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Abstract

In this paper, we give a sharp estimate of a trigonometric sum which has several applications
in cryptography and sequence theory. Using this estimate, we deduce new lower bounds on
the nonlinearity of Carlet-Feng function, which has very good cryptographic properties with
its nonlinearity bound being improved in numerous papers, as well as the function proposed
by Tang—Carlet-Tang.
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1 Introduction

To resist the main known attacks, Boolean functions used in stream ciphers should be bal-
anced, have high algebraic degree, high algebraic immunity, high nonlinearity and good
immunity to fast algebraic attacks. It is known that constructing Boolean functions satisfying
all these criteria is not an easy task.

Many classes of Boolean functions with optimum algebraic immunity had been introduced
[2,9,12,13,24,25,30,32]. However, the nonlinearity of these functions is not good, and we
do not know whether they can behave well against fast algebraic attacks. In 2008, Carlet
and Feng [6] studied a class of functions which had been introduced by [14], and they
found that these functions seem to satisfy all of the mentioned cryptographic criteria [6].

Communicated by C. Carlet.

B Qichun Wang
qcwang @fudan.edu.cn

Pantelimon Stanica

pstanica@nps.edu

School of Computer Science and Technology, Nanjing Normal University, Nanjing 210046,
People’s Republic of China

2 Department of Applied Mathematics, Naval Postgraduate School, Monterey, CA 93943-5216, USA

Published online: 27 October 2018 @ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s10623-018-0574-2&domain=pdf
http://orcid.org/0000-0003-3474-4115

Q. Wang, P. Stanica

This is a breakthrough in the field of cryptographic Boolean functions. Based on the Carlet—
Feng construction, some researchers proposed several classes of cryptographically significant
Boolean functions [33,34,36,37,41,43].

To resist fast correlation attacks and linear approximation attacks [16,28], Boolean func-
tions used in stream ciphers should have high nonlinearity. The maximum nonlinearity of
n-variable Boolean functions is the same as the covering radius of the first order Reed—Muller
code RM (1, n), which is bounded above by 2n=1_2n/2=1 and afunction is bent if it achieves
this bound [8,15]. For n odd, the nonlinearity is upper bounded by 2(2"~2 — 2%/2=2| [21].
For odd n < 7, it is known that the maximum nonlinearity is equal to the bent concatenation
bound 21 — 2(1=1)/2 [1,18,29]. However, for odd n > 7, the covering radius of RM (1, n)
is still unknown [19,20,22,23,31]. For the maximum possible higher-order nonlinearities, we
refer to [3,7,10,38,42].

From the cryptographic point of view, Boolean functions need to be balanced. It is still an
open problem whether the maximum possible nonlinearity of §-variable balanced functions
is 118. We refer to [35] for more results on the nonlinearity of balanced functions. If we want
Boolean functions to be cryptographically significant, e.g, balanced, with optimum algebraic
immunity and good immunity to fast algebraic attacks, the problem of finding the maximum
possible nonlinearity is still far away to be solved.

Using a Gauss sum, Carlet and Feng deduced a lower bound on the nonlinearity of the
Carlet-Feng function by estimating the sum

n__ . n—I1_

2"-2 Sln71k(22n_1 1)
Sn = Z s mk

k=1 SIN 5y

Using the same method, several improved bounds have been deduced in [5,17,36,39,41,43]
by estimating the same sum S,,.

In 2013, Tang et al. [36] proposed two classes of Boolean functions with good crypto-
graphic properties. They deduced a lower bound on the nonlinearity which is larger than all
previously introduced bounds for similar functions. The key method in finding that bound
relied yet again on an estimate of the above sum S,,.

It is of interest to give a sharp estimate of S, and thus the best possible nonlinearity bound
derived through this trigonometric sum. However, if we want to improve the bound further,
then one must use a different method than the one based upon a trigonometric sum.

Moreover, the trigonometric sum S, has applications in sequence theory, as well. For
example, it can be used to investigate the imbalance properties of LFSR subsequences [40].

In this paper, we give a very precise estimate of S,, and prove that

036 _ o (2 =1( 8\ 1 ] 0.72
_— < Sy — n n—|———=) < —-—.
x@ —1) " = " Y ) T T 2) T xe -

Using these inequalities, we deduce new lower bounds on the nonlinearity of the Carlet-Feng
function and the function proposed by [36].

2 Preliminaries

Let F» the finite field of dimension n over the binary field ;. We denote by B, the set of all
n-variable Boolean functions from [F,» into [F>. Any Boolean function f € B, (with the usual
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identification of the finite field Fo» with the vector space I%) can be uniquely represented as
a multivariate polynomial in Fa[xy, ..., x,],

fGr, o x) = Z aKl_[xk»

KC{1,2,..n)  keK

which is called the algebraic normal form (ANF). The algebraic degree of f, denoted by
deg(f), is the number of variables in the highest order term with nonzero coefficient. Let
1y = {x € Fan|f(x) = 1} be the support of a Boolean function f, whose cardinality |1 /|
is called the Hamming weight of f. The Hamming distance between two functions f and g,
denoted by d(f, g), is the Hamming weight of f + g. Let f € 5,,. The nonlinearity [4,11]
of fis

I(f)= in d(f,g).
nl(f) goin_| (f. 8
The Walsh-Hadamard transform of a given function f € B, is the integer-valued function
over [Fo» defined by

Wf(a)) — Z (_l)f(x)—}—tr(a)x)’

xEFQn

where w € Fo» and ¢r(x) denotes the absolute trace function from [Fo» to [F>. The nonlinearity
of f can then be determined by

1
nl(f)=2""- 7 fnax [Wy ()]

3 New bounds on the nonlinearity of some cryptographically
significant Boolean functions

Nonlinearity is a quite important cryptographic criterion of Boolean functions in designing
stream ciphers and block ciphers, which is desired to be as high as possible. It is still far away
to be solved that what is the maximum possible nonlinearity of cryptographically significant
Boolean functions. In the following, we will deduce new lower bounds on the nonlinearity
of cryptographically significant Boolean functions.

3.1 New bound on the nonlinearity of the Carlet-Feng function

The Carlet-Feng function C F € B,, is defined as the function with support

ler =101, 0,02, . o® 72,
where o € Fy» is a primitive element. It is known that the Carlet—Feng function has quite good
cryptographic properties: balancedness, high algebraic degree, high algebraic immunity, high
nonlinearity and good immunity to fast algebraic attacks [6,27].

Using a Gauss sum, Carlet and Feng [6] proved that

n__ . n—1_
W(CF) > 21— 2222% b e PRV )
2n 1 =1 sin 72)751 ’
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By estimating the sum

22 k" 1—1
sin (2" 1 :
Sn = Tk 5
k=1 Sln I

they deduced a lower bound on n/(C F). After that, many improved bounds have been found
by estimating the same sum [17,36,41,43].

In this section, we will give a very precise estimate of this sum S,. Our estimate relies on
Lemmas 3.1 and 3.2, whose proofs are included in the Appendix.

Lemma3.1 Let N > 255and N = —1 (mod 4). Then

N+1

0.53 < 1 N 8(v2—1 V21 0.72

aN i 4 b4 aN
k=1 S0 —H§

Lemma3.2 Let N > 255 and N = —1 (mod 4). Then

N+l

0.17 : 1 N 1 2
. - —ln(ﬁ—f—l)—f—i <0.
aN —l 00575\, g 2 4

By Lemmas 3.1 and 3.2, we can then prove the following theorem.

Theorem 3.3 Forn > 8, we have

22 Tk =1)
0.36 sin =5—— 2" —1 8 1 1 0.72
<Z 21 — nln24+y+h—)———=- )< ——-.
T2" —1) = sin 2"k| T T T 2 (2" —1)
Proof Clearly,
n_2 ak(2"1-1) on=1_1 n k@' 1_1)
sin —=5;— 1 _ 5 P 1
] sin 2,, =1 sin 2,, 1
on— -2 . 7'[(2" 1_ 1) 271—271 . Tt
sin sin 52—
211 l 2)1 l
ﬂ(2t 1) Z 2711
=1 | Sin Ty o singis
2)1—2 2n—2_1
1 1
Z - w2i—1) Z 7t
=1 SN 20n—y) =1 COSzi

By the right inequalities of Lemmas 3.1 and 3.2, we have

2;1—2

1 2 — 1 R 8(v2—-1) 1 4 0.72
Y o < - <1n(2)+y+ln7r +3 V2 - — i

=1 Sin 5Ty

and

]
3
N
+
T
|
I

2" —1 1 V2
cOs it R 2 4
=1 2n—1
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Table 1 Comparison of the bounds on nl/(C F)

n Bound in [6] Bound in [17] Bound in [36] Our bound Exact value
8 70 79 86 92 112
10 366 396 416 426 484
12 1700 1780 1830 1848 1970
14 7382 7584 7700 7735 8036
16 30922 31409 31673 31741 32530
18 126927 128068 128658 128792 130442
20 515094 517704 519010 519277 523154
22 2076956 2082834 2085694 2086225 2094972
24 8344600 8357672 8363886 8364947 8384536
26 33459185 33487957 33501375 33503496 33545716
Therefore,

P P %:11*1) r 1 . 11 0.72

o sing R <nn +y+n;>_;_§+m'

Similarly, by the left inequalities of Lemmas 3.1 and 3.2, we have

[oS]

"2 G TRQT D)

SIn 55— 2" —1 24y +1n 8 1 1 n 0.36
> n - ) -4+ —,
1 sin gk 7 RS AT R To TR
and the result follows. O

By (1), we then have the following theorem.

Theorem 3.4 Forn > 8, we have

In2 1 8 a o 2nd
al(CFy =2 — (P22 L 2 () 4+m )28 - .
T T T 2n —1

Remark 3.5 The lower bound on nl(CF) in Theorem 3.4 improves upon known bounds.
In Table 1, we display the comparison of our bound with the previously known ones. By
Theorem 3.3, using the standard Gauss sum method, it seems that one cannot improve upon
our lower bound on nl(CF).

We note that there still exists a big gap between our bound and the exact value. However,
our bound is the best possible deduced through the trigonometric sum and our estimates. If
one wants to improve the bound further, one must use a different method, i.e., not through
the trigonometric sum.

3.2 New bound on the nonlinearity of the function constructed by
Tang—Carlet-Tang

Letn = 2k > 4 and « be a primitive element of ['5x. Let

Ay =1, ..., a7, 0<s <21
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Let g be the function of support Ag. The function TTC € B, introduced by Tang—Carlet—
Tang in [36] is defined by

TTC(x,y) = g(xy).

This function has optimal algebraic immunity, good immunity to fast algebraic attacks and
high algebraic degree. Tang et al. deduced a lower bound on the nonlinearity which is larger
than all previously introduced bounds for similar functions. In the following, we will find a
new lower bound on nl(TTC).

We let ¢ = 2%. Let x be the primitive character of IF:; defined by x (/) =¢/ (0 < j <

2 /=1
g —2)and x(0) =0, where ¢ =e 4T .Let
GO =Y D" 0= p <2k -2

xe]Fj;
be the Gauss sum [26] (recall that 7 is the absolute trace of I, over ). By [36], we have

nl(TTC) =2""'— max [Ty,
0<s<2k—1

where

N

;, q
G2 v Vs
—2((1_1) —Z "™ -

Theorem 3.6 For k > 8, we have
el kln2 1 8 P
nl(TTC) > 2 - +—|y+h—))2" + —.
b1 T T b1q

Proof We have

—vg
nl(TTC) =21 —  max G> ”g — -1
( ) 0<s<2k—1 q Z (e -1 2(g — 1)
2. _pe
o o1 _ _4 (1235”2—1 q
- g-14|¢v=1| 2¢-D
2| _pa q
1 q qX: g =gt q
q—17=|¢72-¢2 2(q -1
9=2 | gin V2
_ q sin 7= q
qg—1 = sin q”_”l 2(gq — 1)
q q_
Since sin Z% = sin M;i] ), then by Theorem 3.3,
42| sin 2% —1 8\ 1 1 072
Sl < L<k1n2+)/+ln—>———f+'7l.
= |sin =7 b4 b4 T (g —1)
Therefore,

kIn2 1 8
nl(TTC)>2"71—< 1 +f(7/+ln—>) 2K
7T 7T 7T
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q 1 1 0.72 q
+——(=+=-- -
g—1\m 2 =m(g—-1 2(q —1)

gt (K2 L BN L 0.72¢
= _ —_ n— —_ —_
7T 7z \Y T 7 w(g—1) 7(g—1)>2

w1 (k2 1 8\\ . 1
Sl (== = (y+In=) )2k 4 =,
T v v v

and the theorem is shown. O

Remark 3.7 By Theorem 3.3, for any C > 0,

q
— . TTVH
a=2|sin 222

- kln2 1 8 1
) R <2"*1—(—n+—<y+ln—))2k+—+c.
oo s1an1 2(g — 1) b4 T T T

q

21171_
qg—1

That is, using the standard Gauss sum method, our lower bound on n/(7 7T C) cannot be
further improved.

4 Conclusion

In this paper, we give a very precise estimate of a trigonometric sum. Using that estimate, we
deduce new lower bounds on the nonlinearity of the Carlet—Feng function and the function
proposed by Tang et al. [36].

Acknowledgements Qichun Wang would like to thank the financial support from the National Natural Science
Foundation of China (Grant 61572189).

Appendix: Proof of Lemmas 3.1 and 3.2

1

sin x

In order to prove Lemmas 3.1 and 3.2, we introduce a function g(x) = — %, which we

s 1
extend at O (observe that lim,_, o g(x) = 0) by g(0) = 0. First, g’(x) = —% + . and
sinx X
observe that lim,_, g'(x) = % and ¢'(%) = % — /2. Further,
1+ cos?x 2 (5 + cos? x) cos x 6
g =— = S ) =
sin” x X sin” x X
Using standard methods from calculus, it is easy to prove that g”’(x) > 0, for0 < x < 7.
N+1
En
Lemma 3.1 gives an estimate of 77 = Z T Our idea of the proof'is as follows.
k=1 810 73N
2k — 1
To deduce a precise estimate of 77, we first consider the sum 7, = Z g (77(27]\])> .
k=1
Since we have the equation
% n(N+3)
=Y o (T) s (A) - TNVEIN T [
NPT AN vt an) TN\ T N JLo B

(@)
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where

7(2k—1)
t 72k — 1) 72k — 1) B 7
Gk = 3 (g <T) 8 (T * t)) - /ngkNu gdx, 0=t <

we can give a precise estimate of 7> by estimating those terms in (4), and then a precise
estimate of 7 can be deduced. The proof of Lemma 3.2 is similar.
The following four lemmas estimate those terms in (4) one by one.

LemmaA.1 Letk, N > 255 be integers with N = —1 (mod 4) and 1 <k < NTH. If

7(2k—1)
t( (7Qk—1) 7k — 1) o e
1=~ —__ — —41)) - dx, 0<t<—
Gr(1) 2 <g< N )+g< N T ﬁ%l) g(x)dx, 0 <1t < N’
then
2 3 # 2 3
7% (16 1\ 0.1157 x 72 (16 1\ 02317
T (2 -va-2)- G (2 Z (2 -Va—- )+ 222
12N? <712 V2 6) 1283 © ]; k(N) = 1282 (nZ V2 6) MASTTE

Proof Clearly, for 0 <t < I, we have

_N’
2k — 1 2k — 1 2k — 1
ZG;((I):g(n(zi]v))—g(j-[(zi]v)'i‘l)'f‘l‘g/(n(zi]v)'i't),
and
267(1) = 1g" (T D t)
() =1g T-f— .

Since g"”(x) > 0, for 0 < x < 7, g”(x) is strictly increasing on the interval (0, 7). Then
we have

Since G¢(0) = G;(0) = 0, we have

g (n(Zk - 1)) B 126G4() < g (n(Zk + 1)) 3

2N 2N
Therefore,
N41 N+1 3 &
T2k — 1) T L, (TQk+1)
G ).
12N3 Z < ) Z k( ) 3 I;g 2N
Clearly,

N s
T2k + 1) N (%, L (TN —1) (TN +3)
Z_ ( )<;/0 g'0dx +¢ (T)*g (T)

N (16 1 T 2587
o - 2_7 " - "
s <ﬂ2 V2 6)+g (4)+g (4.255>
N (16 1
<f<—2—f—f>+o.z31,
T\ 6
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and

N+l

F

g (7‘((2]{ — 1)) N / " () — (7)
k=1

16 1
— — -] —0.115,
- <n2 V2 6)

and the result follows.

m]
LemmaA.2 Let N > 255. Then
n o ® () f; dr = T T
—— < —g(—=) - x)dx —_—.
Nz =an8\on) 7, ¢ = 182 T 512A7
Proof Let F|(t) = tg(t) — f(; g(x)dx, where 0 < t < . Clearly, F1(0) = 0 and F| (1) =
tg'(r). Therefore,
’21 (t)<F(t)<t2 (”)
5 lim L
2 150° ! 2% \on
That is,
’ <F(”)< n? ’(”)
agn? = "on’ = en2® \on )
We have
,( T ) _ 4N?  cos(5) _ 4N? SiHZ(%) —nzcos(%)
$N) T 2 sinz(%) N w2 sinz(%)
2 nt 0.016 2 2
<4N (47§v2 asne T n>_” (1_87{?>
4
w2 (W - 4gN4)
2
St i S
| _ =2 6 64N’
12N2
and the result follows. m]
LemmaA.3 Let N > 255. Then
144 — 9272 37 [n(N +3) G 144 — 9272  4.0572
o =<8l ) gx)dx < 3 + T
32N AN 4N z 32N 32N

Proof Let F>(t) = tg (% + t) — %TH g(x)dx,where 0 <t < 2—17(,. Clearly, F>(0) = 0 and
Fy(t) =1tg’' (% + t) . Therefore,

a (n)<F(t)<ﬁ T3
28 \4 2 28 \4 T an

972 /(n)<F 3 _ 9% 7r+3n
N8 \3) =" \4n ) =on28 4 Tan )

and
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g <l N 3i> _ 1 3 cos(g + 277\7,)
4 4N C+3)2 sin?(2 42T
(16 96 432 ) f(cosm — sin 3%)
<

— = +
2 2 272 2
T w*N  @w*N (cos 3 gy tsin 4N)

1 432 9
(i)

<
72 72N nw2N? 4N

and the result follows. ]

LemmaA4 Let N > 255. Then

0.165 T(N +3) 4 3Vt 12 0457
v <f\ oy ) - ) <

AN T wN N2

Proof We have

<71(N +3)> B V2 %
& 4N B l—l—sinz 2s1n2;1’\’, 1+%
:ﬁ_i_ﬁ(smf&, 23in2§—]’\’/) % .
T 1+sm — 2sin? Slj\’, l—i—%
Clearly,
37 277%  3q° sin iN —2sin® 3% 3 27x% | 1137

4N T 32N? 128N T T4sinE —2sin? 2% 4N 32N% | 128NY

and
12 36 1z 12 36 108
N a2 < v d e
N 1N 1+ 5 N nwN TN
and the result follows. O

Those terms in (4) have been estimated by the above four lemmas. We then can give a
proof for Lemma 3.1.

Proof of Lemma 3.1 By Lemma A.1, we have

%
T
2.6 (%)

Nt k-1 (N +3) T(N+3)
T s — T 4 4N
=" 12 T2 (X TETIN - d
2N ];g< 2N ) g(2N)+g( 4N ) /M g(x)dx
2 3
7% (16 1\ 0231l
T (2 vz o)
= 12N2 (n2 V2 6)+ 12N3
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Since fo gx)dx =1n 8(‘[ D we have

T~ (mQk—=1) 8v2-1) =% [16 1 023173 =« b3
all 1 — _J2_ = APy e
N g ( ) <h———+ ez V25 1283 2Ng<2N>
3 5 3r (7N +3) 7 (TN +3)
- d do — T (PN A\ 7 (N HI N
/0 800 x+/% §Wdx = oN e < 4N ) 4N ( 4N )

Then by Lemmas A.2, A.3 and A.4, we have
8(v2—1 2 /16 1 0.23173
V2-1 = (16 5 1) 02317’
2 6 12N3

N1
72k —1)
2:: ( ><ln 12N

72 7t 144 — 9272

+48N2 MESVRE 32N2
4  32x 0.457
V2-—— +—=+—
T 4N N N

S(ﬂ—l) ( ﬂ) 0052

T T

2\“

< In

N+l

- 1 1

Clearly, Z 1 < = ln(N + 1) —|— + W, where y is Euler—Mascheroni’s
k=1

constant. Therefore,

N+1
N ; sin rr(2k )
8(f )T (), 0052
s 4N s N2

In(N +1
<In(N + )+y+3(N+1)2

LGRS (f—%)Jr%.

In(N +1 In
<In(N+1D+y+In N
Similarly, we can prove the left inequality of Lemma 3.1, and the result follows

To prove Lemma 3.2, we need two more lemmas.

—1 (mod 4), and 1 <k < YL — 1 be an integer. Let

LemmaA.5 Let N > 255 N =

Hyi (1) t( (”(N_zk)>+ (”(N_Zk)H)) /MZNMH (x)dx, 0<t<2
K== 1|g g - o glodx, 0<r<—.
2 2N 2N 71(1;7;]210 N
Then
2 s 2 3
T 12 0.497 T T 12 0.617"
2 (Va- =) - H(=) < 2 (v2- =)+ =2
12N? ( 712> 283 /; k (N) = 1282 < n2> 12N3

The proof of Lemma A.5 is quite similar to the proof of Lemma A.1, so we omit it here
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LemmaA.6 Let N > 255and N = —1 (mod 4). Then

Mg

In2 1 1.25 . 1 In2 1 1.23
—= - < Z < —=_ - :
2 N4+1 (N-1)?2 2 N+1 (N-1)2

Proof We have

Nl 1 1 0,

(N—1) 12(N—1)2 + 120N — D)% 252(N — 1)’

]

=In(V =)+ + 5

2??‘
P T

N‘
_

1 6h

ln( ) Y+ SN N_1vd N_1\¢’
ok 28 1 )2 120579 252(55)°
N+1
L L ] L, %

n V4 — _ ,
—k 208 2?2 2ot 252(HhS

where y is Euler—Mascheroni’s constant and 0 < 6; < 1,i = 1, 2, 3. Clearly

N+l 3 N-1 N-1 N4l
42 1 (S 1 & g . 1 Z 1
= N — 2k P k2 = k = k 2 P k
Therefore,
Nl _
42 1 In2 N 1l - 2 1 1 N 5
—~ N-2k 2 N —1 N—1 N+1 12(N—1)?
2 23 n 16 960, — 61 51263
3(N+ D2 120N — D*  15(N + D* * 252(N — 1)6 63
Clearly
2 2 (14 2 2 2 n 8
- < In < - ’
N —1 (N —1)2 N —1 N —1 (N =12  3(N—-1)>3
and the result follows. O

We then can give a proof for Lemma 3.2.

Proof of Lemma 3.2 By Lemma A.5, we have
NEL_ g
> (%)
(=
k=1 N
Nl _

F T
b4 w(N — 2k) T b4 3 2
=— 12 B — — ) — — R —
v (2 2 g( 2N >+g<2> g<4+4N> ﬁﬁwg(x)dx

k=1

2 3
12 0.617-
- (vi- ) oaat

12N2 w2 12N3
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Since [7 g(x)dx =1In @, we have
7

1 _ 2 3
g(n(N 2k)> b3 <ﬁ_%>+o.61n +1nﬁ+1_lg(f)

N+1

Y

k=1

<
2N 12N2 12N3 2 2N°\2

+3n n+371 /ZJ“%/]\T/ 0d T 7T+37T
—g|l=+—=) - xX)dx — —g|—+—].
4N\ Tan . f anS\4 T an
Then by Lemmas A.3 and A.4, we have
|
42 (n(N—Zk))

gl ——=—
= 2N
2 3

12 0.61 2+1 2

T (ﬁ——>+ Y2 —L<1——)

= 1282 72 12N3 2 2N T
144 — 9272 405722 =« (ﬁ_

=[x

=[x

4N TaNn T a2

N o 4_3[271 12 0.165
32N2 32N3 4N

V2+1 2 7 2m 037
<In—+ —_—t —.
2 N 2N 4N N2

N+l g
X 2 2.46
By Lemma A.6, Z ——— <In2 — — 3 Therefore,
Pt N —2k N+1 ((N-1)
T 1 b4 1
N Z kTN Z - A(N=2k)
N T ocosF N T sin M0
2 2.46 2+1 2 2 0.37
cma- fm¥2EL 2 7 Vom0
N+1 (N—-1)2 2 N 2N 4N N2
i V2
In(v2+1) — — — —.
<I(V2HD -5y -y
Similarly, we can show the left inequality of Lemma 3.2, and the result follows. O
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