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Abstract

While performing cryptanalysis, it is of interest to approximate a
Boolean function in n variables f : Fn

2 → F2 by affine functions. Usu-
ally, it is assumed that all the input vectors to a Boolean function
are equiprobable while mounting affine approximation attack or fast
correlation attacks. In this paper we consider a more general case
when each component of the input vector to f is independent and
identically distributed Bernoulli variates with the parameter p. Since
our scope is within the area of cryptography, we initiate an analysis
of cryptographic Boolean functions under the previous considerations
and derive expression of the analogue of Walsh–Hadamard transform
and nonlinearity in the case under consideration. We observe that if
we allow p to take up complex values then a framework involving quan-
tum Boolean functions can be introduced, which provides a connection
between Walsh-Hadamard transform, nega-Hadamard transform and
Boolean functions with biased inputs.

Keywords: Boolean functions, quantum Boolean functions, bias, Walsh–
Hadamard transform, nega-Hadamard transform.
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1 Introduction

Let Z, R and C be the sets of integers, real numbers, and complex numbers
respectively. Additions over Z, R, C are all denoted by ‘+’ and multiplica-
tions are denoted by juxtaposing the two elements to be multiplied. Any
complex number can be written as z = a+ıb where ı2 = −1 and the absolute
value of z is |z| =

√
a2 + b2, this includes the case when b = 0 that is z is es-

sentially a real number. The real part a of z is denoted by <(z) and the imag-
inary part b is denoted by =(z). If S is a set then |S| denotes the cardinality
of S. The set of positive integers x such that 1 ≤ x ≤ n is denoted by [n].
Let 0 ≤ p < 1 and Vn(p) = {x = (x1, . . . , xn) : xi ∈ F2, for all i ∈ [n]}
(F2 is the two-element field) be the n-dimensional Hamming space with the
probability measure µp defined by

µp(x) = pwt(x)(1− p)n−wt(x), (1)

for all x ∈ Vn(p), where wt(x) =
∑

i∈[n] xi is the weight of x. The binary
operation addition modulo 2 is defined on F2 which induces a component-
wise addition on Vn(p), both of them denoted by ‘⊕’. The multiplication
over F2 is denoted by juxtaposing the two elements to be multiplied, and is
also known as multiplication modulo 2. When we need not emphasize the
probability measure on Vn(p) we shall use the more standard notation Fn2
for that vector space. For any x,y ∈ Fn2 , define the inner product as x ·y =∑

i∈[n] xiyi. Another operation which is often useful is the intersection,
which is defined as x ∗y = (x1y1, . . . , xnyn), for all x,y ∈ Fn2 . Moreover, we
have

wt(x) + wt(y)− 2wt(x ∗ y) = wt(x⊕ y).

Let Bn(p) denote the set of all functions from Vn(p) to F2. We refer to
these functions as µp-Boolean functions. The algebraic normal form (ANF)
of f ∈ Bn(p) is

f(x) =
⊕

a=(a1,...,an)

ca
∏
i∈[n]

xaii (2)

where ca ∈ F2 for all a ∈ Fn2 .
In this paper we start a systematic study of this generalization for

cryptographic Boolean functions first by considering their distances from
affine functions and thereby introducing µp-Walsh–Hadamard transform at
u ∈ Vn(p)

W (p)(u) =
∑
x∈Fn

2

ρwt(x)(−1)f(x)⊕u·x
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where ρ = p
1−p . We observe that if we substitute p = 1+ı

2 , then W (p)(u) is
the nega-Hadamard transform

W (p)(u) =
∑
x∈Fn

2

ıwt(x)(−1)f(x)⊕u·x

which is considered by Parker [10], Riera et al. [13], Parker et al. [11],
Schmidt et al. [15], Stănică et al. [16]. We introduce a quantum Boolean
function framework to explain the complex values of the constant ρ. Parker
[10] has left the development of cryptanalytic techniques by using the gen-
eralized spectra of Boolean functions as a future research problem. The
connection between the affine approximations of µp-Boolean functions, µp-
Walsh-Hadamard spectra and nega-Hadamard spectra in this paper might
prove to be a step towards that problem.

Boolean functions with biased inputs, which we refer to as µp-Boolean
functions, is a common generalization of Boolean functions which stems
from the theory of random graphs developed by Erdős and Rényi [2]. The
graph properties in a random graph expressed as such Boolean functions
are used by Friedgut and Kalai [3]. Fourier Entropy-Influence conjecture is
also formulated in the biased framework by Keller, Mossel and Schlank [4],
O’Donnell and Tan [9]. For a detailed discussion on the Fourier analysis
of µp-Boolean functions we refer to [8]. Using our notations, the Fourier
expansion of f ∈ Bn(p) used in [4, 8] can be written as

(−1)f(x) =
∑
u∈Fn

2

f̂(u)(−1)u·x(
√
ρ)wt(x)ρwt(u∗x) (3)

where the Fourier coefficient

f̂(u) = (1− p)n
∑
x∈Fn

2

(−1)f(x)(−1)u·x(
√
ρ)wt(x)ρwt(u∗x). (4)

The above expansion is with respect to an orthonormal basis and is a part
of the standard theory of µp-Boolean functions. However this expansion
does not lead to the interconnection between Walsh–Hadamard and nega-
Hadamard transform which is immediate from our approach. The interest
shown in the recent past by researchers on nega-Hadamard transform along
with its generalizations, and the possibility of their cryptographic signifi-
cance, motivates our present investigation.
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2 The distance in Bn(p) and µp-Walsh–Hadamard
transform

We note that in the cryptographic or the coding theoretic context we con-
sider approximations of Boolean functions by the affine functions when the
inputs are equiprobable. The set of all such functions is denoted by Bn

(
1
2

)
,

in short Bn. The distance dp(f, g) between f and g, referred to as µp-
distance, is defined as 2n times the probability that their outputs differ
when the input is from Vn(p). This distance is the same as the Hamming
distance if p = 1

2 . Precisely, if Sf 6=g = {x ∈ Fn2 : f(x) 6= g(x)}, then (we
set ρ := p

1−p)

dp(f, g) = 2n
∑

x∈Sf 6=g

pwt(x)(1− p)n−wt(x)

= 2n(1− p)n
∑

x∈Sf 6=g

ρwt(x)

= 2n−2(1− p)n
∑
x∈Fn

2

ρwt(x)((−1)f(x) − (−1)g(x))2

= 2n−2(1− p)n
∑
x∈Fn

2

ρwt(x)(2− 2(−1)f(x)⊕g(x))

= 2n−1(1− p)n
∑

x∈Fn
2

ρwt(x) −
∑
x∈Fn

2

ρwt(x)(−1)f(x)⊕g(x)


= 2n−1(1− p)n

 n∑
k=0

(
n

k

)
ρk −

∑
x∈Fn

2

ρwt(x)(−1)f(x)⊕g(x)


= 2n−1(1− p)n

(ρ+ 1)n −
∑
x∈Fn

2

ρwt(x)(−1)f(x)⊕g(x)


= 2n−1 − 2n(1− p)n

2

∑
x∈Fn

2

ρwt(x)(−1)f(x)⊕g(x).

For each u ∈ Fn2 , b ∈ F2, we define the corresponding affine function `u,b by
`u,b(x) = u · x⊕ b, for all x ∈ Fn2 . Then

dp(f, `u,b) = 2n−1 − (−1)b
2n(1− p)n

2

∑
x∈Fn

2

ρwt(x)(−1)f(x)⊕u·x. (5)
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Comparing (5) to the case of p = 1
2 we observe that we can define an

analogue of the Walsh–Hadamard transform, which we shall refer to as the
Walsh–Hadamard transform of f with respect to the probability measure µp
or the µp-Walsh–Hadamard transform of f at u ∈ Vn(p)

W
(p)
f (u) =

∑
x∈Fn

2

ρwt(x)(−1)f(x)⊕u·x (6)

where ρ = p
1−p ∈ C. From (6) we have∑

u∈Fn
2

W
(p)
f (u)(−1)u·v =

∑
u∈Fn

2

∑
x∈Fn

2

ρwt(x)(−1)f(x)⊕u·x(−1)u·v

=
∑
x∈Fn

2

ρwt(x)(−1)f(x)
∑
u∈Fn

2

(−1)u·(v⊕x)

= 2nρwt(v)(−1)f(v),

and so, the inverse of the µp-Walsh–Hadamard transform is

(−1)f(x) = 2−nρ−wt(x)
∑
u∈Fn

2

W
(p)
f (u)(−1)u·x. (7)

It is observed that if ρ = ı, then

W
(p)
f (u) =

∑
x∈Fn

2

ıwt(x)(−1)f(x)⊕u·x,

forcing p = 1+ı
2 . Since p is defined to be the probability that xi = 1 where

i ∈ [n], it must satisfy 0 ≤ p ≤ 1, ρ cannot take complex values in the
context of (classical) Boolean functions discussed above. However by lifting
the classical Boolean functions to the set of quantum Boolean functions in
the next section we observe that some naturally occurring sums are µp-
Walsh–Hadamard transforms where p can admit complex values. This leads
us to obtain Walsh–Hadamard transform and nega-Hadamard transform as
a special cases of µp-Walsh–Hadamard transform.

3 Quantum Boolean function framework

In this section we provide a framework in which it is natural to consider the
parameter ρ as a complex number rather than a real number. At the outset
we briefly introduce some notations related to quantum Boolean functions
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discussed in details by Montanaro and Osborne [6, 7]. Corresponding to
each vector x ∈ Fn2 we associate a quantum state |x〉. Consider a linear
combination of these states

|ϕ〉 =
∑
x∈Fn

2

βx|x〉 (8)

where βx ∈ C, for all x ∈ Fn2 , and
∑

x∈Fn
2
|βx|2 = 1. This is referred to

as an n-qubit. The set {|x〉 : x ∈ Fn2} is said to be the computational
basis. When we measure the n-qubit |ϕ〉 we get exactly one state of the
computational basis, say |x〉, as the result with the probability |βx|2. It is
possible to consider an n-qubit as an element of (C2)⊗n. Let I be the identity
operator on (C2)⊗n. Quantum Boolean functions are defined by Montanaro
and Osborne [6] as follows.

Definition 1. A unitary operator U on (C2)⊗n whose square is identity,
that is U2 = I, is said to be a quantum Boolean function.

The phase oracle implementation (cf. [6]) of a classical Boolean function
f : Fn2 → F2 on quantum computers is

F : |x〉 7→ (−1)f(x)|x〉, for all x ∈ Fn2 . (9)

We will denote the classical Boolean functions by lower case letters and
their quantum versions by the corresponding upper case letters. Using this
convention the operator corresponding to the affine function `u,b is denoted
by Lu,b. Let us consider a single qubit state

|ψ〉 = α|0〉+ β|1〉 (10)

where α, β ∈ C and |α|2 + |β|2 = 1. Let q = |α|2 and p = |β|2. Tensoring
|ψ〉 with itself n times we prepare the n-qubit state

|ϕ〉 = (|ψ〉)⊗n =
∑
x∈Fn

2

γx|x〉 (11)

where γx = αn−wt(x)βwt(x), for all x ∈ Fn2 . For all x ∈ Fn2 , |γx|2 =
pwt(x)qn−wt(x). Suppose we apply F and Lu,b to |ψ〉. Then the resulting
state is

(F ◦ Lu,b)(|ϕ〉) =
∑
x∈Fn

2

γx(−1)f(x)⊕`u,b(x)|x〉

=
∑
x∈Fn

2

γx(−1)f(x)⊕u·x⊕b|x〉.
(12)
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The square of L2 distance between the states |ϕ〉 and (F ◦ Lu,b)(|ϕ〉) is

∆2(|ϕ〉, (F ◦ Lu,b)(|ϕ〉))2 =
∑
x∈Fn

2

|γx|2|1− (−1)f(x)⊕`u,b(x)|2

= 4
∑

x∈Sf 6=`u,b

pwt(x)qn−wt(x)

= 22−ndp(f, `u,b)

= 2− 2(−1)b(1− p)n
∑
x∈Fn

2

ρwt(x)(−1)f(x)⊕u·x

where ρ = p
1−p as before. Thus we see that ∆2 depends on W

(p)
f (u) which

is the usual Walsh–Hadamard transform at u if α = 1
2 − ı

1
2 and β = 1

2 + ı12 .
If we consider the two states |ϕ〉 and (F ◦ Lu,b)(|ϕ〉) as vectors with

complex components and consider the sum of all the components of their
difference |ϕ〉 − (F ◦ Lu,b)(|ϕ〉) we obtain

δ(|ϕ〉, (F ◦ Lu,b)(|ϕ〉)) =
∑
x∈Fn

2

γx(1− (−1)f(x)⊕`u,b(x))

= 2
∑

x∈Sf 6=`u,b

βwt(x)αn−wt(x)

= 22−ndβ(f, `u,b)

= 1− (−1)b(1− p)n
∑
x∈Fn

2

σwt(x)(−1)f(x)⊕u·x

where σ = β
1−β . Thus, we observe that δ(|ϕ〉, (F ◦ Lu,b)(|ϕ〉)) depends on

W
(β)
f (u). If α = 1

2 − ı
1
2 and β = 1

2 + ı12 , then

W
(β)
f (u) =

∑
x∈Fn

2

ıwt(x)(−1)f(x)⊕u·x,

which is the nega-Hadamard transform of f at u.
From the above discussion it is clear that the transformation of the type

W
(p)
f (u) where p is a complex number can be associated to the effect of

the actions of F and Lu,b on an appropriately prepared quantum state. It
is observed that for special choices of p namely p = 1

2 and p = 1+ı
2 we

obtain, respectively, Walsh–Hadamard and nega-Hadamard transforms on
the Boolean function f . Thus, in order to investigate a general framework
where the inputs are not equiprobable it is natural to study µp-Walsh–
Hadamard transform where p ∈ C and p 6= 1.
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4 Properties of the µp-Walsh–Hadamard transform

In this section we explore some basic properties of µp-Walsh–Hadamard
transform. Using (5) we can also define the µp-weight of a function to be

wt(p)(f) = dp(f,0) = 2n−1 − 2n(1− p)n

2

∑
x∈Fn

2

ρwt(x)(−1)f(x)

= 2n−1
(

1− (1− p)nW (p)
f (0)

)
.

We will use the following identity throughout the paper (we always use
the convention that anything raised to the power 0 is 1).

Lemma 2. Let p ∈ C and u ∈ Vn(p), then

∑
x∈Fn

2

(−1)u·xρwt(x) = (1 + ρ)n−wt(u)(1− ρ)wt(u) =
(1− 2p)wt(u)

(1− p)n
.

Proof. We have

∑
x∈Fn

2

(−1)u·xρwt(x) =
n∏
k=1

(1 + ρ(−1)uk)

= (1 + ρ)n−wt(u)(1− ρ)wt(u)

= (1 + ρ)n
(

1− ρ
1 + ρ

)wt(u)

=
(1− 2p)wt(u)

(1− p)n
,

since 1 + ρ = 1
1−p and 1−ρ

1+ρ = 1− 2p.

Corollary 3. The µp-weight of an affine function `u,b is

wt(p)(`u,b) = 2n−1
(

1− (−1)b(1− 2p)wt(u)
)
.

The next lemma is immediate.

Lemma 4. If W
(p)
f (u) =

∑
x∈Fn

2
ρwt(x)(−1)f(x)⊕u·x, then W

(p)
f (u ⊕ 1) =∑

x∈Fn
2
(−ρ)wt(x)(−1)f(x)⊕u·x.

We prove next a theorem similar to [16, Theorem 3] in the nega context.
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Theorem 5. The following are true:

(i) Plancherel identity:∑
u∈Fn

2

∣∣∣W (p)
f (u)

∣∣∣2 = 2n(|ρ|2 + 1)n. (13)

(ii) For u ∈ Vn(p), b ∈ F2, then W
(p)
`u,b

(v) = (−1)b
(1− 2p)wt(u⊕v)

(1− p)n
.

(iii) If f ∈ Bn(p),u ∈ Vn(p), b ∈ F2, then W
(p)
f⊕`u,b

(v) = (−1)bW
(p)
f (u⊕v).

(iv) If h(x) = f(x)⊕ g(x), then

2nW
(p)
h (u) =

∑
v∈Fn

2

W
(p)
f (v)Wg(u⊕ v) =

∑
v∈Fn

2

W (p)
g (v)Wf (u⊕ v).

(v) If h(x,y) = f(x)⊕ g(y), then W
(p)
h (u,v) = W

(p)
f (u)W

(p)
g (v).

(vi) If h(x,y) = f(x) · g(y), x ∈ Fn2 ,y ∈ Vk(p), then

W
(p)
h (u,v) = W

(p)
f (u)Sg1(v) +

(1− 2p)wt(u)

(1− p)n
Sg0(v)

= W (p)
g (v)Sf1(u) +

(1− 2p)wt(v)

(1− p)k
Sf0(u),

where Sg1(v) =
∑

y∈Vk(p)
g(y)=1

(−1)y·v ρwt(y), Sg0(v) =
∑

y∈Vk(p)
g(y)=0

(−1)y·v ρwt(y),

and so, Sg0(v) + Sg1(v) = (1−2p)wt(v)

(1−p)n . If k = 1 and g(y) = y, then

Wyf(x)(u, v) = (−1)v ρW
(p)
f (u) +

(1− 2p)wt(u)

(1− p)n

W(y⊕1)f(x)(u, v) = W
(p)
f (u) + (−1)v

p(1− 2p)wt(u)

(1− p)n+1
.

(vii) If h(x) = f(xA⊕ a), for A ∈ On(F2) (orthogonal group), then

W
(p)
h (u) = (−1)u·(aA

−1)
∑
z∈Fn

2

(−1)f(z)⊕z·uA
−1
ρwt(z⊕a),

W
(p)
h (u) = (−1)u·(aA

−1)W
(p)
f (uA−1), if a = 0.
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Proof. First, we note that∑
u∈Fn

2

∣∣∣W (p)
f (u)

∣∣∣2
=
∑
u∈Fn

2

∑
x∈Fn

2

ρwt(x)(−1)f(x)⊕u·x
∑
y∈Fn

2

ρ̄wt(y)(−1)f(y)⊕u·y

=
∑
Fn
2

∑
x∈Vn(p)

∑
y∈Vn(p)

ρwt(x)ρ̄wt(y)(−1)f(x)⊕f(y)⊕u·x⊕u·y

=
∑
x∈Fn

2

∑
y∈Fn

2

ρwt(x)ρ̄wt(y)(−1)f(x)⊕f(y)
∑

u∈Vn(p)

(−1)u·(x⊕y)

= 2n
∑
x∈Fn

2

|ρ|2wt(x) = 2n
n∑
k=0

(
n

k

)
|ρ|2k = 2n(|ρ|2 + 1)n,

which shows Plancherel identity (i).
To show (ii),

W
(p)
`u,b

(v) =
∑
x∈Fn

2

ρwt(x)(−1)u·x⊕ b⊕v·x

= (−1)b
∑
x∈Fn

2

ρwt(x)(−1)(u⊕v)·x

= (−1)b
(1− 2p)wt(u⊕v)

(1− p)n
.

Next, to show (iii),

W
(p)
f⊕`u,b

(v) =
∑
x∈Fn

2

ρwt(x)(−1)f(x)⊕u·x⊕ b⊕v·x

= (−1)b
∑
x∈Fn

2

ρwt(x)(−1)f(x)⊕(u⊕v)·x

= (−1)bW
(p)
f (u⊕ v).

To prove (iv) start with

W
(p)
f (v) =

∑
y∈Fn

2

ρwt(y)(−1)f(y)⊕y·v,

Wg(u⊕ v) =
∑
z∈Fn

2

(−1)g(z)⊕z·(u⊕v),
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and since (see [1, p. 8])

∑
v

(−1)v·w =

{
2n if w = 0

0 if w 6= 0,

we obtain∑
v∈Fn

2

W
(p)
f (v)Wg(u⊕ v) =

∑
v,y,z
in Fn

2

(−1)f(y)⊕g(z)⊕v·(y⊕z)⊕u·z ρwt(y)

=
∑
y,z

in Fn
2

(−1)f(y)⊕g(z)⊕u·z ρwt(y)
∑
v

(−1)v·(y⊕z)

=
∑
y∈Fn

2

(−1)f(y)⊕g(y)⊕u·y ρwt(y)

= 2nW
(p)
f⊕g(u).

The second claim of (iv) is similar. To prove (v) we write

W
(p)
f (u) =

∑
x∈Fn

2

ρwt(x)(−1)f(x)⊕x·u,

W (p)
g (v) =

∑
y∈Fn

2

ρwt(y)(−1)g(y)⊕y·v,

and multiplying these expressions, we obtain

W
(p)
f (u)W (p)

g (v) =
∑
x∈Fn

2

ρwt(x)(−1)f(x)⊕x·u
∑
y∈Fn

2

ρwt(y)(−1)g(y)⊕y·v

=
∑
x,y
in Fn

2

ρwt(x)ρwt(y)(−1)f(x)⊕x·u(−1)g(y)⊕y·v

=
∑
x,y
in Fn

2

ρwt(x)+wt(y)(−1)f(x)⊕g(y)⊕x·u⊕y·v

=
∑

(x,y)∈F2n
2

ρwt(x,y)(−1)h(x,y)⊕(x,y)·(u,v)

= W
(p)
h (u,v).
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To prove (vi) we write

W
(p)
h (u,v) =

∑
(x,y)∈Fn+k

2

(−1)h(x,y)⊕(x,y)·(u,v)ρwt(x,y)

=
∑

(x,y)∈Fn+k
2

(−1)f(x)g(y)⊕x·u⊕y·v ρwt(x)+wt(y)

=
∑
y∈Fk

2
g(y)=1

(−1)y·v ρwt(y)
∑
x

(−1)f(x)⊕x·u ρwt(x)

+
∑
y∈Fk

2
g(y)=0

(−1)y·v ρwt(y)
∑
x

(−1)x·u ρwt(x)

= W
(p)
f (u)

∑
y∈Fk

2
g(y)=1

(−1)y·v ρwt(y)

+
(1− 2p)wt(u)

(1− p)n
∑
y∈Fk

2
g(y)=0

(−1)y·v ρwt(y),

from which we obtain the first identity (the second is obtained by switching
the roles of f and g). Moreover, if k = 1, and g(y) = y, then Sg0(v) =
1, Sg1(v) = (−1)v ρ, and if g(y) = y ⊕ 1, then Ag1(v) = 1, Ag0(v) = (−1)v ρ,
and so

W
(p)
yf(x)(u, v) = (−1)v ρW

(p)
f (u) +

(1− 2p)wt(u)

(1− p)n

W
(p)
(y⊕1)f(x)(u, v) = W

(p)
f (u) + (−1)v ρ

(1− 2p)wt(u)

(1− p)n
.

We now show (vii). If h(x) = f(xA⊕ a), then

W
(p)
h (u) =

∑
x∈Fn

2

(−1)h(x)⊕x·uρwt(x) =
∑
x∈Fn

2

(−1)f(xA⊕a)⊕x·uρwt(x).

When x runs over Fn2 , so does z = xA ⊕ a (since A is invertible). Fur-
ther, zA−1 = xAA−1 ⊕ aA−1, so zA−1 ⊕ aA−1 = x. Moreover, when A is

12



orthogonal, that is, ATA = In (AT is the transpose of A), then

wt(zA−1 ⊕ aA−1) = (zAT ⊕ aAT ) · (zAT ⊕ aAT )T

= (zAT ⊕ aAT ) · (AzT ⊕AaT )

= (z⊕ a)ATA(zT ⊕ aT )

= (z⊕ a)(z⊕ a)T

= wt(z⊕ a).

Further,

W
(p)
h (u) =

∑
z∈Fn

2

(−1)f(z)⊕u·(zA
−1⊕aA−1)ρwt(zA−1⊕aA−1)

=
∑
z∈Fn

2

(−1)f(z)⊕u·(zA
−1)⊕u·(aA−1

)ρwt(z⊕a)

= (−1)u·(aA
−1)

∑
z∈Fn

2

(−1)f(z)⊕z·uA
−1
ρwt(z⊕a),

where we used the fact that u · (zA−1) = z · (uA−1). If a = 0, then

W
(p)
h (u) = (−1)u·(aA

−1)W
(p)
f (uA−1).

Remark 6. If we substitute p = 1
2 , that is ρ = 1, the identity (13) reduces

to the Parseval identity ∑
u∈Fn

2

(
W

(1/2)
f (u)

)2
= 22n. (14)

5 µp-nonlinearity and µp-bent Boolean functions

In this section we introduce a notion of nonlinearity of µp-Boolean functions
where p ∈ C and refer to it by µp-nonlinearity. We show that µp-nonlinearity
is essentially the same as the (classical) nonlinearity when p is real. From (5)
we have

dp(f, `u,b) = 2n−1
(

1− (−1)b(1− p)nW (p)
f (u)

)
.

13



The square of the absolute value

|dp(f, `u,b)|2

22(n−1)
=
(

1− (−1)b(1− p)nW (p)
f (u)

)(
1− (−1)b(1− p)nW (p)

f (u)
)

=
(

1− (−1)b(1− p)nW (p)
f (u)

)(
1− (−1)b(1− p)nW (p)

f (u)

)
= 1− 2(−1)b<((1− p)nW (p)

f (u)) + |(1− p)nW (p)
f (u)|2.

We define the p-distance between f and `u,b by

distp(f, `u,b) = 2n−1
√

1− 2(−1)b<((1− p)nW (p)
f (u)) + |(1− p)nW (p)

f (u)|2.

From the above computation, we see that if p ∈ R, then dp(f, `u,b) =
distp(f, `u,b). If 1 6= p ∈ C, in general dp(f, `u,b) may not be a real number
but distp(f, `u,b) is always a real number and therefore a meaningful mea-
sure of distance from affine functions. Further, we define the µp-nonlinearity
as follows.

Definition 7. Suppose f ∈ Bn(p) where 1 6= p ∈ C. Then the µp-
nonlinearity of f is defined as

nlp(f) = 2n−1 min
u∈Fn

2

√
1− 2|<((1− p)nW (p)

f (u))|+ |(1− p)nW (p)
f (u)|2.

We define µp-bent functions as follows, deriving its motivation from the
Plancherel identity (13).

Definition 8. Suppose f ∈ Bn(p) where 1 6= p ∈ C. Then f is said to be
µp-bent if

|W (p)
f (u)|2 = (|ρ|2 + 1)n, for all u ∈ Fn2 .

It is known that µp-bent functions with exist for p = 1
2 (thus, ρ = 1)

and p = 1+ı
2 (thus, ρ = ı) and are called bent, respectively, negabent Boolean

functions. Whether such functions exist for other values of p is a question
whose answer is contained in our next result. Since ρ is complex, then we
write ρ = aζ, where |ρ| = a and ζ is on the unit circle, that is, ζ = eı θ, for
some 0 ≤ θ < 2π.

Theorem 9. Suppose n ∈ Z, p ∈ C − {1} such that ρ = p
1−p = ı a, where

a ∈ R. Then `v,b is µp-bent for all v ∈ Fn2 and b ∈ F2.
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Proof. The µp-Walsh–Hadamard transform of `v,b at u ∈ Fn2 is

W
(p)
`v,b

(u) =
∑
x∈Fn

2

(−1)(v⊕u)·x⊕bρwt(x)

= (−1)b
n∏
i=1

(
1 + ρ(−1)ui⊕vi

)
= (−1)b

n∏
i=1

(
1 + ıa(−1)ui⊕vi

)
= (−1)b(1 + a2)

n
2

n∏
i=1

(1 + ıa(−1)ui⊕vi)√
1 + a2

.

(15)

Therefore,
∣∣∣W (p)

`v,b
(u)
∣∣∣ = (1 + a2)

n
2 , for all u ∈ Fn2 . This proves that `v,b is

µp-bent for all v ∈ Fn2 and b ∈ F2.

Challenge. We therefore challenge the research community to construct
other classes of µp-bent functions, or other cryptographically significant func-
tions or show that under certain conditions on ρ they do not exist.

Acknowledgment: The authors thank Dr. Aalok Misra of the Department
of Physics, Indian Institute of Technology Roorkee for extremely helpful
discussions on quantum mechanics.
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