
1
64

− 5.73 · 10−9, 1
64

] [
1
64

− 4.47 · 10−12, 1
64

]
Table 2: Examples of estimating the nonlinearity

To conclude this section, we note that each test we considered is quite
accurate in estimating nonlinearity when the probability of failing the test
is small (and consequently the nonlinearity of the function is small), but the
accuracy decreases as the probability of failing the test increases. If we were
to apply different tests to the same function, we note that the estimated in-
terval for the nonlinearity is least accurate when using the affinity test based
on the BLR test. The tests based on (k + 1)-st order nonhomomorphicity
with k odd have better accuracy, and this accuracy improves as k increases.
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