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Abstract

Recently much progress has been made on the old problem of de-
termining the equivalence classes of Boolean functions under permu-
tation of the variables. In this paper we prove an asymptotic formula
for the number of equivalence classes under permutation for degree
d monomial rotation symmetric (MRS) functions, in the cases where
d ≥ 3 is arbitrary and the number of variables n is a prime. Our
counting formula has two main terms and an error term; this is the
first instance of such a detailed result for Boolean function equivalence
classes which is valid for arbitrary degree and infinitely many n. We
also prove an exact formula for the count of the equivalence classes
when d = 5; this extends previous work for d = 3 and 4.
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1 Introduction

An n-variable Boolean function f is a map from the n dimensional vector
space Fn2 = {0, 1}n into the two-element field F2, that is, a Boolean function
can be thought of as a multivariate polynomial over F2, called the algebraic
normal form (ANF)

f(x1, . . . , xn) = a0 +
∑

1≤i≤n

aixi +
∑

1≤i<j≤n

aijxixj + · · ·+ a12...nx1x2 . . . xn,

∗corresponding author, email: cusick@buffalo.edu
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where the coefficients a0, aij, . . . , a12...n ∈ F2, and ‘+’ is the addition operator
over F2. The maximum number of variables in a monomial is called the
(algebraic) degree. If all monomials in its ANF have the same degree, the
Boolean function is said to be homogeneous. The integer n is the dimension
of f.

Functions of degree at most one are called affine functions, and an affine
function with constant term equal to zero is called a linear function. The
(Hamming) weight wt(x) (also called the binary sum of digits) of a binary
string x is the number of ones in x, and the Hamming distance d(x,y) be-
tween x and y is wt(x+y) (that is, the number of positions where x,y differ).
The nonlinearity of an n-variable function f is the minimum distance to the
entire set of affine functions, which is known to be bounded from above by
2n−1 − 2n/2−1 (see [9] for more on cryptographic Boolean functions).

We define the (right) rotation operator ρn on a vector (x1, . . . , xn) ∈ Fn2 by
ρn(x1, . . . , xn) = (xn, x1, . . . , xn−1). Hence, ρkn acts as a k-cyclic rotation on
an n-bit vector. We extend it to monomials and binary strings, naturally. A
Boolean function f is called rotation symmetric if for each input (x1, . . . , xn)
in Fn2 , f(ρkn(x1, . . . , xn)) = f(x1, . . . , xn), for 1 ≤ k ≤ n. That is, the rotation
symmetric Boolean functions (RSBF) are invariant under cyclic rotation of
inputs. Define Gn(x1, x2, . . . , xn) = {ρkn(x1, x2, . . . , xn) : 1 ≤ k ≤ n}, which
generates a partition of cardinality gn, and so, the number of n-variable
RSBFs is 2gn . It was shown in [13] that gn = 1

n

∑
k|n φ(k) 2

n
k , where φ is

Euler’s totient function. By abuse of notation, we also let Gn(x1xi2 . . . xil) =
{ρkn(x1xi2 · · ·xil) : 1 ≤ k ≤ n}. We call a representation (not unique, since
one can choose any representative inGn(x1xi2 . . . xil)) of a rotation symmetric
function f(x1, . . . , xn) the short algebraic normal form (SANF) if we write f
as

a0 + a1x1 +
∑

a1jx1xj + · · ·+ a12...nx1x2 . . . xn,

where a0, a1, a1j, . . . , a12...n ∈ F2, and the existence of a representative term
x1xi2 . . . xil implies the existence of all the terms from Gn(x1xi2 . . . xil) in the
ANF. Note that x1 always appears in the SANF of f . Certainly, the number
of terms in the ANF of a monomial rotation symmetric function is a divisor
of n (see [13]).

Throughout this paper we use the “capital mod” notation a Mod n to
mean the unique integer b ∈ {1, 2, . . . , n} such that b ≡ a mod n.

If the SANF of f contains only one term, we call such a function a mono-
mial rotation symmetric (MRS) function. In that case, the function f (of
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degree d) has the form

f(x) = x1xi2 . . . xid + x2xi2+1 . . . xid+1 + ...+ xnxi2−1 . . . xid−1. (1)

Here and for the rest of the paper, the indices of the variables xi are reduced
Mod n.

If d divides n, then it is possible for some of the monomials in the repre-
sentation (1) to be identical. If this happens, then we modify the definition
of the function in (1) so that only the distinct monomials are used (the re-
peated monomials sum to zero). Such functions are called short functions
(see [4, p. 5070] and [7, p. 193] for a description of the short functions for
degrees 3 and 4, respectively). For the work in this paper, we do not need to
pay any attention to the short functions.

We shall use the notation (1, i2, . . . , id) for the function f(x) in (1), no
matter how the terms on the right-hand side are written (so the order of the
terms, and of the d variables in each term, does not matter). If (1, i2, . . . , id)
is written in the form (1) (so the first subscripts in the n terms are 1, 2, . . . , n
in order, and the other d−1 subscripts in order each give cyclic permutations
of 1, 2, . . . , n, as shown), we say f is written in standard form. Note that we
do not require ij < ij+1, so there are d! ways to write f(x) in standard form.
If we specify one representation of f(x) (see the definition of Dd,n below for
a natural way to do this), then the standard form is unique. Ignoring the
short functions, clearly each subscript j, 1 ≤ j ≤ n, appears in exactly d
of the terms in any representation of f(x); we shall call these d terms the
j-terms of f . We shall use the notation

[k1, k2, . . . , kd] = xk1xk2 . . . xkd (2)

as shorthand for the monomial on the right-hand side; note that the order of
the variables matters, in particular the d! permutations of k1, k2, . . . , kd give
d! different representations of form (2) for the same monomial xk1xk2 . . . xkd .

Example 1.1. If d = 3, the cubic MRS function (1, 2, 3) in 4 variables with
i2 = 2, i3 = 3 in (1) can be written in standard form (not unique, and indeed
this is an unusual standard form) as

x3x2x1 + x4x3x2 + x1x4x3 + x2x1x4.

There are 5 other standard forms, in which the variables in the first mono-
mial [3, 2, 1] above are permuted; the most natural of the 6 standard forms
would begin with the monomial [1, 2, 3]. Note the 1-terms of this function are
[1, 2, 3], [1, 2, 4] and [1, 3, 4].
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We say that two Boolean functions f(x) and g(x) are affine equivalent
if g(x) = f(xA + b), where A ∈ GLn(F2) (n × n nonsingular matrices over
the finite field F2 with the usual operations) and b is an n-vector over F2.
We say f(xA+ b) is a nonsingular affine transformation of f(x). It is easy
to see that if f and g are affine equivalent, then they have the same weight
and nonlinearity. In general, these invariants are not sufficient, although we
know that two quadratic functions are affine equivalent if and only if their
weights and nonlinearities are the same–see [4, Lemma 2.3]. However, in
general, that is not the case, for higher degrees.

In order to study the affine equivalence classes for the functions (1, i2, . . . , id)
we need to be able to identify all such functions which are distinct. We define

Dd,n = {(1, i2, . . . , id) : 1 < i2 < . . . < id},

where every such function is represented by the tuple with least i2, and given
that, with least i3, ..., and given that with least id. Thus in Dd,n each function
is represented by a unique and natural standard form.

In [3] the authors introduced the notion of P-equivalence f
P∼ g, which is

the affine equivalence of monomial rotation symmetric (MRS) functions f, g
under permutation of variables (we will write here f ∼ g, for easy displaying).

An n×n matrix C is circulant, denoted by C(c1, c2, . . . , cn), if all its rows
are successive cyclic right rotations of the first row.

On the set Cn of circulant matrices an equivalence relation was introduced
in [3]: for A1 = C(a1, . . . , an), A2 = C(b1, . . . , bn), then A1 ≈ A2 if and only if
(a1, . . . , an) = ρkn(b1, . . . , bn), for some 0 ≤ k ≤ n− 1. It was shown that the
set of equivalence classes (with notation 〈·〉) form a commutative monoid,
under the natural operation 〈A〉 · 〈B〉 := 〈AB〉. Define C∗n to be the set of
invertible n × n circulant matrices. Then the previous operation partitions
these matrices into equivalence classes, say C∗n/≈, and consequently, (C∗n/≈ , ·)
becomes a group.

Let f = x1xj2 · · ·xjd+x2xj2+1 · · ·xjd+1+ · · ·+xnxj2−1 · · · xjd−1 be an MRS
function of degree d, with the SANF x1xj2 · · ·xjd . We associate to f the

(unique) equivalence class Af of the circulant matrix C(f) = C(

1
↓
1, 0, . . . ,

j2
↓
1

, 0, . . . , 0,

j3
↓
1 , . . . , 0,

jd
↓
1 , . . . , 0) whose first row has 1’s in positions {1, j2, . . . , jd}

given by the indices in the SANF monomial of f . We say that Af is a circulant
matrix equivalence class. Throughout this paper, we only consider circulant
matrices whose entries are 0 and 1; we call these matrices 0/1-circulants.
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For a binary (row) vector (a1, a2, . . . , an) ∈ Fn2 , we let δ(a1, a2, . . . , an) =
{i : ai = 1}, and by abuse of notation, δ(C(a)) = δ(a). We say that the vec-
tor a has support δ(a). Similarly, for a single monomial term xi1xi2 · · ·xid of
degree d in n variables, we define δ(xi1xi2 · · ·xid) = {ij : j = 1, 2, . . . , d}. We
can also extend the notion of support to the MRS function f = xi1xi2 · · ·xid
with this SANF, namely we define δ(f) = δ(xi1xi2 · · ·xid), which is not
unique, but we prefer (so not to complicate the notation) to consider all
such sets equal under a cyclic rotation permutation of the indices. That is,
for Af as above then δ(f) = {1, j2, . . . , jd} = {2, j2 + 1, . . . , jd + 1} = · · · .

We define the (circulant) weight of a 0/1-circulant to be the number of
1’s in each row, that is, the size of the support of any row.

Example 1.2. Let n = 3, d = 2 and the MRS f(x1, x2, x3) = x1x2 + x2x3 +
x3x1 whose SANF is x1x2, say. Then the associated circulant matrix class is

Af = 〈

1 1 0
0 1 1
1 0 1

〉 of weight 2 with δ(f) = {1, 2} = {2, 3} = {1, 3}.

We now consider another type of equivalence between circulant matrices,
that can be extended to the equivalence classes we have defined. Two cir-
culant matrices A,B are called P -Q equivalent, if PB = AQ, where P,Q
are permutation matrices. The notion of P -Q equivalence extends naturally
from circulant matrices to equivalence classes, as any product of permutation
matrices is also a permutation matrix, and any two representative matrices
A1, A2 of an equivalence class 〈A〉 are related by a rotation of the row order.
The next result showed that the P-equivalence can be investigated in the
realm of circulant matrices.

Theorem 1.1 (Canright–Chung–Stănică [3]). Two MRS Boolean functions
f, g in n variables are P-equivalent if and only if their corresponding circulant
matrix equivalence classes Af and Ag are P -Q equivalent.

The next result moves the P -Q equivalence into residue classes for some
specific weights.

Theorem 1.2 (Th. 7.2 of Wiedemann–Zieve [14]). Let A,B be two n×n 0/1-
circulants of (circulant) weight at most 5 whose first rows have support δ(A),
respectively, δ(B), where n is odd (if the weight k ∈ {4, 5}, the prime factors
of n should be greater than 2k(k − 1)). Then the following are equivalent:
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(i) There exist u, v ∈ Zn such that gcd(u, n) = 1 and δ(A) = uδ(B) + v.

(ii) A,B are P -Q equivalent.

(iii) There is an n× n permutation matrix P such that AAT = PBBTP−1.

(iv) The matrices AAT , BBT are similar.

Remark 1.1. The lower bound 2k(k−1) on the prime factors is sufficient to
prove that (i) and (iv) are equivalent in the cases k ∈ {4, 5} of Theorem 1.2
above (see [14, Th. 7.2]). Computations suggest that this sufficient condition
is far from necessary.

The case of quartic MRS was dealt with in [7] for prime dimensions. The
equivalence of (i) and (ii) above is called the bipartite Ádám problem (see
[14, Section 9]), which turns out to be true for any weight, if the dimension
is a prime number (see Theorem 2.1 below).

We remind the reader that we use the “capital mod” notation a Mod n
to mean the unique integer b ∈ {1, 2, . . . , n} such that b ≡ a mod n.

The main result of this paper is an asymptotic formula for the number of
equivalence classes under permutation of the variables for any degree d MRS
functions in a prime number of variables. We also find the exact number of
equivalence classes (and representatives of these classes) for quintic (degree
5) MRS (that is, their SANF is f = x1xixjxkxs with δ(f) = {1, i, j, k, s})
in prime dimensions; the cubic and quartic cases were done previously in [4,
Section 4] and [7, Section 2], respectively.

2 An estimate for the number of equivalence

classes for degree dMRS functions in prime

p dimension

Let Ed,p be the number of equivalence classes of degree d MRS functions
in p variables, where p is a prime. Our goal is to obtain a good estimate for
the count Ed,p of these equivalence classes. We will need the higher degree
versions of several results from [4], but only in the case where the number of
variables is prime. The restriction to this case greatly simplifies the proofs.
A key theorem that we use is the following one, which says that the bipartite
Ádám conjecture (that is, the equivalence of (i) and (ii) in Theorem 1.2
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above) is true if the size n of the matrices is a prime. This fact is mentioned
without proof in [14, Section 9], where it is stated that a method of Babai [2]
for a related conjecture can be extended to this case. We thank Michael
Zieve for supplying us with the proof given below.

Theorem 2.1. Let p > d be a prime number and let A,B be two p × p
0/1-circulants with weight d whose first rows have support δ(A), respectively,
δ(B). Then the following are equivalent:

(i) There exist u, v ∈ Zn such that gcd(u, p) = 1 and δ(A) = uδ(B) + v.

(ii) A,B are P -Q equivalent.

Proof. We use the standard notation 〈g〉 for the cyclic subgroup generated
by g in a given group G. We define the p × p “shift matrix” S by S =
C(0, 1, 0, . . . , 0). In the proof, it is convenient to bear in mind the obvious
fact that a p× p matrix is a circulant of weight k if and only if it is a sum of
k distinct powers of S.

We shall prove that the P -Q equivalence classes of (ii) are identical to
the affine equivalence classes of (i). We consider an arbitrary matrix B which
is P -Q equivalent to a fixed p× p circulant matrix A, so we let P and Q be
permutation matrices such that B = P−1AQ is circulant. We can rewrite
this condition in terms of S as

(PS−1P−1)A(QSQ−1) = A, (3)

since a matrix M is circulant if and only if it commutes with S.
Let G (clearly a group) be the set of pairs (P,Q) of permutation matrices

(with group operation (P,Q)(P ′, Q′) = (PP ′, QQ′)) such that P−1AQ = A.
Since S commutes with the circulant matrix A, we have (S, S) in G. Similarly,
given permutation matrices P and Q, P−1AQ is a circulant matrix if and
only if g defined by

g = (PSP−1, QSQ−1)

is an element of G. We can identify the group of all p × p permutation
matrices with the symmetric group Sp, so the matrix S is the permutation
S(i) = i + 1 Mod p in Sp. From now on in this proof we use the elements
of Sp instead of the corresponding permutations. The subgroup H = 〈S〉
of order p in Sp is clearly identical with its centralizer, and its normalizer
N(H) has order p(p−1). In fact N(H) is the set of all invertible linear maps
µ(i) = ai+ b Mod p, gcd(a, p) = 1.
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We shall prove that B = P−1AQ is affine equivalent to A (that is, there
exist two matrices, P ′, Q′, which belong to N(H) such that B = P ′−1AQ′)
as follows: assume 〈g〉 and 〈(S, S)〉 are conjugate in G (this will be shown
next, under the condition that p is prime), say via element h in G such that

hgh−1 = (S, S)i with gcd(i, n) = 1.

If we let h = (U, V ), this gives

(UPSP−1U−1, V QSQ−1V −1) = (Si, Si),

so the elements P ′ = UP and Q′ = V Q normalize 〈S〉 and hence belong to
N(H). But then we obtain

P ′−1AQ′ = P−1U−1AV Q = P−1AQ

(since (U, V ) is in G) and hence (since P ′ and Q′ are invertible linear maps)
P−1AQ is affine equivalent to A, as desired.

Thus to complete the proof that (ii) implies (i) we need to show that
〈g〉 and 〈(S, S)〉 are conjugate in G, and here we use our hypothesis that
p is prime. The support of the first row of A does not consist entirely of
cosets of some subgroup of Z Mod p if and only if G intersects 〈S〉 × 〈S〉
in 〈S, S〉. For p prime, this means the support is neither empty nor all of
Z Mod p, which is certainly true for our circulant matrix A. Now the Sylow
p-subgroup of Sp × Sp has order p2, and so is Abelian. Therefore G also has
an Abelian Sylow p-subgroup. Since 〈S, S〉 is a subgroup of order p in G,
it is contained in a Sylow p-subgroup of g. But the centralizer of 〈S, S〉 in
Sp × Sp is 〈S〉 × 〈S〉, which by hypothesis intersects G in 〈S, S〉, so 〈S, S〉
is a Sylow p-subgroup of G. Thus 〈g〉 and 〈S, S〉 are conjugate in G. Note
that this proof shows we can explicitly specify the element h which gives the
conjugacy by h = (P ′P−1, Q′Q−1), but we do not need this fact.

The next theorem is the analog of [4, Theorem 3.5], generalized to higher
degrees. Note that we removed the gcd condition in that theorem, since it is
always true when the number of variables is a prime.

Theorem 2.2. Suppose f = (1, a2, . . . , ad) in standard form and g =
(1, b2, . . . , bd) are degree d ≥ 3 monomial rotation symmetric functions with
a prime number p > d of variables. If µ(f) = g for some permuta-
tion µ (that is, µ acts on the indices of the p input variables of f , trans-
forming f into g), then there exists a permutation σ such that σ(f) = g,
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σ([1, a2, . . . , ad]) = [1, c2, . . . , cd] and σ(1) = 1, where [1, c2, . . . , cd] is one of
the 1-terms in g. Also, σ satisfies

σ(i) = (i− 1)(σ(2)− 1) + 1 Mod p, 1 ≤ i ≤ p. (4)

Proof. Let C(f) and C(g) be the p×p circulant matrices defined in Section 1.
By Theorem 2.1, we have u, v ∈ Zn such that gcd(u, p) = 1 and

δ(g) = {1, b2, . . . , bd} = uδ(f) + v = {1, u(a2− 1) + 1, . . . , u(ad− 1) + 1} (5)

(note that we have subtracted u+ v− 1 from each term in uδ(f) + v for the
last equality). Now if we define the permutation σ by (4) with σ(2) = u+ 1,
then (5) along with the fact that gcd(u, p) = 1 implies (recall that σ acts on
indices)

σ(δ(f)) = {1, (a2 − 1)(σ(2)− 1) + 1, . . . , (ad − 1)(σ(2)− 1) + 1}
= {1, (a2 − 1)u+ 1, . . . , (ad − 1)u+ 1} = δ(g),

which proves the theorem.

Define

στ,n(i) = στ (i) = (i− 1)τ + 1 Mod n, 1 ≤ i ≤ n (6)

(we shall omit n in the subscript if its value is clear from the context). Define
a group Gn by

Gn = {στ,n : gcd(τ, n) = 1, 0 ≤ τ ≤ n− 1},

where the group operation is permutation multiplication. Clearly the group
Gn is isomorphic to the group Un of units of Z∗n given by Un = {k : gcd(k, n) =
1} with group operation multiplication mod n, since the bijection στ ↔ τ is
a group isomorphism.

The next theorem is the analog of [4, Theorem 3.8], generalized to higher
degrees.

Theorem 2.3. For prime p > d, group Gp acts on the set

Cd,p = {degree d MRS functions f(x) in p variables}

by the definition
στ,p(f(x)) = στ,p((1, a2, . . . , ad)) (7)

where f(x) has the unique standard form (1, a2, . . . , ad) given for that function
in Dd,p. The orbits for this group action are exactly the equivalence classes
for Cd,p under permutations which preserve rotation symmetry.
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Proof. The proof is a straightforward generalization of the proof of [4, Theo-
rem 3.8]. The quartic version of this proof is given in [7, Th. 1.9, p. 197].

In estimating Ed,p, we shall make use of the fact that we can get a formula
for Ed,p by using the well-known Burnside’s Lemma applied to the group Gp

acting on Cd,p, as described in Theorem 2.3. We need the notation

Fix(σ) = set of functions in Cd,p fixed by σ,

in order to state our lemma.

Lemma 2.1. For the group action of Gp on Cd,p, we have

Ed,p =
1

|Gp|
∑
σ∈Gp

|Fix(σ)|.

Proof. This is a special case of Burnside’s Lemma for counting orbits. By
Theorem 2.3, the orbits in this special case are the affine equivalence classes.

For our upper bound on Ed,p, we shall need the following two lemmas
concerning the values of |Fix(σ)|.

Lemma 2.2. Given n = p prime, for the group action of Gp on Cd,p, we
have

|Fix(σp−1)| ≤ pd(d−1)/2e, (8)

where σp−1 is given by στ,n of (6) with τ = p − 1, n = p. In fact, the exact
value of |Fix(σp−1)| is given by

|Fix(σp−1)| =
(

(p− 1)/2

d(d− 1)/2e

)
. (9)

Proof. It follows from (6) that

σp−1(i) = 2− i Mod p. (10)

This implies that, given a function f in p variables, there is a represen-
tation f = (1, i2, . . . , id) (where 2 ≤ i2 < i3 < . . . < id ≤ p) such that if σp−1
fixes f (that is, it takes a representative into another representative, which is
a translation of the first one) there must exist an a such that 1 ≤ a ≤ p− 1
and
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σ(f) = (1, 2− i2, 2− i3, . . . , 2− id) by (10)

= (1 + a, i2 + a, i3 + a, . . . , id + a), since σ fixes f

(order here is not important; in a d-tuple representation for a function f ,
we always assume that the d entries are taken Mod p). Without loss of
generality, assume that 1 = i2 + a. Hence, since 2 ≤ i2 < i3 < . . . < id ≤ p,
we have

1 < 2− id < 2− id−1 < . . . < 2− i2 Mod p

and
1 = i2 + a < i3 + a < . . . < id + a < 1 + a Mod p.

Putting these two together, we get the series of equalities

1 = i2 + a, 2− id = i3 + a, 2− id−1 = i4 + a, . . . , 2− i2 = 1 + a. (11)

Thus, by choosing the i1, i2, . . . , id(d−1)/2e from among 1, 2, . . . p, we create
a function that is fixed by σp (since these choices determine the remaining
ij’s). This leaves us with no more than pd(d−1)/2e possible functions that are
fixed by σp, which proves (8).

The proof of (9) is contained in the proof of Lemma 2.3 below.

Recall that a cyclotomic coset of τ (τ -cyclotomic coset) modulo p (it can
be defined in more generality, but we will only need this particular case)
containing i is the set

Ci = {i · τ j (mod p) ∈ Zp : j = 0, 1, . . .}.

(Since we work with indices in {1, 2, . . . , n}, we replace 0 with n in these
cyclotomic sets, that is, we replace the (mod n) classes by Mod n classes.)
It is known [11, Chapter 3, pp. 112–118; Chapter 4, pp. 122–127] that the
τ -cyclotomic cosets form a partition of Zp (so, they are equal or disjoint).
Moreover, the cardinality of a τ -cyclotomic coset Ci is the multiplicative order
ordp(τ) of τ (mod p) (under the assumption that p is prime), that is, |Ci| =
ordp(τ), where ordp(τ) is the smallest integer with τ ordp(τ) ≡ 1 (mod p). It
is obvious (by Fermat’s Little Theorem) that ordp(τ) is a divisor of p − 1.
The number of τ -cyclotomic cosets (including the trivial one containing 0) is

r := 1 +
p− 1

ordp(τ)
.
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Lemma 2.3. Given n = p prime and 2 < d ≤ p−1
2

, for the group action of
Gp on Cd,p, we have

|Fix(στ )| ≤ |Fix(σp−1)| for 2 ≤ τ < p− 1. (12)

Proof. Let f = (1, i2, . . . , id) ∈ Fix(στ ). Thus, for every 0 ≤ k ≤ p− 1, there
exists tk such that (all equations are Mod p)

στ ((1, i2, . . . , id)) = (1, (i2 − 1)τ + 1, . . . , (id − 1)τ + 1),

στ ((1 + k, i2 + k, . . . , id + k)) = (kτ + 1, (k + i2 − 1)τ + 1, . . . , (k + id − 1)τ + 1)

= (1 + tk, i2 + tk, . . . , id + tk).

(Recall that the order is unimportant in our function notation - see the
Introduction.) Therefore, for fixed k, there exists a permutation π := πk ∈ Sd
(the group of permutations in d symbols) such that (we let i1 = 1 and the
equations are Mod p)

(k + iπ(j) − 1)τ + 1 = ij + tk, 1 ≤ j ≤ d, that is,

tk − (k − 1)τ − 1 = τ iπ(j) − ij, for any 1 ≤ j ≤ d. (13)

Now, summing (13) for all 1 ≤ j ≤ d, and denoting Λ :=
∑d

j=1 ij, we get

dtk − (k − 1)τd− d = τΛ− Λ = (τ − 1)Λ, and so,

tk − (k − 1)τ − 1 = (τ − 1)Λd−1 = (τ iπ(j) − ij) Mod p, (14)

which is independent of k, since τ,Λ, d do not depend upon k.
We rewrite (14) as

τ
(
Λd−1 − iπ(j)

)
= (Λd−1 − ij) Mod p,

and denoting I := {Λd−1 − ij : 1 ≤ j ≤ d} (observe that π(I) = I for any
permutation π ∈ Sd), we infer that I is invariant under multiplication by τ
(or any power of it, of course) and consequently, I is a union of cyclotomic
cosets of τ modulo p. If τ happens to be a primitive root modulo p, that is
ordp(τ) = p − 1 (it is well known [12, Thm. 2.9] that there are φ(p − 1) ≥

p
eγ log log p

+O
(

p
(log log p)2

)
such values of τ , where γ = 0.57721566 . . . is Euler’s

constant), then there are exactly 2 cyclotomic cosets, and I of cardinality
2 < d ≤ p−1

2
cannot be a union of cyclotomic cosets.

We next assume that τ is not a primitive root. Let an MRS f ∈ Fix(στ ).
Given our discussion above, the set I for given f is invariant under multi-
plication by τ Mod p, and so the cardinality of Fix(στ ) is no larger than the
cardinality of the set of d-element unions of τ -cyclotomic cosets

12



For the rest of the proof, it is convenient to have a unique representation
for the functions that we discuss, so we shall always assume any function f
is represented in the unique standard form that f has in the set Dd,p (see the
Introduction).

Thus, every function in Fix(στ ) corresponds uniquely to a d-element union
of τ -cyclotomic cosets (the correspondence may not be bijective). Further,
observe that the number of ways of selecting (unordered) τ -cyclotomic cosets
is larger (given τ Mod p > 1) when ordp(τ) = 2, that is, τ = p − 1 Mod p
(since, if τ 6= ±1 Mod p, then ordp(τ) > 2, and we have fewer τ -cyclotomic
cosets to choose from). Therefore, to show our result, it will be sufficient
to show that when τ = p − 1 Mod p, in reality, |Fix(σp−1)| is exactly given
by the count of the different d-element unions of (p − 1)-cyclotomic cosets
Mod p.

If g = (1, s2, . . . , sd) ∈ Fix(σp−1) then, for every 0 ≤ k ≤ p − 1, there
exists Tk such that (all identities are Mod p)

σp−1 ((1, s2, . . . , sd)) = (1, 2− s2, . . . , 2− sd),
σp−1 ((1 + k, s2 + k, . . . , sd + k)) = (1− k, 2− s2 − k, . . . , 2− sd − k)

= (1 + Tk, s2 + Tk, . . . , sd + Tk).

(Again, the order is unimportant in the function notation.) Thus, for fixed
k, there exists a permutation ψ := ψk ∈ Sd such that 2− sj − k = sψ(j) + Tk,
for 1 ≤ j ≤ d, or equivalently,

2− k − Tk = (sψ(j) + sj) Mod p. (15)

As for στ , denoting Γ :=
∑d

j=1 sj, summing (15) for all j we obtain

2− k − Tk = 2Γd−1 = (sψ(j) + sj) Mod p, (16)

independent of k. As before, it follows that the set J := {Γd−1 − sj : 1 ≤
j ≤ d} (observe that ψ(J) = J for any permutation ψ ∈ Sd) is invariant
under multiplication by (p− 1) Mod p and so, J must be a d-element union
of (p − 1)-cyclotomic cosets. The (nontrivial) (p − 1)-cyclotomic cosets are
of the form {k, p − k}, 1 ≤ k ≤ (p − 1)/2. Therefore, if d is even, then
J = {{kj, p− kj} : 1 ≤ j ≤ d/2}, where 1 ≤ kj ≤ (p− 1)/2 and if d is odd
we include the trivial coset in J.

We assume next that d is even (we will mention the differences, if any,
for the case of d odd). To finish the proof, we need to show that any such d-
element union generates a unique function in Fix(σp−1), that is, the integers

13



sj are uniquely determined by the kj. Consider the system{
Λ d−1 − s2j−1 = kj

Λ d−1 − s2j = p− kj
for 1 ≤ j ≤ d/2 (17)

which implies that

s2j − s2j−1 = 2kj − p, 1 ≤ j ≤ d/2, (18)

This implies that once s2j is chosen, then s2j−1 is uniquely determined

by (18). Therefore, the number of such choices for {s2j} is
(
(p−1)/2
d/2

)
if d

is even (if d odd, it would be
(
(p−1)/2
(d−1)/2

)
). This proves the lemma and also

proves (9). (Observe that, given g = (s1, . . . , sd) in Fix(σp−1), if we define
kj by (17) and (16), then S = {kj, p − kj} is a union of (p − 1)-cyclotomic
cosets.)

Next we need a result similar to Lemma 3.1 below. From now on, for
brevity we use “MRS” to mean “MRS function(s).”

Lemma 2.4. Let f be an MRS of degree d in prime p dimension whose sup-
port is δ(f) = {1, i2, . . . , id}. Then, its equivalence class under permutation
of variables contains an MRS g with support δ(g) = {1, 2, j3, . . . , jd}.

Proof. We define the permutation σ(i) = (i− 1)(i2− 1)−1 + 1 Mod p and we
show that σ transforms f into another MRS g whose support contains 1, 2.
Certainly, σ(1) = 1, σ(i2) = 2. We need to show that g = σ ◦ f is an MRS.
This is achieved by induction observing that

σ((2, i2 + 1, . . . , id + 1)) = ((i2 − 1)−1 + 1, i2(i2 − 1)−1 + 1, . . . , id(i2 − 1)−1 + 1)

= (i2 − 1)−1 + (1, 2, . . . , (id − 1)(i2 − 1)−1 + 1)

= (i2 − 1)−1 + σ((1, i2, . . . , id)).

Similarly, for every k (recall that indices are taken Mod p)

σ((1+k, i2 +k, . . . , id+k)) = (i2−1)−1 +σ((k−1, i2 +k−1, . . . , id+k−1)),

and since p is prime (so the shift (i2 − 1)−1 is coprime to p), then adding
(i2 − 1)−1 to the first output will cover all of the d-tuples, and so g is an
MRS.

By Lemma 2.4, we will find upper and lower bounds for the number of
equivalence classes by looking at classes containing {1, 2, i3, . . . , id} only.
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Theorem 2.4. The number of equivalence classes of degree d ≥ 3 MRS
functions in p ≥ 7 (prime) variables satisfies

1

p(p− 1)

(
p

d

)
≤ Ed,p ≤

1

p(p− 1)

(
p

d

)
+

(
(p− 1)/2

d(d− 1)/2e

)
. (19)

Hence

Ed,p =
1

d!
pd−2 +O(pd−3) (20)

and also

Ed,p =
1

d!
pd−2 +

1

d!

(
d2 − d− 2

2

)
pd−3 +O(pd−4) if d ≥ 5. (21)

Proof. We give two proofs for the lower bound. First, we use necklace count-
ing (see [13]) to find a formula for the number |Dd,n| of MRS functions of
degree d in n variables, namely

|Dd,n| =
1

n

∑
i| gcd(n,d)

φ(i)

(n
i
d
i

)
,

where φ is Euler’s totient function. If we take n = p prime, p > d, we get
|Dd,p| = 1

p

(
p
d

)
, and since the largest possible class has size p− 1 we have the

lower bound

Ed,p ≥
1

p(p− 1)

(
p

d

)
=

1

d!
pd−2 +O(pd−3).

Second, two MRS f, g of (ordered) support δ(f) = {1, 2, i3, . . . , id} and
δ(g) = {1, 2, j3, . . . , jd} are equivalent if and only if the corresponding cir-
culant matrices are P -Q equivalent if and only if (by Theorem 2.1) there
exists 1 ≤ u ≤ p − 1 with uδ(f) + v = δ(g). Certainly, for a fixed d-tuple
(1, 2, i3, . . . , id) there are d! possible (1, 2, j3, . . . , jd), but since the first two
indices are fixed, (d−2)! of them are the same, that is, every fixed (i3, . . . , id)
will give rise to d!

(d−2)! = d(d− 1) putative (j3, . . . , jd). Thus, we obtain that
the number of classes satisfies

Ed,p ≥
1

d(d− 1)

(
p− 2

d− 2

)
=

1

p(p− 1)

(
p

d

)
,

so the lower bound by this method is the same as the bound above.
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We now turn to the upper bound. Here we simply use Lemma 2.1. The
Fix(σ1) term in the sum is clearly

1

p− 1
|Dd,p| =

1

p(p− 1)

(
p

d

)
=

1

d!

(
pd−2 −

(
d2 − d− 2

2

)
pd−3

)
+O(pd−4)

(22)
for d ≥ 3, and by Lemmas 2.2 and 2.3 the other p− 2 terms in the sum each
satisfy

1

p− 1
Fix(σ) ≤ 1

p− 1

(
(p− 1)/2

d(d− 1)/2e

)
= O

(
pd(d−3)/2e

)
. (23)

Now (22) and (23) together give (20) and, for d ≥ 5, also give (21).

Remark 2.1. We observe that the lower bound of (19) is attained (assuming
that the lower bound is replaced by the ceiling, of course). For example, if
p = 11, d = 3, then Ed,p = 2, which equals the lower bound d1.5e = 2. In
reality, the lower bound is always attained for primes p ≥ 7 with p ≡ 5
(mod 6), and degrees d = 3, since then the lower bound of (19) is dp−2

6
e =

dp
6
e = E3,p (see [4]). From of the unimodality of the binomial coefficients,

for p fixed, the smallest gap (p− 1)/2 between the lower and upper bound is
achieved when d = 3 (under the assumption that 3 ≤ d ≤ (p− 1)/2).

3 The exact number of quintic equivalence

classes in prime dimension

We use the two Theorems 1.1 and 1.2 (or 2.1) to get an exact count for E5,p,
where p is a prime number. For easy displaying, we sometimes write a

b
to

mean ab−1, and
√
a to mean a1/2 (if it exists) in the prime field Fp.

We start with a descriptive lemma detailing some representatives of the
equivalence classes.

Lemma 3.1. The P-equivalence class of any quintic MRS h in n dimen-
sion, with δ(h) = {1, i, j, k, s} where at least one of gcd(i − 1, n), gcd(j −
1, n), gcd(k−1, n), gcd(s−1, n), gcd(j−i, n), gcd(k−i, n), gcd(s−i, n), gcd(k−
j, n), gcd(s− j, n), gcd(s− k, n) is 1 (which is always true for prime dimen-
sions), contains a quintic MRS g with δ(g) = {1, 2, a, b, c}.

Proof. By Theorem 1.1 and Theorem 1.2 it will be sufficient to show that for
every such MRS h with δ(h) = {1, i, j, k, s}, there exists u, v such that uδ(h)+
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v = {1, 2, a, b, c}, for some a, b, c (we write {1, i, j, k, s} ∼ {1, 2, a, b, c}). We
assume that at least one of gcd(i − 1, n) = 1, gcd(j − 1, n) = 1, gcd(k −
1, n) = 1, gcd(i − j, n) = 1, gcd(k − j, n) = 1, gcd(k − i, n) = 1 holds,
say gcd(i− 1, n) = 1 (the other cases are similar). We easily see that taking
u = (i−1)−1, v = 1−(i−1)−1, then {1, i, j, k, s} ∼ {1, 2, a, b, c} via u, v, where
a = 1 + (j− 1)(i− 1)−1, b = 1 + (k− 1)(i− 1)−1, a = 1 + (s− 1)(i− 1)−1.

Since we have to consider several disjoint cases, we slightly change nota-
tions in this section. We denote by E(p)k,`,... the number of distinct equiva-
lence classes of quintic MRS in p variables, for p ≡ k, `, . . . (mod 20), where
k, `, . . . ∈ {1, 3, 7, 9, 11, 13, 17, 19}.

Theorem 3.1. Suppose p ≥ 7 is a prime. Then the number of P-equivalence
classes of quintic MRS in p variables is

E(p)1 =
p3 − 9p2 + 41p+ 87

120
, E(p)11 =

p3 − 9p2 + 41p+ 27

120
,

E(p)9,13,17 =
p3 − 9p2 + 41p− 9

120
, E(p)3,7,19 =

p3 − 9p2 + 41p− 69

120
.

Proof. Prime p must be at least 41 in order to use Lemma 3.1, since the proof
of that lemma depends on Theorem 1.2. But we can verify Theorem 3.1 by
calculation for 41 > p ≥ 7, so we can assume p ≥ 41 in this proof. Since p
is prime, by Lemma 3.1 it is sufficient to find the number of nonequivalent
MRS with support {1, 2, a, b, c}. For that purpose, we fix 3 ≤ j < k < s ≤ p
and look at possible 3 ≤ a < b < c ≤ p such that {1, 2, j, k, s} ∼ {1, 2, a, b, c}.
Solving the corresponding 120 systems and removing duplications we obtain
the following 20 possible values of {a, b, c} (unordered triples):

{j, k, s} ; {3− j, 3− k, 3− s} ;{
1 +

1

j − 1
, 1 +

k − 1

j − 1
, 1 +

s− 1

j − 1

}
;

{
1 +

1

k − 1
, 1 +

j − 1

k − 1
, 1 +

s− 1

k − 1

}
;{

1 +
1

s− 1
, 1 +

j − 1

s− 1
, 1 +

k − 1

s− 1

}
;

{
2− 1

j − 1
, 2− k − 1

j − 1
, 2− s− 1

j − 1

}
;{

2− 1

k − 1
, 2− j − 1

k − 1
, 2− s− 1

k − 1

}
;

{
2− 1

s− 1
, 2− j − 1

s− 1
, 2− k − 1

s− 1

}
;{

1− 1

j − 2
, 1 +

k − 2

j − 2
, 1 +

s− 2

j − 2

}
;

{
1− 1

k − 2
, 1 +

j − 2

k − 2
, 1 +

s− 2

k − 2

}
;{

1− 1

s− 2
, 1 +

j − 2

s− 2
, 1 +

k − 2

s− 2

}
;

{
2 +

1

j − 2
, 2− k − 2

j − 2
, 2− s− 2

j − 2

}
; (24){

2 +
1

k − 2
, 2− j − 2

k − 2
, 2− s− 2

k − 2

}
;

{
2 +

1

s− 2
, 2− j − 2

s− 2
, 2− k − 2

s− 2

}
;
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{
1− j − 2

k − j
, 1− j − 1

k − j
, 1 +

s− j
k − j

}
;

{
1− j − 2

s− j
, 1− j − 1

s− j
, 1 +

k − j
s− j

}
;{

1 +
k − 1

k − j
, 1 +

k − 2

k − j
, 1− s− k

k − j

}
;

{
1 +

s− k
s− j

, 1 +
s− 2

s− j
, 1 +

s− 1

s− j

}
;{

1− k − 2

s− k
, 1− k − 1

s− k
, 1− k − j

s− k

}
;

{
1 +

s− j
s− k

, 1 +
s− 2

s− k
, 1 +

s− 1

s− k

}
.

The set above would have a cardinality smaller than 20 if two (or more)
such triples would overlap. Going diligently through the

(
20
2

)
such systems

(we used a Mathematica program to quickly sieve the output), we found the
following possibilities when the set (24) shrinks.
Case 1. j = 3, s = 4− k (we see below that this case includes k = 3− j, s =
3·2−1 = p+3

2
; or, k = j+1, s = 1+j ·2−1 = 1+j p+1

2
; or, k = 2j−2, s = 2j−1,

as well). The list of possible values for the triples {a, b, c} in this case becomes

{3, k, 4− k}; {0, 3− k, k − 1};{
3

2
,
5− k

2
,
k + 1

2

}
;

{
2

k − 1
, 1 +

1

k − 1
, 1 +

2

k − 1

}
;{

− 2

k − 3
, 1− 2

k − 3
, 1− 1

k − 3

}
;

{
2− 1

k − 1
, 2− 2

k − 1
, 3− 2

k − 1

}
;{

2 +
1

k − 3
, 2 +

2

k − 3
, 3 +

2

k − 3

}
;

{
0, 1 +

1

k − 2
, 1− 1

k − 2

}
;{

3, 2− 1

k − 2
, 2 +

1

k − 2

}
;

{
3

2
,
1

2

(
3 +

1

k − 2

)
,
1

2

(
3− 1

k − 2

)}
.

(25)

If p ≡ 1 (mod 4), by Gauss’ reciprocity law, −1 is a quadratic residue
modulo p, and so, for {k0, 4−k0} = {2± (−1)1/2, 2∓ (−1)1/2} Mod p (which
happens when the first triple equals the eighth, that is, k = 2 − (k −
2)−1 Mod p, for example) the set (25) shrinks into the set of cardinality 5

{3, k0, 4− k0}; {0, k0 − 1, 3− k0};
{

2

k0 − 1
, 1 +

2

k0 − 1
, 1 +

1

k0 − 1

}
;{

− 2

k0 − 3
, 1− 2

k0 − 3
, 1− 1

k0 − 3

}
;

{
3

2
,
1

2

(
3− 1

k0 − 2

)
,
1

2

(
3 +

1

k0 − 2

)}
,

only one of which is of the form {3, k, s}. Otherwise, the set (25) has
cardinality 10, only two of which have the form {3, k, s}. We note that here
are p−3

2
ordered pairs (k, 4− k), with k ≥ 4.
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Case 2. {j, k, s} =

{
5−
√
5−
√

2
√
5−10

4 , 7−
√
5−
√

2
√
5−10

4 , 12+
√

10
√
5−50−

√
2
√
5−10

8

}
(and

several like these, which are all included in the same class; we used the com-
plex numbers representation to avoid cluttering). This is a slightly more
complicated case to analyze.

It is well known (see [10, Theorem 97] that 5 is a quadratic residue for
p ≡ ±1 (mod 5) (which is the same as p ≡ ±1 (mod 10)). Since this case
does require it, we next assume that p ≡ ±1 (mod 5). Next, we prove that
if p ≡ 1 (mod 5), then also 2

√
5 − 10 is a quadratic residue modulo p, and

so, all the above expressions for j, k, s exist modulo p. To show that, we

take the minimal polynomial for
√

2
√

5− 10, that is, f(x) = x4 + 20x2 + 80,
which is seen to be irreducible by Eisenstein’s criterion. The polynomial
has discriminant 216 · 53 (thus p does not divide the discriminant), its Galois
group is the cyclic group of 4 elements (we also rechecked this by PARI/GP),

and its roots in an extension of the prime field are α =
√

2
√

5− 10, β =√
−2
√

5− 10,−α,−β (the polynomial being biquadratic).
We may possibly use [1, Theorem 3.3] to show that if p ≡ 1 (mod 5),

then f splits completely over Zp, and if p ≡ −1 (mod 5) it can be factored
as a product of two irreducible polynomials of degree 2 (although, we do not
need this second part), but one can also show this directly in the following
way. The splitting field of f over the field of rational numbers Q is Q(α, β).

Since αβ = −4
√

5, then β ∈ Q(α) and so, we have the tower of fields Q 2
↪→

Q(
√

5)
2
↪→ Q(α, β) = Q(α). Moreover, the splitting field of f , which we just

showed is Q(α), has degree 4 over Q, which is the same as the degree of the
cyclotomic extension of Q generated by ζ5 = e2πi/5, which contains Q(

√
5),

since 2
√

5 − 10 = 2
√

5(1 −
√

5) = −4(ζ5 + ζ5)
(
1 + 2(ζ5 + ζ5)

)
. However,

since ζ5 = 4β−αβ−4
16

, then Q(ζ5) ↪→ Q(α) and since they have the same degree
over Q, they must be equal.

Furthermore, the Frobenius automorphism takes ζ5 to ζp5 = e2pπi/5, which
fixes ζ5 if p ≡ 1 (mod 5), and moves it to ζ5 (cycle of length 2) if p ≡ −1
(mod 5). Thus, if p ≡ 1 (mod 5), the above minimal polynomial splits into
linear factors and if p ≡ −1 (mod 5), it splits into quadratic factors.

Therefore, if p ≡ 1 (mod 5), we have another equivalence class with rep-
resentative {1, 2, j, k, s} of cardinality 4 (counting only the representatives
{1, 2, . . .}).

Putting all these counts together, we find that the total contribution to
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E(p)(·) in the various cases is

E(p)1 ← 1 + 1 +
p−3
2 − 1

2
+

(
p−2
3

)
− 5 · 1− 4 · 1− 10 ·

p−3
2 −1

2

20
=
p3 − 9p2 + 41p+ 87

120
,

E(p)11 ← 1 +
p−3
2

2
+

(
p−2
3

)
− 4 · 1− 10 ·

p−3
2

2

20
=
p3 − 9p2 + 41p+ 27

120
,

E(p)9,13,17 ← 1 +
p−3
2 − 1

2
+

(
p−2
3

)
− 5 · 1− 10 ·

p−3
2 −1

2

20
=
p3 − 9p2 + 41p− 9

120
,

E(p)3,7,19 ←
p−3
2

2
+

(
p−2
3

)
− 10 ·

p−3
2

2

20
=
p3 − 9p2 + 41p− 69

120
,

and the theorem is shown.
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