
U.S. Government work not protected by U.S. copyright.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TIT.2014.2301820, IEEE Transactions on Information Theory

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. XX, NO. XX, MONTH YEAR 1

Extended Closed-form Expressions for the Robust
Symmetrical Number System Dynamic Range and

an Efficient Algorithm for its Computation
Phillip E. Pace Senior Member, IEEE, Pantelimon Stănică, Brian L. Luke,

Thomas W. Tedesso Student Member, IEEE

Abstract—The robust symmetrical number system (RSNS) is
a number theoretic transform based on N ≥ 2 sequences
that can extract the maximum amount of information from
symmetrical folding waveforms. The sequences, based on coprime
moduli, exhibit an integer Gray code property making the RSNS
well-suited for many applications that benefit from an inherent
error detection and correction capability such as analog-to-digital
converters, direction finding arrays and radar waveform design.
To use the RSNS, it is necessary to know the greatest length
of combined sequences without ambiguities, called the dynamic
range M̂ , for which only a few closed-form expressions currently
exist. In this paper, an efficient algorithm for computing M̂ and
its position within the combined set of sequences is presented
and shown to be independent of the size of the moduli. The
algorithm is used to generate the equations for several groups
of additional moduli arrangements. Closed form expressions for
M̂ are conjectured and proved using the obtained congruence
equations that define the ambiguity locations.

I. INTRODUCTION

THE most common type of waveform in engineering
science is the symmetrical folding waveform (e.g., si-

nusoids). Symmetrical folding waveforms appear naturally in
many engineering disciplines and system analysis techniques.
To extract the maximum amount of information from symmet-
rical folding waveforms, symmetrical number systems, each
consisting of N ≥ 2 integer sequences, were formulated
based on coprime modular systems. Symmetrical number
systems include the symmetrical number system (SNS), the
optimum symmetrical number system (OSNS) and the robust
symmetrical number system (RSNS). To effectively utilize
symmetrical number systems, the dynamic range, M̂ , defined
as the greatest length of distinct, paired sequences (N−tuples)
that contain no ambiguities, as well as its beginning position
within the combined N−sequences must be known. Closed-
form expressions for M̂ have been reported for the SNS and
the OSNS in [1] and [2], respectively. Unlike the SNS and

P. E. Pace is with the Dept. of Electrical and Computer Engineering, Naval
Postgraduate School, Monterey, CA; Email: pepace@nps.edu

P. Stănică is with the Dept. of Applied Mathematics, Naval Postgraduate
School, Monterey, CA; Email: pstanica@nps.edu

B. L. Luke is with the Navy Cyber Defense Operations Command, Virginia
Beach, VA; Email: brian.luke@navy.mil

T. W. Tedesso is a Ph.D. candidate with the Dept. of Electrical
and Computer Engineering, Naval Postgraduate School, Monterey, CA;
Email: twtedess@nps.edu.

Copyright (c) 2013 IEEE. Personal use of this material is permitted.
However, permision to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

OSNS, a general closed-form expression for the RSNS M̂
does not exist and closed-form expressions have only been
reported for a limited number of specific cases [3]–[5]. As a
result, the use of an algorithm is required to determine M̂ and
the beginning position of the sequence for moduli sets that are
not covered by the limited number of cases.

The RSNS has an inherent integer Gray code property
that makes the RSNS particularly attractive for error control
in both analog and digital signal processing applications.
The RSNS has been shown to be useful in software radio
systems for sample rate conversion [6], and in electronic [7],
[8], photonic [9] and superconducting [10] folding analog-to-
digital converters. Due to the inherent symmetry within the
modulus, a new theoretic transform for error detection and
control was reported in [11] and applied to code division
multiple access wireless communications [12]. The complexity
of direction finding antenna systems is also reduced through
use of the RSNS by decomposing the spatial filtering operation
into a number of parallel sub-operations [13]. Consequently,
each sub-operation only requires a complexity in accordance
with that modulus and a much higher spatial resolution is
achieved after the results of these less complex sub-operations
are recombined. The use of the RSNS in radar waveform
design has also been reported in [14] to extend the capabilities
for target detection.

In this paper, we present an efficient algorithm to compute
the M̂ and its beginning position within the sequence, for a
general set of N coprime moduli. The algorithm is derived by
considering the location and distance between all of the vector
ambiguity pairs for the combined N−sequences. To simplify
our derivation, we define the center of ambiguity (COA) as
the midpoint between the ambiguity pairs. Analysis of all the
ambiguity pairs leads to an upper bound on M̂ that is used
to improve the algorithm’s efficiency. An N = 3 example is
provided to demonstrate the steps of the algorithm. Also, the
algorithm’s complexity is computed and compared to that of
a naı̈ve search approach. We demonstrate that our algorithm’s
complexity is independent of the moduli size and represents an
improvement by several orders of magnitude when compared
to the naı̈ve search approach. Our algorithm is then applied to
several different groups of moduli sets and is used to generate
additional closed-form expressions for M̂ . The closed-form
expressions for M̂ are developed for several additional N = 3
and N = 4 cases and are verified by deriving the closed-form

U.S. Government work not protected by U.S. copyright.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TIT.2014.2301820, IEEE Transactions on Information Theory

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. XX, NO. XX, MONTH YEAR 2

expressions from the congruence equations.
The paper is structured as follows. In Section II, we briefly

review the RSNS formulation. In Section III, RSNS ambigui-
ties are introduced. In Section IV, minimal ambiguity pairs are
defined and a series of lemmas and theorems are presented that
provide the details of our algorithm and the efficiency of our
solution. An N = 3 example is also provided to demonstrate
the steps of the algorithm. In Section V, the algorithm’s
run time complexity is compared to that of a naı̈ve search
approach. The complexity for both computations is derived
demonstrating the algorithm efficiency and its independence
from the size of the N moduli. In Section VI, the results for
several groups of moduli sets are used to generate an extended
group of closed-form expressions for M̂ . In section VII, we
provide concluding remarks and areas of further research.

Throughout this paper, we use the Vinogradov symbols �,
� and the Landau symbols O, o with their usual meanings.
We recall that f � g, g � f and f = O(g) are all equivalent
and mean that |f(x)| < c|g(x)| holds with some constant c,
for x sufficiently large. Also, f = o(g) if limx→∞

f(x)
g(x) = 0.

For a positive real number x we write log x for the maximum
between 2 and the natural logarithm of x.

II. ROBUST SYMMETRICAL NUMBER SYSTEM

The RSNS is a modular based number system consisting of
N ≥ 2 integer sequences with each sequence associated with
a coprime modulus, mi. The RSNS is based on the following
sequence:{

x
′

m

}
= [0, 1, 2, . . . ,m− 1,m,m− 1, . . . , 2, 1] . (1)

To form the N−sequence RSNS, each term in (1) is repeated
N times in succession. Therefore, the integers within one
folding period of a sequence are:

{xm} =[0, . . . , 0, 1, 1, . . . , 1, . . . ,m− 1, . . . ,m− 1,

m, . . . ,m,m− 1, . . . ,m− 1, . . . , 1, . . . , 1].
(2)

This results in a periodic sequence with a period of Pm =
2Nm [4], [9]. Each sequence corresponding to mi is also
shifted left (or right) by si = i − 1 where i ∈ {1, 2 . . . , N}
and the shift values, si = {s1, s2, . . . , sN}, form a complete
residue system modulo N . The resulting structure of the N
sequences ensures that two successive RSNS vectors (paired
terms from all N sequences) when considered together, differ
by only one integer resulting in an acyclic integer Gray code
property [4], [15]. Although the RSNS is cyclic and has integer
Gray code properties, it differs from an (m,N)-Gray code
in the following ways: all the N−tuples in an RSNS are
not distinct, and the maximum value of each element in an
N−tuple is not m, but rather mi, where i represents the
elements of the N−tuple [0, 1, . . . , N − 1].

Each sequence is extended periodically with period 2Nm
as xh+n2Nm = xh where n ∈ {0,±1,±2, . . .}. There-
fore, xh is a symmetrical residue of (h + n2Nm) modulo
2Nm. An integer, h, is represented by a vector, Xh =
[x1,h, x2,h, . . . , xN,h]

T , of N paired integers from each se-
quence at h. For example, a left-shifted, three-sequence RSNS
with mi = {3, 4, 5} is displayed in Table I and Fig. 1. The

0 5 10 15 20 25 30 35
0

2

4

x
1

m1 = 3

0 5 10 15 20 25 30 35
0

2

4

x
2

m2 = 4

0 5 10 15 20 25 30 35
0

2

4

6

h

x
3

m3 = 5

Fig. 1. RSNS structure for mi = {3, 4, 5}.

integer, h = 5, is represented by the vector, Xh = [1, 2, 2]
T .

Also the integer Gray code property is evident.
Since the integer values within each modulus consists of

2Nm integers, the symmetrical residues are determined by
first subtracting an integer number of 2Nm integers as

ni = h−
⌊

h

2Nmi

⌋
2Nmi. (3)

The symmetrical residue xh is then calculated as [4], [9]

xh =

⌊
ni − si
N

⌋
, si ≤ ni ≤ Nmi + si + 1⌊

2Nmi +N − ni + si − 1

N

⌋
, Nmi + si + 2 ≤ ni ≤ 2Nmi + si − 1.

(4)
The N -sequence RSNS is periodic with a fundamental period
of

Pf = 2NM, (5)

where M =
N∏
i=1

mi is the dynamic range of a residue number

system (RNS) [3], [4], [13].
Closed-form expressions for M̂ exists for only few specific

cases. In [4], a closed-form expression for a N = 2 RSNS is
reported, where

M̂ =

{
4m1 + 2m2 − 5, when m2 ≤ m1 + 2

4m1 + 2m2 − 2, when m2 ≥ m1 + 3
(6)

and 5 ≤ m1 < m2. The other published closed-form
expression for M̂ is when N = 3 and mi = {m−1,m,m+1}
with m even and m > 3 [4], [13]. In this case,

M̂ =
3

2
m2 +

15

2
m+ 7. (7)

III. RSNS AMBIGUITIES

In the fundamental period of an N -sequence RSNS, there
are three ambiguity types, Type 0, Type 1, and Type 2 that
are illustrated in Fig. 2. Type 0 ambiguities occur periodically
in each sequence. Type 1 ambiguities occur across the folds
of each waveform in each sequence, and Type 2 ambiguities
occur due to the N sequential repeated integers within each

U.S. Government work not protected by U.S. copyright.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TIT.2014.2301820, IEEE Transactions on Information Theory

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. XX, NO. XX, MONTH YEAR 3

TABLE I
N = 3 RSNS STRUCTURE FOR mi = {3, 4, 5}.

h 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 . . .

Xh

m1 = 3 0 0 0 1 1 1 2 2 2 3 3 3 2 2 2 1 1 . . .

m2 = 4 0 0 1 1 1 2 2 2 3 3 3 4 4 4 3 3 3 . . .

m3 = 5 0 1 1 1 2 2 2 3 3 3 4 4 4 5 5 5 4 . . .

Type 2 Type 1

Type 0

Fig. 2. Single sequence ambiguity types (N=3, m=5).

sequence. Each sequence can be decimated into N subse-
quences where each subsequence is composed of values from
the original sequences at h ≡ 0 mod N , h ≡ 1 mod N, . . . ,
and h ≡ (N − 1) mod N . By examining these subsequences,
the Type 2 ambiguities are eliminated leaving only Type 0
and Type 1 ambiguities [4]. Subsequently, the complexity of
the problem of determining M̂ is reduced. Table II illustrates
the subsequence structure for a single sequence of a N = 3
RSNS. By analyzing the parity of the RSNS in Table I, it can
be shown that the parity of the sequence repeats at a period
of 2N [4], [16].

The ambiguity locations can be determined by solving the
congruence equations for each combination of Type 0 and
Type 1 ambiguities that exist. To determine M̂ , the ambiguity
locations are determined by solving congruence equations for
all combinations of Type 1 and Type 0 ambiguities, and the
largest span of unambiguous values is identified, which is
equal to M̂ . The various combinations of Type 1 and Type 0
ambiguities are referred to by three digit Case Numbers where
the first digit refers to the number of Type 1 ambiguities that
exist and ranges from zero to N . The second digit represents
the particular assignment of Type 0 and Type 1 ambiguities
to specific sequences, and third digit of the case number
represents the subsequence index and ranges from zero to
N−1 [4]. For example, for an N = 3 RSNS, in Case 220, the 2
as the first digit specifies that there are two Type 1 ambiguities
(and therefore one Type 0 ambiguity) for the three sequences.
The 2 as the second digit signifies that the particular order of
the ambiguities is the second largest binary value (1012 = 5).
The 0 in the third digit of the example case label indicates
that the ambiguities are computed for the 0th subsequence

only (see [4], [16] for further details). Table III summarizes
the solution to the congruence equations and defines the COA
for all possible case numbers for an N -sequence RSNS [4],
[16].

In Table III, the value of hs is determined by solving a set of
congruence equations using the Chinese Remainder Theorem
(CRT). The congruence equations are generated from a matrix
that is formed by collecting the Type 1 symmetrical residue
numerators into a matrix form with each column index corre-
sponding to its associated modulus. The matrix has a unique
structure where the first column is [0,−1,−2, . . . ,−N + 1]T

and the subsequent columns are generated by circular shifting
the previous column up and incrementing each value by one
[4]. The shift matrix is an N ×N matrix defined as

hs =⇒

0 0 · · · · · · · · · 0
−1 −1 · · · · · · −1 N − 1

−2 · · · · · · −2 N − 2
...

... · · ·
...

−N + 2 −N + 2 2
−N + 1 1 · · · · · · 1 1

.

(8)
The congruence equations are formed based on the sequences
containing the Type 1 ambiguities and the subsequences that
contains the ambiguities.

IV. EFFICIENT ALGORITHM FOR COMPUTING M̂

We develop an efficient algorithm to efficiently compute M̂
for N RSNS integer sequences with arbitrary coprime moduli,
mi, where mi ≥ 2, by first considering all the minimal pair
ambiguity locations (h1, h2). For the general N−sequence
RSNS case, we let C = {(h1, h2) | 0 ≤ h1 < h2 < Pf},
where Xh1

= Xh2
. A pair (h1, h2) ∈ C is minimal if there

does not exist a pair
(
h̃1, h̃2

)
∈ C such that h1 ≤ h̃1 < h̃2 ≤

h2 and if the shorter sequence length, h̃2− h̃1 < h2−h1. The
largest distance between consecutive minimal pairs h2−h1−1
is the M̂ and h1 + 1 is the starting position of M̂ . We will
also demonstrate in Theorem 7 that M̂ < Pf . It then follows
that M̂ < M =

∏
mi, the dynamic range of the RNS.

In [4], it was demonstrated that the distance between
ambiguous vector pairs is always odd; therefore, we define
the midpoint between the ambiguous vector pairs as COA =
(h2 + h1) /2. Given two minimal pairs, P1 = (h1, h2) ∈ C
with COAP1 and P2 = (h′1, h

′
2) ∈ C with COAP2 where

COAP1
< COAP2

, the pairs are defined as consecutive if there
does not exist a minimal pair P3 = (h′′1 , h

′′
2) ∈ C with COAP3

such that COAP1
< COAP3

< COAP2
. Therefore, if (h1, h2) ∈

U.S. Government work not protected by U.S. copyright.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TIT.2014.2301820, IEEE Transactions on Information Theory

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. XX, NO. XX, MONTH YEAR 4

TABLE II
SINGLE SEQUENCE RSNS STRUCTURE ILLUSTRATING THREE SUBSEQUENCES FOR AN N = 3 RSNS.

mi = 3 xh 0 0 0 1 1 1 2 2 2 3 3 3 2 2 2 1 1 1 0

h ≡ 0 mod 3 xh 0 1 2 3 2 1 0
h ≡ 1 mod 3 xh 0 1 2 3 2 1
h ≡ 2 mod 3 xh 0 1 2 3 2 1

h 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

TABLE III
SUMMARY OF N-SEQUENCE RSNS AMBIGUITY EXPRESSIONS. AMBIGUITIES EXIST AT h AND h+ k. INDEX i DENOTES THE SEQUENCES WITH TYPE 1

AMBIGUITIES AND THE INDEX j DENOTES THE SEQUENCES CONTAINING TYPE 0 AMBIGUITIES.

Case Number h is k is a multiple of COA

010 Anywhere in Pf 2N
N∏

i=1
mi None

1X0 h = aNmi −
k

2
2N

M

mi

aNmi

1XX h = aNmi + hs −
k

2
2N

M

mi

hs + aNmi

2X0 · · · (N − 1)X0 h = aN
∏
i
mi −

k

2
2N

∏
j
mj aN

∏
i
mi

2XX · · · (N − 1)XX h = aN
∏
i
mi + hs −

k

2
2N

∏
j
mj hs + aN

∏
i
mi

N10 h = aN
n=N∏
n=1

mn −
k

2
2N aN

n=N∏
n=1

mn

N1X h = aN
n=N∏
n=1

mn + hs −
k

2
2N hs + aN

n=N∏
n=1

mn

C and (h′1, h
′
2) ∈ C are consecutive minimal pairs, then the

maximal size, M̂ = (h2 − 1)− (h1 + 1) + 1 = h2 − h1 − 1,
is the dynamic range of the RSNS. Furthermore, h1 + 1 is
the beginning position of the dynamic range. Since M̂ is
computed using consecutive minimal pairs (h1, h2) ∈ C and
(h′1, h

′
2) ∈ C, only the positions of the minimal pairs that can

affect the length of M̂ are required to be computed and the
rest can be ignored.

The algorithm for computing M̂ relies on a number of
lemmas, most of which are the result of an analysis of the
locations of all vector ambiguities provided in [4]. Table III
summarizes the N−channel RSNS vector ambiguity locations.
The rows in Table III separate the locations of the ambiguity
pairs into seven categories based on the type of ambiguity.

A. Theoretical Basis for Algorithm

The basis for our efficient algorithm for determining M̂
is presented in a series of lemmas and theorems. From this
theoretical foundation, the steps of the algorithm are developed
and presented in Section IV-B.

Lemma 1. There are 2N distinct cases of repeated ambiguity
pairs, each with a different ambiguity length and COA spac-
ing. All but one of the 2N cases have N subcases that have
the same number of COAs and ambiguity lengths in Pf , but
the COA for each of the subcases is shifted by a particular
value, hsi .

The N COA shifts (one for each subcase) are computed by
solving a set of N congruence equations using the CRT. The
subcase where hs0 = 0 is called the base case and is shown
in rows 2, 4, and 6 in Table III.

Proof. See the ambiguity analysis discussion in Section II
of [4].

Lemma 2. Minimal pairs are computed using the first multiple
of k from the third column in Table III.

Proof. Any vector pair computed using a higher multiple of
k forms a vector pair that encompasses and is symmetric
about the vector pair obtained using the lower multiple of k.
Therefore, any vector pair computed using other than the first
multiple of k is not minimal [4].

Lemma 3. For every ambiguity pair with a COA at h, there
is an ambiguity pair with the same length at h+ Pf/2.

Proof. Given a general COA for any case at

h = a

(
N
∏
i

mi

)
, (9)

where the subscripts i are the indices of all vector elements
with Type 1 ambiguity, there is also a COA at h+Pf/2 because

a

(
N
∏
i

mi

)
+
Pf

2
= a

(
N
∏
i

mi

)
+N

N∏
n=1

mn

= a

(
N
∏
i

mi

)
+N

∏
i

mi

∏
j

mj

=

a+
∏
j

(mj)

(N∏
i

(mi)

)

= b

(
N
∏
i

mi

)
,

(10)

U.S. Government work not protected by U.S. copyright.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TIT.2014.2301820, IEEE Transactions on Information Theory

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. XX, NO. XX, MONTH YEAR 5

where a and b are any integers, j corresponds to the vector
elements with Type 0 ambiguities, and i corresponds to the
vector elements with Type 1 ambiguities. The result is that
ambiguity pairs are symmetric about Pf/2.

Lemma 4. There is always an ambiguity with a COA at h = 0
and h = Pf/2 with a length of 2N + 1, which is also the
ambiguity with the smallest length.

Proof. This is straightforward via inspection of row 6 in
Table III.

Lemma 5. Using Lemma 3 and Lemma 4, only ambiguities
from −N to Pf/2 +N need to be considered when comput-
ing M̂ .

Proof. Since Lemma 3 showed that ambiguity pairs are
symmetric about Pf/2, and M̂ is computed from minimal
ambiguity pair locations, the same length M̂ exists from h = 0
to h = Pf/2 as exists from h = Pf/2 to h = Pf .

Lemma 6. [4] The dynamic range is upper bounded by

M̂ ≤ B
M̂

:= N min
I⊆{1,...,n}

∏
i∈I

mi + 2
∏
j∈Ī

mj

− 1, (11)

where Ī is the set complement, that is, Ī = {1, . . . , n} \ I .

That is, each of the rows in Table III produce a unique
set of minimal pairs and the row that has the smallest local
M̂ (the one that minimizes (11)) provides an upper bound
on M̂ for the RSNS. Any ambiguity pair that has a length
greater than B

M̂
does not affect M̂ and can be ignored (i.e.,

M̂ is smaller than the distance between the minimal pair and
therefore cannot be the vector pair).

As an example, let N = 3, mi = {3, 4, 5}. We first compute
the expressions inside the minimum of (11), for each of the
2n subsets I ⊆ {1, 2, . . . , n}, that is,

B1 = [1 + 2(3 · 4 · 5)] = 121
B2 = [3 + 2(4 · 5)] = 43
B3 = [4 + 2(3 · 5)] = 34
B4 = [5 + 2(3 · 4)] = 29
B5 = [(3 · 4) + 2(5)] = 22
B6 = [(3 · 5) + 2(4)] = 23
B7 = [(4 · 5) + 2(3)] = 26
B8 = [(3 · 4 · 5) + 2(1)] = 65.

By using Lemma 6,

B
M̂

= 3 min
i

(Bi)− 1 = 3 · 22− 1 = 65.

Theorem 7. Assuming M ≥ 4, we can take as upper bound
for M̂

B
M̂
≤ Nd2

√
2Me − 1. (12)

Moreover, if N ≥ 3, the dynamic range of the RSNS is always
smaller than the dynamic range of the RNS, that is,

M̂ < M.

Proof. See Appendix.

For the case N = 3, we can derive an exact expression for
the upper bound on M̂ , which we do in the next lemma.

Lemma 8. In the case of 3-channel RSNS of coprime moduli
m1 < m2 < m3, the dynamic range is upper bounded by

B
M̂

=

{
N(m1m2 + 2m3)− 1 if m1m2 ≥ m3

N(m3 + 2m1m2)− 1 if m2m2 < m3.
(13)

Proof. We need to minimize the expressions (from (11)):

α1 = m1m2 + 2m3

α2 = m1m3 + 2m2

α3 = m2m3 + 2m1

α4 = m1m2m3 + 2

α5 = 1 + 2m1m2m3

α6 = m1 + 2m2m3

α7 = m2 + 2m1m3

α8 = m3 + 2m1m2.

(14)

By inspection, it is easy to see that α1 < α2 < α3 < α4 and
α8 < α7 < α6 < α5. That is, we need to only compare α1

and α8, which is equivalent to comparing m1m2 and m3.

For instance, if N = 3 and mi = {3, 4, 5}, since m1m2 ≥
m3, B

M̂
= 3(3 · 4 + 2 · 5)− 1 = 65.

B. Efficient Algorithm Steps

Using Lemmas 1 through 8, the efficient algorithm for
computing M̂ follows the steps below:

S1. Define N as the number of coprime moduli (mi)1≤i≤N ,
M =

∏N
i=1mi, and fundamental period of the RSNS

Pf = 2MN .
S2. Compute the upper bound B

M̂
for the dynamic range,

(12) of Theorem 7, or (13) of Lemma 8, if N = 3.
S3. Compute the number of ambiguity cases for the par-

ticular RSNS using Table III and the limits imposed by
Lemma 1. Compute the minimal-pair distance for all am-
biguity pair cases using multiplication of corresponding
entries in the matrix of size N×2N , which is the matrix
containing as columns all of the N subcases of the 2N

distinct cases of repeating ambiguity pairs, and eliminate
all ambiguity pair cases that have a length greater than
the dynamic range upper bound (step S2).

S4. Compute the remaining minimal pair ambiguity loca-
tions (h1, h2) using Table III and Lemmas 2 and 5.

S5. Sort the matrix of minimal pairs (h1, h2) such that h2 is
monotonically increasing. Vector subtract the start posi-
tions of consecutive minimal pairs (h1 (p)−h1 (p+ 1))
and remove all minimal pairs where the result is nega-
tive. The remaining minimal pairs are the only consec-
utive minimal pairs.

S6. Compute the vector of distances between endpoints of
consecutive minimal pairs (h2 (p+ 1)−h1 (p)−1). The
dynamic range M̂ is the largest value in the resulting
vector.

U.S. Government work not protected by U.S. copyright.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TIT.2014.2301820, IEEE Transactions on Information Theory

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. XX, NO. XX, MONTH YEAR 6

C. Example

Consider the RSNS from Table I where N = 3, mi =
{3, 4, 5}. Table III provides the general N−sequence ambi-
guity expressions and Table I of reference [4] provides the
general ambiguity pair equations for the N = 3 case (we give
a particular case of that table in our Table IV, for the moduli
mi = {3, 4, 5}).

S1. Define N = 3, M =
∏N

i=1mi = 60, and Pf = 360.
S2. Compute the dynamic range upper bound by using

Theorem 7 (in which case, d6
√

120e−1 = d65.7267e−
1 = 65), or (since N = 3) Lemma 8 (in which case,
3(3 · 4 + 2 · 5)− 1 = 65).

S3. Table IV shows all possible ambiguity cases (using
Table III, or Table I in [4]) and points out (above the
double line) the rows that have ambiguity pairs with a
length (min k) greater than B

M̂
= 65, which can be

ignored in the computation of M̂ .

TABLE IV
ALL AMBIGUITY CASES (AFTER [4], a ∈ Z)

Case Ambiguities occur at
min k

Label h and h + k, where h is

Case 010 Any position 360

Case 110 hCase 110 = a · 9− 60

120Case 111 hCase 111 = a · 9− 59

Case 112 hCase 112 = a · 9− 58

Case 120 hCase 120 = a · 12− 45

90Case 121 hCase 121 = a · 12− 44

Case 122 hCase 122 = a · 12− 46

Case 130 hCase 130 = a · 15− 36

72Case 131 hCase 131 = a · 15− 38

Case 132 hCase 132 = a · 15− 37

Case 210 hCase 210 = a · 36− 15

30Case 211 hCase 211 = a · 36 + hs1 − 15

Case 212 hCase 212 = a · 36 + hs2 − 15

Case 220 hCase 220 = a · 45− 12

24Case 221 hCase 221 = a · 45 + hs1 − 12

Case 222 hCase 222 = a · 45 + hs2 − 12

Case 230 hCase 230 = a · 60− 9

18Case 231 hCase 231 = a · 60 + hs1 − 9

Case 232 hCase 232 = a · 60 + hs2 − 9

Case 310 hCase 310 = a · 180− 3

6Case 311 hCase 311 = a · 180 + hs1 − 3

Case 312 hCase 312 = a · 180 + hs2 − 3

The base cases (all cases ending in zero in Table IV)
do not have shifts applied to the COA (i.e., hs0 = 0).
The shifts hs1 and hs2 in Table IV are computed,
according to the procedure described in [4], as the
least positive solutions to the following two sets of
congruence equations (hs1 = 73, hs2 = 119):

hs1 − 1

3
≡ 0 mod 3

hs2 − 2

3
≡ 0 mod 3

hs1 − 1

3
≡ 0 mod 4

hs2 + 1

3
≡ 0 mod 4

hs1 + 2

3
≡ 0 mod 5

hs2 + 1

3
≡ 0 mod 5.

S4. Minimal pair ambiguity locations (h1, h2) are computed
using Table IV for h = −3 to h = 183. All minimal
pairs are provided in Table V.

S5. The consecutive minimal pairs are shown in Table V.

TABLE V
ALL MINIMAL PAIRS, AND ALL consecutive MINIMAL PAIRS (SHADED)

h1 COA h2 h1 COA h2

−3 0 3 68 83 98

−14 1 16 78 90 102
−4 11 26 93 108 123

4 13 22 94 109 124

16 28 40 106 118 130

17 29 41 116 119 122
21 36 51 111 120 129

22 37 52 124 133 142

33 45 57 123 135 147

32 47 62 129 144 159

50 59 68 130 145 160

51 60 69 140 155 170

57 72 87 151 163 175

70 73 76 152 164 176

62 74 86 170 179 188

177 180 183

S6. The consecutive minimal pairs that have the largest
distance between them are displayed in bold font with a
shaded background in Table V. The result is an M̂ = 43
starting at h = 79, and ending at h = 121, which agrees
with the results in [4], [7].

V. ALGORITHM EFFICIENCY

We compute the complexity of the computation of the bound
(11) and compare the efficiency of our algorithm with the naı̈ve
search algorithm of [3]. We use the “prime” big-oh notation
O′(·) for functions in both M,N (to see the dependence on
N), and the big-oh notation O(·) for functions in M , which is
the relevant parameter (the O-constant will be dependent on
N). For every 0 ≤ k ≤ N , and every subset I of cardinality k,
we perform k−1 multiplications for the first term in the min-
imum computation of (11), plus, a division and a doubling for
the second term (since 2

∏
j∈Ī mj = 2M/

∏
i∈I mi reusing

the previous computation). Including the sorting for a set of
cardinality 2N with complexity O(N2N), the complexity for
the bound computation of Lemma 6 is

O

(
N2N +N +

N∑
k=0

k

(
N

k

)
2k

)
= O

(
N2N + 2N3N−1

)
= O

(
N3N

)
,

using the identity
∑n

k=0 k
(
n
k

)
zk = nz(z + 1)n−1. Applying

(12) significantly reduces the above complexity to O(1), as a
function of M (at the expense of possibly increasing the upper
bound). The M̂ computation process described in Section IV-B
was implemented using MATLAB. A search of current re-
search did not reveal any existing efficient computational

U.S. Government work not protected by U.S. copyright.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TIT.2014.2301820, IEEE Transactions on Information Theory

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. XX, NO. XX, MONTH YEAR 7

Fig. 3. Log-log plot of M̂ vs. run time using the improved and naı̈ve
algorithms.

algorithms for finding and comparing all pairs of N×1 vectors
in an N×Pf vector space, except for a naı̈ve search algorithm
used in [5]. The naı̈ve search algorithm starts by creating
an N × Pf matrix with each of the columns consisting of
the integer values within each RSNS modulus sequence, as
shown in Table I. A double nested for–loop then determines
the beginning position of each ambiguity h1, which are then
sorted. A second double nested for–loop is then used to
determine the end position h2 of each ambiguity where no
other ambiguities are enclosed. The maximum length is then
calculated and is M̂ with the matrix index corresponding to
the correct beginning and end positions.

Now, we compare the time complexities (arithmetical oper-
ations, and comparisons) of both algorithms in the modulus M
(assuming N fixed). The naı̈ve approach uses a matrix of size
N×(2NM) and for each column, it checks for the first match
(ambiguity) in the remaining columns of the matrix, so it uses
N comparisons (for each components of every vector) plus
an addition for the range counter. Therefore, the worst case
complexity of finding ambiguities and the distance between
them is

�
Pf−1∑
h=0

N(Pf − h) = NP 2
f −N

Pf (Pf − 1)

2
(15)

=
NPf (Pf + 1)

2
= M(2MN + 1)N2 = O′(M2N3),(16)

(since the RSNS fundamental period is Pf = 2NM). We then
sort the obtained list of size � Pf = 2NM , which can be
done in O′(MN(logM + logN)), resulting in a total time
complexity of

Naive Time Complexity = O′(M2N3) = O(M2)

for the dynamic range computation. Now, we examine the
time complexity of our algorithm. The first step is the same
for both, and we disregard its complexity (as it is quite low,

that is, O′(N), compared to the other steps’ complexities).
The second step can be done in O(1) using our Theorem 7,
Lemma 8. The third step uses a sorted bin of size N×2N and
performs O′(N22N) additions/multiplications on rows, and
O′(N22N) additions/multiplications on columns (see [4] for
further details on this step). The sorting of Step 3 is done in
O′(N2N) operations. Step 4 as well as Step 6 need O′(2N)
operations, and Step 5 needs O′(N2N), for a total worst case
time complexity of

Improved Time Complexity = O′(N22N) = O(1).

Remark 9. The main advantage of our algorithm is that it
removes the apparent dependence on the size of the moduli
in the number of operations needed to compute the dynamic
range.

Fig. 3 shows a log–log plot of M̂ versus computation time
for the two algorithms using hundreds of N−channel moduli
sets. Each “+” represents the M̂ obtained using the algorithm
presented in this paper, and has a corresponding “◦” on the
same horizontal axis (up to M̂ ≈ 109), which is the M̂
computed using the naı̈ve search algorithm. The results are
displayed where the two computation methods produced the
same results for M̂ (up to 104 s). For example, with N = 4
moduli with M̂ = 2 × 104, the naı̈ve algorithm takes 300 s
to produce the answer, while the efficient algorithm described
above only takes 0.02 s.

VI. FURTHER CLOSED-FORM RESULTS FOR M̂

In this section, closed-form expressions are developed for
M̂ for several groups of moduli sets by curve fitting data
generated using the efficient algorithm described in Section IV
and then verifying that the closed-form expressions satisfy
the ambiguity equations of Table III. Curve fitting the data
obtained from the algorithm was chosen as a method of
generating the closed-form expressions for M̂ because it
leveraged the efficiency of our algorithm to generate data
for a large groups of moduli sets and curve fitting enabled
determining patterns of repeated Start and Stop Case number
combinations and visually determining the periodic nature of
discontinuities in the plotted data and resolving them. This
method also proved to be efficient compared to attempting to
derive closed-form expressions for M̂ by iteratively solving
the equations of Table III for different moduli sets.

A sample of the data generated using the algorithm is
presented in Table VI. The data was analyzed to determine
which moduli sets have the same Start and Stop Case numbers,
and the value of M̂ was plotted against a variable m that
is linearly related to the moduli. Curve-fitting of the plotted
data using MATLAB’s curve fitting tool box was conducted
to generate exact closed-form expressions for M̂ . The closed-
form expressions were then verified to be accurate by deriving
them from the applicable equations listed in Table III. Several
groupings of moduli for N = 3 and N = 4 were examined
increasing the number of closed-form expressions for M̂ .

For the N = 3 case, sequential coprime odd moduli of the
form mi = {m− 1,m+ 1,m+ 3} with m even and m > 3
were examined. Also, the case of two odd moduli and one even

U.S. Government work not protected by U.S. copyright.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TIT.2014.2301820, IEEE Transactions on Information Theory

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. XX, NO. XX, MONTH YEAR 8

modulus were examined where mi = {m,m+ 1,m+ 3} and
{m− 3,m− 1,m} with m even. The final case examined was
where the moduli consisted of every other odd number, that
is mi = {m,m+ 4,m+ 8} where m is odd and m ≥ 3.
The new closed-form expressions derived from curve fitting
the data are presented in Table VIII.

To demonstrate the method used to verify the closed-form
expressions generated from curve fitting, we examine the case
where N = 3 and mi = {m− 1,m+ 1,m+ 3} with m even
by generating the closed-form expressions from the equations
of Table III. The data was examined, and it was determined
that two distinct sets of case numbers are associated with the
beginning and ending positions of M̂ . When m ≡ 0 mod 4,
the case number associated with the beginning position, Start
Case of M̂ is Case 211, and the case number associated with
the ending position, Stop Case of M̂ is Case 220. The value
of m was plotted against the value of M̂ , and the data was
curve fitted to a quadratic polynomial using MATLAB’s curve
fitting toolbox. From the curve fit data,

M̂ =
3

2
m2 +

15

2
m+ 7 (17)

where m ≡ 0 mod 4. A sample of the data used to derive
(17) is presented in Table VI. The data examined and its
corresponding curve fit is illustrated in Fig. 4a. The values of
M̂ derived from the algorithm are equal to the values resulting
from (17).

Now, we will verify that the curve fit solution satisfies the
ambiguity equations of Table III. For the Start Case,

h211 = a (3m1m2) + hs211 − 3m3. (18)

The congruence equations that are generated from the shift
matrix, (8),

hs211 − 1

3
≡ 0 mod m1

hs211 − 1

3
≡ 0 mod m2,

(19)

are solved resulting in hs211 = 1. The value of a in (18) was
derived by solving (18) for a using the values of the beginning
position (h1 + 1) of M̂ and m. The results were curve fitted,
resulting in a = 0.75m+2. By substituting the expression for
a into (17), we obtain

h211 =
9

4
m3 + 6m2 − 21

4
m− 14. (20)

For the Stop Case,

h220 = a(3m1m3) + 3m2. (21)

It was determined that a = 0.75m+ 1 and

h220 =
9

4
m3 +

15

2
m2 +

9

4
m− 6 (22)

By solving for M̂ = h220 − h211 − 1, we obtain (17).
When m ≡ 2 mod 4, the Start Case is Case 211, and the

Stop Case is Case 231 as shown in Table VII. The data was
curve fitted resulting in

M̂ =
3

2
m2 +

15

2
m+ 5. (23)

0 100 200 300 400
0

0.5

1

1.5

2

2.5x 10
5

m

̂ M

̂MAlgorithm

̂MCurvefit

mi = {m− 1,m+ 1,m+ 3}

̂M = 3
2m

2 + 15
2 m+ 7

for m ≡ 0 mod 4

(a)

0 100 200 300 400
0

0.5

1

1.5

2

2.5x 10
5

m

̂ M

̂MAlgorithm

̂MCurvefit

mi = {m− 1,m+ 1,m+ 3}

̂M = 3
2m

2 + 15
2 + 5

for m ≡ 2 mod 4

(b)

Fig. 4. Curve fitting results for M̂ when (a) mi = {m− 1,m+ 1,m+ 3}
where m ≡ 0 mod 4, (b) mi = {m− 1,m+ 1,m+ 3} and m ≡ 2 mod
4.

Fig. 4b displays the data and closed-form solution generated
from curve fitting. Using the same approach, (23) is verified
by deriving it from the equations in Table III. For the Stop
Case,

h231 = a (3m2m3) + hs231 + 3m1. (24)

The congruence equations generated from (8)

hs231 − 1

3
≡ 0 mod m2

hs231 + 2

3
≡ 0 mod m3.

(25)

are solved using the CRT, resulting in

hs231 =
3

2
m2 +

15

2
m+ 7. (26)

The value of a in (24) was determined to be a = 0.5m − 1.
These expressions were then substituted into (24) to determine
that

h231 =
3

2
m3 +

9

2
m2 + 3m− 5. (27)

After solving for M̂ = h231−h211− 1, we obtain (23) which
verifies the result. The closed-form expressions for the other
moduli sets examined were verified in a similar manner.

Several groups of N = 4 RSNS moduli sets were also
examined, and closed-form expressions to M̂ were produced
by curve fitting the data generated by the efficient algorithm.
The moduli sets examined were

mi = {m− 1,m,m+ 2,m+ 4} ,

mi = {m,m+ 1,m+ 2,m+ 4} ,

mi = {m,m+ 2,m+ 3,m+ 4} ,

U.S. Government work not protected by U.S. copyright.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TIT.2014.2301820, IEEE Transactions on Information Theory

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. XX, NO. XX, MONTH YEAR 9

TABLE VI
SAMPLE OF DATA USED IN CURVE FITTING FOR SEQUENTIAL ODD COPRIME MODULI. m ≡ 0 mod 4

m− 1 m+ 1 m+ 3 h1 + 1 Start Case h2 − 1 Stop Case M̂

7 9 11 1481 211 1643 220 163
11 13 15 4676 211 4988 220 313
15 17 19 10655 211 11165 220 511
19 21 23 20282 211 21038 220 757
23 25 27 34421 211 35471 220 1051
27 29 31 53936 211 55328 220 1393
31 33 35 79691 211 81473 220 1783
35 37 39 112550 211 114770 220 2221
39 41 43 153377 211 156083 220 2707
43 45 47 203036 211 206276 220 3241
47 49 51 262391 211 266213 220 3823

TABLE VII
SAMPLE OF DATA USED IN CURVE FITTING FOR SEQUENTIAL ODD COPRIME MODULI, WITH m ≡ 2 mod 4.

m− 1 m+ 1 m+ 3 h1 + 1 Start Case h2 − 1 Stop Case M̂

5 7 9 395 211 498 231 104
9 11 13 1745 211 1974 231 230
13 15 17 4631 211 5034 231 404
17 19 21 9629 211 10254 231 626
21 23 25 17315 211 18210 231 896
25 27 29 28265 211 29478 231 1214
29 31 33 43055 211 44634 231 1580
33 35 37 62261 211 64254 231 1994
37 39 41 86459 211 88914 231 2456
41 43 45 116225 211 119190 231 2966
45 47 49 152135 211 155658 231 3524

TABLE VIII
NEW CLOSED-FORM EXPRESSIONS FOR M̂ FOR N = 3 RSNS.

mi M̂ m

{m− 1,m + 1,m + 3}
3
2m

2 + 15
2 m + 7 m ≡ 0 mod 4

3
2m

2 + 15
2 m + 5 m ≡ 2 mod 4

{m,m + 1,m + 3} 3
2m

2 + 27
2 m + 6 m ≡ 2 mod 4 and m ≥ 14

{m− 3,m + 1,m} 3
2m

2 + 3
2m m is even and m 6= 6k where k = 1, 2, . . .

{m,m + 4,m + 8}

9
4m

2 + 63
4 m + 48 m ≡ 1 mod 8

3
2m

2 + 33
2 m + 35 m ≡ 3 mod 8

3
2m

2 + 33
2 + 34 m ≡ 5 mod 8

9
4m

2 + 57
4 m + 45 m ≡ 7 mod 8

mi = {m,m+ 2,m+ 4,m+ 5} ,

and
mi = {m,m+ 2,m+ 4,m+ 6} ,

where m is odd. The closed-form expressions for M̂ are
presented in Table IX and were verified in the same manner
as the N = 3 cases.

VII. CONCLUDING REMARKS

This paper presents an algorithm to compute M̂ and de-
termine its location in the RSNS sequence. The algorithm
reduces the computation time by several orders of magnitude
compared to a previously reported naı̈ve search algorithm. In
addition, we demonstrate that our efficient algorithm removes
the apparent dependence on the size of the moduli in the

number of operations needed to compute M̂ . Linear inter-
polating the data in Fig. 3, it would take the naı̈ve search
algorithm more than 32 years to find M̂ for the same N = 8
sequence (of approximately 28 bit moduli) that the efficient
algorithm computed in approximately 30 seconds. Moreover,
the efficient algorithm uses far less memory than the naı̈ve
search algorithm; therefore, it can be used to determine the
N sequence M̂ and position for moduli sets with much larger
fundamental periods.

The algorithm was also used to generate data sets from
which curve fitting produced additional closed-form expres-
sions for M̂ increasing the groups of moduli sets for which
analytical expressions for M̂ exist. The new closed-form ex-
pressions for M̂ significantly increase the number of analytical
expressions that are known for M̂ greatly increasing the utility
of the RSNS to solving many types of engineering problems.

U.S. Government work not protected by U.S. copyright.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TIT.2014.2301820, IEEE Transactions on Information Theory

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. XX, NO. XX, MONTH YEAR 10

TABLE IX
NEW CLOSED-FORM EXPRESSIONS FOR M̂ FOR N = 4 RSNS.

mi M̂ m

{m− 1,m,m + 2,m + 4} 10m2 + 6m + 20 m ≡ 3 mod 6 or m ≡ 5 mod 6 with m ≥ 15 and m 6= {29, 33}

{m,m + 1,m + 2,m + 4} 10m2 + 22m + 20 m ≡ 1 mod 6 or m ≡ 3 mod 6 and m ≥ 15

{m,m + 2,m + 3,m + 4}
10m2 + 30m− 6 m = {25 + 12k, 29 + 12k, 31} where k = 0, 1, 2, · · · ,

10m2 + 30m− 8 m = {43 + 12k, 47 + 12k} and k = 0, 1, 2, · · ·

{m,m + 2,m + 4,m + 5} 10m2 + 54m + 20 m ≥ 39, gcd(m, 5) = 1, and m is odd

{m,m + 2,m + 4,m + 6} 10m2 + 38m + 56 m ≥ 13 and gcd(m, 3) = 1

Further research opportunities are investigating additional
moduli sets where closed-form expressions exist, developing
a general closed-form expression for M̂ , and formulating
an overarching theoretical framework that relates the various
symmetrical number systems to each other.

APPENDIX
PROOF OF THEOREM 7

Proof. Setting x =
∏

i∈I mi, we see that the expression that
must be minimized in the right-hand side of (11) is in fact the
function

f(x) = x+
2M

x
, x ≥ 1.

By examining the derivative of f(x), a simple calculus
analysis reveals that the function has a global minimum at
x =
√

2M , namely 2
√

2M , and the first inequality is shown.
The work in [4] contains the proof of M̂ < M for N = 3.

As examples, if N = 3, the smallest size coprime moduli sets
are listed in Table X in lexicographical order.

TABLE X
EXAMPLES OF M̂RSNS AND M FOR N = 3

mi M̂RSNS M

{2, 3, 5} 28 30
{2, 3, 7} 35 42
{2, 3, 11} 46 66
{3, 4, 5} 43 60

Now, assume that N ≥ 4. We need to prove that
Nd2
√

2Me < M , for N ≥ 4. Starting with the simple
inequality

Nd2
√

2Me ≤ N(2
√

2M + 1),

it is sufficient to show that N(2
√

2M + 1) ≤ M , which is
equivalent to N

√
8M ≤M −N , and 8N2M ≤M2 +N2 −

2MN , that is, M2 − 2N(4N + 1)M + N2 > 0. Looking at
the previous inequality as the sign of a concave-up parabola
in M , we see that the inequality is true, as long as

M > 4N2 +N + 2N
√

4N2 + 2N. (28)

If N = 4, then M ≥ 210, and the right-hand side of (28)
is ∼ 209.881; if N = 5, then M ≥ 2310, and the right-hand
side of (28) is ∼ 299.88. Thus, the inequality (28) is true for
4 ≤ N ≤ 5.

Next, it is observed that for any N ≥ 3 (use the fact that
the moduli are coprime): if N = 3, then

M ≥

2 · 3 · 5 = 30, N = 3

2 · 3 · 5 · 7 = 210, N = 4

etc.

M ≥ 2 · 3 · 5 = 30; if N = 4, then M ≥ 2 · 3 · 5 · 7 = 210,
etc. For arbitrary N , an easy inductive procedure reveals that

M ≥ PN#,

where PN# =
∏N

k=1 pk is the primorial function, and pk
is the kth prime. It is well–known (and easily derivable by
using the prime number theorem [17]) that PN# = exp[(1 +
o(1))n log n].

Assume N ≥ 6. It is immediate that

PN# > (N + 1)!.

(For the interested reader, a better asymptotic estimate PN# =
exp[(1 + o(1))N logN] is well–known [17].) We now show
that for N ≥ 6, the right hand side of the above inequality
satisfies

(N + 1)! > 4N2 +N + 2N
√

4N2 + 2N, (29)

which will imply our claim.
We will prove (29) by induction on N . If N = 6, then

(6 + 1)!−
(

4 · 62 + 6 + 2 · 6
√

4 · 62 + 2 · 6
)
> 4740,

and so, the inequality (29) is true in this case. Assume that
the inequality is true for N and we show it for N + 1, that
is, we start from (29) and multiply by N + 2 on both sides,
to get

(N + 2)! > (N + 2) ·
(

4N2 +N + 2N
√

4N2 + 2N
)
.

It will be sufficient to show that

(N + 2)
(
4N2 +N + 2N

√
4N2 + 2N

)
> 4(N + 1)2

+(N + 1) + 2(N + 1)
√

4(N + 1)2 + 2(N + 1).

Since

(N+2)(4N2+N)−4(N+1)2−(N+1) = 4N3+5N2−7N−5

is increasing and greater than 0, for N ≥ 6, the previous
inequality will follow if

(N+2)2N
√

4N2 + 2N > 2(N+1)
√

4(N + 1)2 + 2(N + 1),

U.S. Government work not protected by U.S. copyright.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TIT.2014.2301820, IEEE Transactions on Information Theory

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. XX, NO. XX, MONTH YEAR 11

which by squaring both sides transforms into

−24− 88N − 120N2 − 40N3 + 80N4 + 72N5 + 16N6 > 0,

which is certainly true for N ≥ 6. This concludes the proof
of Theorem 7.

REFERENCES

[1] P. E. Pace, R. E. Leino, and D. Styer, “Use of the symmetrical
number system in resolving single-frequency undersampling aliases,”
IEEE Trans. on Signal Process., vol. 45, pp. 1153–1160, May 1997.

[2] P. E. Pace, J. L. Schafer, and D. Styer, “Optimum analog preprocessing
for folding ADCs,” IEEE Trans. Circuits Syst. II, vol. 42, pp. 825–829,
Dec. 1995.

[3] B. L. Luke and P. E. Pace, “Computation of the robust symmetrical
number system dynamic range,” in Proc. 2010 IEEE Information Theory
Workshop (ITW 2010-Dublin), pp. 1–5.

[4] ——, “N-sequence RSNS ambiguity analysis,” IEEE Trans. Inf. Theory,
vol. 53, pp. 1759–1766, May 2007.

[5] D. Styer and P. E. Pace, “Two-channel RSNS dynamic range,” IEEE
Trans. Circuits Syst. I, vol. 49, pp. 395–397, Mar. 2002.

[6] D.-M. Pham, A. Premkumar, and A. S. Madhukumar, “Efficient sample
rate conversion in software radio employing folding number system,” in
2009 IEEE International Conf. Comms. - ICC ’09., 2009, pp. 1–5.

[7] P. E. Pace, D. Styer, and I. A. Akin, “A folding ADC preprocessing
architecture employing a robust symmetrical number system with gray-
code properties,” IEEE Trans. Circuits Syst. II, vol. 47, pp. 462–467,
May 2000.

[8] I.-H. Wang and S.-I. Liu, “A CMOS 5-bit 5gsample/sec analog-to-digital
converter in 0.13 µm CMOS,” J. Semiconductor Technol. and Sci., pp.
28–35, Mar. 2007.

[9] M. R. Arvizo, J. Calusdian, K. B. Hollinger, and P. E. Pace, “Robust
symmetrical number system preprocessing for minimizing encoding
errors in photonic analog-to-digital converters,” Optical Engineering,
vol. 50, pp. 084 602–1–084 602–11, Aug. 2011.

[10] M. Wicht, M. Schott, and P. E. Pace, “Increasing the flux measurement
range of an RF-SQUID resonant detection circuit using the robust
symmetrical number system,” IEEE Trans. Appl. Supercond., vol. 23,
pp. 1 602 910–1 602 910, Feb. 2013.

[11] D.-M. Pham, A. B. Premkumar, and A. S. Madhukumar, “Error detection
and correction in communication channels using inverse gray RSNS
codes,” IEEE Trans. Commun., vol. 59, pp. 975–986, Apr. 2011.

[12] Y. Jakop, A. S. Madhukumar, and A. B. Premkumar, “A robust symmet-
rical number system based parallel communication system with inherent
error detection and correction,” IEEE Trans. Wireless Commun., vol. 8,
pp. 2742–2747, Jun. 2009.

[13] P. E. Pace, D. Wickersham, D. C. Jenn, and N. S. York, “High-resolution
phase sampled interferometry using symmetrical number systems,” IEEE
Trans. Antennas Propag., vol. 49, pp. 1411–1423, Oct. 2001.

[14] N. Paepolshiri, P. E. Pace, and D. C. Jenn, “Extending the unambiguous
range of polyphase P4 CW radar using the robust symmetrical number
system,” IET Radar, Sonar & Navigation, vol. 6, pp. 659–667, Jul. 2012.

[15] M. B. A. P. Hiltgen, K. G. Paterson, “Single-track gray codes,” IEEE
Trans. Inf. Theory, pp. 1555–1561, May 1996.

[16] B. L. Luke and P. E. Pace, “N-sequence RSNS redundancy analysis,” in
2006 IEEE Int. Symp. on Information Theory, pp. 2744–2748.

[17] H. Dubner, “Factorial and primorial primes,” J. Rec. Math., pp. 197–203,
1987.

Phillip E. Pace (S87, M90, SM97) received the B.S. and M.S. degrees from
Ohio University, Athens, in 1983 and 1986, respectively, and the Ph.D. degree
from the University of Cincinnati, Cincinnati, OH, in 1990, all in electrical
and computer engineering. He is currently a Professor in the Department
of Electrical and Computer Engineering at the Naval Postgraduate School
(NPS), Monterey, CA, and the Director for the NPS Center for Joint Services
Electronic Warfare. Prior to joining NPS, he spent two years at General
Dynamics Corporation, Air Defense Systems Division, as a Design Specialist
in the Radar Systems Research Engineering Department. Before that, he was a
member of technical staff at Hughes Aircraft Company, Radar Systems Group,
for five years. He has been the Chairman of the Navy’s Threat Simulator
Validation Working Group since October 1998 and was a participant on the
Navy’s NULKA Blue Ribbon Panel in January 1999. He is the author of
two textbooks, Advanced Techniques for Digital Receivers, (Artech House,
2000) and Detecting and Classifying Low Probability of Intercept Radar
(Artech House, 2004, 2009) and is an Associate Editor for the Transactions
on Aerospace and Electronic Systems (electronic warfare technical area). He
has been a Principal Investigator on numerous research projects in the areas
of signal processing, electronic warfare, and weapon systems analysis.

Pantelimon Stănică received his Master of Science in Mathematics degree
in 1992 from University of Bucharest, Romania. He completed his Ph.D. in
Mathematics at State University of New York at Buffalo in 1998. Currently,
he is a Professor at the Naval Postgraduate School, in Monterey, California.
His research interests are in Cryptology, Number Theory and Discrete
Mathematics.

Brian L. Luke received his Ph.D. in Electrical Engineering in 2004 from the
Naval Postgraduate School in Monterey, California. He is a Captain in the
Navy currently serving as an Information Warfare Officer in the Maryland
and Washington DC area.

Thomas W. Tedesso (S’2010) received the B.S. in electrical engineering
from Illinois Institute of Technology, Chicago, IL in 1990 and a M.S. in
electrical engineering from the Naval Postgraduate School, Monterey, CA, in
1998. He is currently a Ph.D. candidate at the Naval Postgraduate School,
Monterey, CA, serving on active duty in the United States Navy. Prior to
commencing his doctoral studies in September 2010, he served in various
assignments both ashore and afloat as a surface warfare officer trained in naval
nuclear propulsion, including Assistant Reactor Officer on USS ENTERPRISE
(CVN-65) and Chief Staff Officer of Destroyer Squadron FIFTEEN forward
deployed to Yokosuka, Japan. Following completion of his doctoral research
in December 2013, he will report to the United States Naval Academy as a
permanent military professor.

