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Abstract. This test paper is typeset in the document class
amsart, without any additional style files. Font size and text
size are easy to change; here they are 11pt and 5.5” × 8.5”, re-
spectively. This appears to be quite close to the present format
of the Quarterly—?.

If we decide to have abstracts for articles in the Fibonacci
Quarterly, which I think is a good idea, it will look like this in
this format.

1. Introduction

This is a shortened and mutilated version of a paper by the first
author, for demonstration purposes only. As it stands, it makes no
sense; for the real thing, see the Fibonacci Quarterly 38 (2000), 342–
363.

Hypergeometric functions are an important tool in many branches
of pure and applied mathematics, and they encompass most special
functions, including the Chebyshev polynomials. There are also well-
known connections between Chebyshev polynomials and sequences of
numbers and polynomials related to Fibonacci numbers. However,
to my knowledge and with one small exception, direct connections
between Fibonacci numbers and hypergeometric functions have not
been established or exploited before.

It is the purpose of this paper to give a brief exposition of hy-
pergeometric functions, as far as is relevant to the Fibonacci and
allied sequences. A variety of representations in terms of finite sums
and infinite series involving binomial coefficients are obtained. While
many of them are well-known, some identities appear to be new.
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The method of hypergeometric functions works just as well for
other sequences, especially the Lucas, Pell, and associated Pell num-
bers and polynomials, and also for more general second-order linear
recursion sequences. However, apart from the final section, we will
restrict our attention to Fibonacci numbers as the most prominent
example of a second-order recurrence.

2. Hypergeometric Functions

Almost all of the most common special functions in mathematics
and mathematical physics are particular cases of the Gauss hyperge-
ometric series defined by

2F1(a, b; c; z) =
∞∑

k=0

(a)k(b)k

(c)k

zk

k!
, (2.1)

where the rising factorial (a)k is defined by (a)0 = 1 and

(a)k = a(a+ 1) · · · (a+ k − 1), (k ≥ 1), (2.2)

for arbitrary a ∈ C. The series (2.1) is not defined when c = −m,
with m = 0, 1, 2, . . ., unless a or b are equal to −n, n = 0, 1, 2, . . .,
and n < m. It is also easy to see that the series (2.1) reduces to
a polynomial of degree n in z when a or b is equal to −n, n =
0, 1, 2, . . .. In all other cases the series has radius of convergence 1;
this follows from the ratio test and (2.2). The function defined by
the series (2.1) is called the Gauss hypergeometric function. When
there is no danger of confusion with other types of hypergeometric
series, (2.1) is commonly denoted simply by F (a, b; c; z) and called
the hypergeometric series, resp. function.

Most properties of the hypergeometric series can be found in the
well-known reference works [1], [9] and [8] (in increasing order of
completeness). Proofs of many of the more important properties can
be found, e.g., in [10]; see also the important works [4] and [11].

At this point we mention only the special case

F (a, b; b; z) = (1− z)−a, (2.3)

the binomial formula. The case a = 1 yields the geometric series;
this gave rise to the term hypergeometric.

More properties will be introduced in later sections, as the need
arises.
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3. Fibonacci Numbers

We will use two different (but related) connections between Fi-
bonacci numbers and hypergeometric functions. The first one is Bi-
net’s formula

Fn =
1√
5

[(
1 +
√

5
2

)n

−

(
1−
√

5
2

)n]
, (3.1)

which allows us to use the identity

F

(
a,

1
2

+ a;
3
2

; z2

)
=

1
2z(1− 2a)

[
(1 + z)1−2a − (1− z)1−2a

]
(3.2)

(see, e.g., [1], (15.1.10)). If we take a = (1 − n)/2, z =
√

5, and
compare (3.2) with (3.1), we obtain

Fn =
n

2n−1
F

(
1− n

2
,
2− n

2
;
3
2

; 5
)
. (3.3)

Note that one of the numbers (1−n)/2, (2−n)/2 is always a negative
integer (or zero) for n ≥ 1, so (3.3) is in fact a finite sum and we need
not worry about convergence (see, however, the remark following
(4.28)).

Our second approach will be via the well-known connection be-
tween Fibonacci numbers and the Chebyshev polynomials of the sec-
ond kind, namely

Fn = (−i)n−1Un−1

(
i

2

)
. (3.4)
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√
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√
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√
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TABLE 1. Possible arguments
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4. Linear and Quadratic Transformations

The next linear transformation formula in the list in [1], p. 559, is

F (a, b; c; z) =
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)

F (a, b; a+ b− c+ 1; 1− z)

+ (1− z)c−a−b Γ(c)Γ(a+ b− c)
Γ(a)Γ(b)

F (c− a, c− b; c− a− b+ 1; 1− z).

(4.1)

However, since a + b − c = −n in (3.3), one of the gamma terms
in the numerator is not defined. Instead, we have to use formula
(15.3.11) in [1], p. 559, which in the special case where a or b is a
negative integer and m is a non-negative integer becomes

F (a, b; a+ b+m; z) =
Γ(m)Γ(a+ b+m)
Γ(a+m)Γ(b+m)

F (a, b; 1−m; 1− z). (4.2)

(For the general case, see, [1], (15.3.11), p. 559). This, applied to
(3.3), gives

Fn = F

(
1− n

2
,
2− n

2
; 1− n;−4

)
. (4.3)

Here, we have evaluated the gamma terms in (4.7) as follws, using
the duplication formula for Γ(z) (see, e.g., [1], p. 256):

Γ(m)Γ(a+ b+m)
Γ(a+m)Γ(b+m)

=
Γ(n)Γ(3

2)
Γ(n

2 + 1
2)Γ(n

2 + 1)

=
(2π)−1/22n−1/2Γ(n

2 )Γ(n
2 + 1

2)1
2

√
π

Γ(n
2 + 1

2)n
2 Γ(n

2 )
=

2n−1

n
.

Another transformation formula similar to (4.6) is

F (a, b; c; z) =
Γ(c)Γ(b− a)
Γ(b)Γ(c− a)

(−z)−aF

(
a, 1− c+ a; 1− b+ a;

1
z

)
+

Γ(c)Γ(a− b)
Γ(a)Γ(c− b)

(−z)−bF

(
b, 1− c+ b; 1− a+ b;

1
z

)
.

(4.4)

5. An Irreducibility Result

This section is taken from another one of the first author’s papers,
to illustrate the “theorem” and “proof” environments.
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Proposition 5.1. For any pair of nonnegative integers r and s, the
polynomial B(r,s)

p−(r+s+1)(x) is irreducible for all primes p > r + s+ 1.

Proof. For r = s = 0, this is a result of Carlitz [6]. Let now w =
r+ s+ 1 > 1, and let d(r,s)

p denote the least common multiple of the
denominators of B(r,s)

0 , . . . , B
(r,s)
p−w. By the relation (2.2) we have

d(r,s)
p xp−wB

(r,s)
p−w

(
1
x

)
=

p−w∑
k=0

(
p− w
k

)
d(r,s)

p B
(r,s)
k xk, (5.1)

and clearly this polynomial has integer coefficients. Now, by Propo-
sition 5.3 we know that B(r,s)

k is p-integral for 0 ≤ k < p − w, and
that α(r,s)

p (p − w) = 1. Hence p‖d(r,s)
p . Since p does not divide the

binomial coefficients in (6.1), we see that the leading coefficient of
the polynomial is not divisible by p, all the other coefficients are di-
visible by p, but the constant coefficient is not divisible by p2. Hence
Eisenstein’s irreducibility ciriterion applies, and the polynomial in
(6.1), and consequently B(r,s)

p−w(x), are irreducible. �
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