ON THE FIRST DIGITS OF THE FIBONACCI NUMBERS AND THEIR EULER FUNCTION

FLORIAN LUCA — PANTELIMON STĂNICĂ

ABSTRACT. Here, we show that given any two finite strings of base b digits, say s_1 and s_2, there are infinitely many Fibonacci numbers F_n such that the base b representation of F_n starts with s_1 and the base b representation of $\phi(F_n)$ starts with s_2.

Communicated by Oto Strauch

1. Introduction

Let $b \geq 2$ be an integer. Let $s_1 = c_1 \cdots c_k(b)$ be a positive integer s_1 written in base b. Washington [4] proved that there exist infinitely many Fibonacci numbers F_n whose base b representation starts with s_1. In fact, the first digits of the Fibonacci sequence obey Benford’s law in that the proportion of the positive integers n such that F_n starts with s_1 is precisely $\log((s_1 + 1)/s_1)/\log b$. Here, we take this one step further. Let $\phi(m)$ be the Euler function of the positive integer m. We put $s_2 = d_1 \cdots d_\ell(b)$ for some other positive integer written in base b and prove the following theorem.

Theorem. Given positive integers $s_1 = c_1 \cdots c_k(b)$ and $s_2 = d_1 \cdots d_\ell(b)$ written in base b, there exist infinitely many positive integers n such that the base b representation of F_n starts with the digits of s_1 and the base b representation of $\phi(F_n)$ starts with the digits of s_2.

We use the fact that with $\alpha, \beta = ((1+\sqrt{5})/2, (1-\sqrt{5})/2)$ the Binet formula

$$F_n = \frac{\alpha^n - \beta^n}{\alpha - \beta}$$

holds for all $n \geq 0$.

For a positive real number x we write $\log x$ for the natural logarithm of x, and $[x]$, respectively, $\{x\}$, for the integer part, respectively, fractional part of x.

2010 Mathematics Subject Classification: 11B39,11K36.
Keywords: Euler function, Fibonacci numbers, digits distribution.
2. The proof

By replacing \(s_1 \) with \(s_1 b^m \) for some positive integer \(m \), if needed, whose effect is adding \(m \) zeros at the end of the base \(b \) representation of \(s_1 \), we may assume that \(s_1 > s_2 \). By replacing \(s_1, s_2 \) by \(s_1 b^m \), respectively, \(s_2 b^m \) for an arbitrary positive integer \(m \), we may assume that the length of the base \(b \) representation of \(s_1 \), that is \(k \), is as large as we wish. In Section 4 of [2], it is shown that \(\phi(F_n)/F_n \) is dense in \([0,1]\). So, we take \(\varepsilon \in (0,1/(15b^{2k})) \) and choose a positive integer \(a \) such that

\[
\frac{\phi(F_a)}{F_a} \in \left(\frac{s_2}{s_1} + \varepsilon, \frac{s_2}{s_1} + 2\varepsilon \right). \tag{1}
\]

Now we take any prime \(p > F_a \) and look at \(F_{ap} \). Since \(p > F_a \), it follows that

\[F_{ap} = F_a \left(\frac{F_{ap}}{F_a} \right), \]

and the two factors \(F_a \) and \(F_{ap}/F_a \) on the right above are coprime (indeed, the only common prime factor of these two numbers could be \(p \), which is not the case since \(p > F_a \)). Any prime factor \(q \) of \(F_{ap}/F_a \) is a primitive prime factor of \(F_{dp} \) for some divisor \(d \) of \(a \). Recall that a prime number \(q \) is said to be a primitive prime factor of \(F_n \) if \(q \) divides \(F_n \), but does not divide any \(F_m \) for \(1 \leq m < n \). One of the properties of primitive prime factors \(q \) of \(F_n \) when \(n > 5 \) is that \(q \equiv \pm 1 \pmod{n} \). In particular, every prime factor \(q \) of \(F_{ap}/F_a \) is congruent to \(\pm 1 \pmod{p} \).

Let \(q_1, \ldots, q_t \) be all the prime factors of \(F_{ap}/F_a \). Then

\[(2p - 1)^t \leq q_1 \cdots q_t \leq \frac{F_{ap}}{F_a} \leq F_{ap} \leq \alpha^{ap}.
\]

Thus, \(t = O(p/\log p) \). Then

\[
\frac{\phi(F_{ap})}{F_{ap}} = \left(\frac{\phi(F_a)}{F_a} \right) \prod_{i=1}^t \left(1 - \frac{1}{q_i} \right)
= \frac{\phi(F_a)}{F_a} \exp \left(- \sum_{i=1}^t \frac{1}{q_i} + O \left(\sum_{q \geq q_1} \frac{1}{q^2} \right) \right)
= \frac{\phi(F_a)}{F_a} \exp \left(O \left(\frac{t}{q_1} \right) \right)
= \frac{\phi(F_a)}{F_a} \exp \left(O \left(\frac{1}{\log p} \right) \right)
\]
FIRST DIGITS OF THE FIBONACCI NUMBERS AND THEIR EULER FUNCTION

\[
= \frac{\phi(F_a)}{F_a} \left(1 + O \left(\frac{1}{\log p} \right) \right).
\]

It implies that, if \(p > \exp(\kappa \varepsilon^{-1}) \), where \(\kappa > 0 \) is some absolute constant, then

\[
\frac{\phi(F_{ap})}{F_{ap}} \in \left(\frac{s_2}{s_1} + 0.5\varepsilon, \frac{s_2}{s_1} + 1.5\varepsilon \right).
\]

(2)

We now follow Washington’s argument [4] to prove that there exist infinitely many primes \(p \) such that the base \(b \) representation of \(F_{ap} \) starts with \(s_1 \). For this, it is enough to show that

\[
F_{ap} = s_1 b^N + \zeta_{ap} \quad \text{for some integer} \quad 0 \leq \zeta_{ap} \leq b^N - 1.
\]

(3)

Note that since \(q_1 \geq 2p - 1 \), it follows that if \(p \) is sufficiently large (say, \(p > b^k \)), then \(F_{ap} \) cannot equal \(s_1 b^N \), and in particular, if in the above formula (3) we have \(\zeta_{ap} \geq 0 \), then in fact \(\zeta_{ap} \geq 1 \). The above formula (3) yields

\[
\alpha_{ap} = \sqrt{5}s_1 b^N + \sqrt{5}\zeta_{ap} + \beta_{ap} = \sqrt{5}s_1 b^N (1 + x_{ap}).
\]

Since \(\zeta_{ap} \geq 1 \), it follows that \(\sqrt{5}\zeta_{ap} + \beta_{ap} > \sqrt{5} - 1 > 1 \), and

\[
0 < x_{ap} = \frac{\sqrt{5}\zeta_{ap} + \beta_{ap}}{\sqrt{5}s_1 b^N}.
\]

So, if \(x_{ap} \in (0,1/b^k) \), and \(p > b^k \) is sufficiently large, it then follows that \(\zeta_{ap} < b^N \), which is what we want. Thus,

\[
ap \log \alpha = \log(\sqrt{5}s_1) + N \log b + \log(1 + x_{ap}),
\]

or

\[
ap \log \alpha = \frac{\log(\sqrt{5}s_1)}{\log b} - \left\lfloor \frac{\log(\sqrt{5}s_1)}{\log b} \right\rfloor + \log(1 + x_{ap}) + \frac{\log(1 + x_{ap})}{\log b}.
\]

(4)

Observe that \(\log(\sqrt{5}s_1)/\log b \) is never an integer. Assume that \(k \) is sufficiently large such that

\[
\frac{1}{b^k \log b} < 1 - \left\lfloor \frac{\log(\sqrt{5}s_1)}{\log b} \right\rfloor.
\]

Then putting

\[
\delta = \frac{\log(1 + 1/b^k)}{\log b},
\]

we see that a relation like (4) with \(x_{ap} \in (0,1/b^k) \) holds provided that

\[
\left\{ p \left(\frac{a \log \alpha}{\log b} \right) \right\} \in \left(\left\{ \frac{\log(\sqrt{5}s_1)}{\log b} \right\}, \left\{ \frac{\log(\sqrt{5}s_1)}{\log b} \right\} + \delta \right).
\]

(5)
The number \(\gamma = a \log \alpha / \log b \) is irrational. By a result of Vinogradov \[3\], the sequence of fractional parts \(\{p\gamma\}_{p \text{ prime}} \) is uniformly distributed. In particular, containment \[5\] holds for a positive proportion of primes \(p \), and therefore certainly for infinitely many of them. So, indeed relation \[3\] holds. Relation \[2\] now shows that

\[
\phi(F_{ap}) = s_2 b^N + \theta,
\]

where

\[
\theta \in \left(\zeta_{ap} \left(\frac{s_2}{s_1} + 0.5\varepsilon \right) + 0.5\varepsilon b^N, \zeta_{ap} \left(\frac{s_2}{s_1} + 1.5\varepsilon \right) + 1.5\varepsilon s_1 b^N \right).
\]

Since \(\varepsilon < 1/(15b^{2k}) \), the above upper bound is

\[
\zeta_{ap} \left(\frac{s_2}{s_1} + 1.5\varepsilon \right) + 1.5\varepsilon s_1 b^N \leq (b^N - 1) \left(\frac{b^k - 1}{b^k} + \frac{0.1}{b^k} \right) + \frac{0.1(b^k - 1)}{b^{2k}} b^N
\]

\[
< b^N - 1,
\]

where the last inequality above is implied by

\[
\frac{1}{9} < \frac{b^N - 1}{b^N},
\]

which holds true for all \(b \geq 2 \) and \(N \geq 1 \). This completes the proof of the theorem.

3. Comments

It was shown in \[1\] that with \(\sigma(m) \) being the sum of divisors of the positive integer \(m \), the ratio \(\sigma(F_n)/F_n \) is dense in \([1, \infty)\). The present method now shows that there are infinitely many positive integers \(n \) such that the base \(b \) representation of \(F_n \) starts with the digits of \(s_1 \) and the base \(b \) representation of \(\sigma(F_n) \) starts with the digits of \(s_2 \). Also, one may replace the Fibonacci sequence \(F_n \) in the above statements with some other sequence \(u_n \) for which it has been proved that \(\phi(u_n)/u_n \) and \(u_n/\sigma(u_n) \), respectively, are dense in \([0, 1]\). For example, one can take \(u_n = 2^n - 1 \) (see \[1\]) and the main result of this paper still holds provided that \(b \) is not a power of 2. We give no further details.
4. Acknowledgements

We thank the referee for a careful reading of the paper and for comments which improved its quality. This paper was written during a visit of F. L. to the Applied Mathematics Department of Naval Postgraduate School in December, 2012. During the preparation of this paper, F. L. was supported in part by Project PAPIIT IN104512 (UNAM), VSP N62909-12-1-4046 (Department of the US Navy, ONR–Global) and a Marcos Moshinsky fellowship.

REFERENCES

Received January 10, 2012
Accepted June 19, 2013

F. Luca
Mathematical Institute, UNAM Juriquilla
76230 Santiago de Querétaro, México and
School of Mathematics, University of the Witwatersrand
P. O. Box Wits 2050, South Africa
E-mail: fluca@matmor.unam.mx

P. Stănică
Naval Postgraduate School
Applied Mathematics Department
Monterey, CA 93943, USA
E-mail: pstanica@nps.edu