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ABSTRACT 
 
 
 
The purpose of this thesis is to assess the benefit of assimilating satellite altimeter 

data into the Modular Ocean Data Assimilation System (MODAS).  To accomplish this, 

two different MODAS fields were used by the Weapon Acoustic Preset Program (WAPP) 

to determine suggested presets for a Mk 48 variant torpedo.  The MODAS fields differ in 

that one uses altimeter data assimilated from three satellites while the other uses no 

altimeter data.  The metric used to compare the two sets of outputs is the relative 

difference in acoustic coverage area generated by WAPP.    Output presets are created for 

five different scenarios, two Anti-Surface Warfare scenarios and three Anti-Submarine 

Warfare scenarios, in each of three regions: the East China Sea, the Sea of Japan, and an 

area south of Japan that includes the Kuroshio current.  Analysis of the output reveals 

that, in some situations, WAPP output is very sensitive to the inclusion of the altimeter 

data because of the resulting differences in the subsurface predictions. The change in 

weapon presets could be so much that the effectiveness of the weapon might be affected. 
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I. INTRODUCTION  

A. BACKGROUND  
The outcome of a battlefield engagement is often determined by the advantages 

and disadvantages held by each adversary.  On the modern battlefield, the possessor of 

the best technology often has the upper hand, but only if that advanced technology is used 

properly and efficiently.  In order to exploit this advantage and optimize the effectiveness 

of high technology sensor and weapon systems, it is essential to understand the impact on 

them by the environment.  In the arena of Anti-Submarine Warfare (ASW), the ocean 

environment determines the performance of the acoustic sensors employed and the 

success of any associated weapon systems.  Since acoustic sensors detect underwater 

sound waves, understanding how those waves propagate is crucial to knowing how the 

sensors will perform and being able to optimize their performance in a given situation.  

To gain this understanding, an accurate depiction of the ocean environment is necessary. 

How acoustic waves propagate from one location to another under water is 

determined by many factors, some of which are described by the sound speed profile 

(SSP).  If the environmental properties of temperature and salinity are known over the 

entire depth range, the SSP can be compiled by using them in an empirical formula to 

calculate the expected sound speed in a vertical column of water.  One way to determine 

these environmental properties is to measure them in situ, such as by conductivity-

temperature-depth or expendable bathythermograph (XBT) casts.  This method is not 

always tactically feasible and only gives the vertical profile at one location producing a 

very limited picture of the regional ocean structure.  Another method is to estimate the 

ocean conditions using a computer analysis tool, such as the Modular Ocean Data 

Assimilation System (MODAS) developed by the Naval Research Laboratory (NRL) at 

the Stennis Space Center in Mississippi.  MODAS is often used by the U.S. Navy to 

represent the water column hydrographic properties where in situ measurements are 

sparse or not available. 

MODAS does a better job of representing the actual ocean structure than static 

climatology databases (Fox et. al., 2002; Chu et. al., 2004).  It is expected that this 
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representation becomes even better when an increased number of in situ measurements 

and remotely sensed data from satellites are assimilated into MODAS.  The satellites use 

radiometers to measure the thermal radiation emitted by the sea surface (from which sea 

surface temperature is derived) and radar altimeters to measure sea surface height.  

MODAS uses this information to create a “dynamic climatology” that more accurately 

reflects the mesoscale variability present in the ocean.  Just how valuable a resource is 

this altimetry information?  This thesis constitutes a first step in trying to answer this 

question by using MODAS as the end user of the altimetry data and the Weapon Acoustic 

Preset Program (WAPP) for the Mk 48 torpedo as the yardstick. 

 

B. PURPOSE 
If the assumption is that MODAS provides an improved representation of actual 

ocean conditions when satellite altimetry data is assimilated, a MODAS field that has this 

information would differ from one that does not, especially in regions of high mesoscale 

activity.  If these differences are large enough, a tactical decision aid may give very 

different sound propagation characteristics depending on which MODAS field is used to 

represent the ocean environment.  This, in turn, would cast doubt on predicted sensor 

performance and could render the technology ineffective, possibly changing the outcome 

of an engagement. 

The purpose of this thesis is to quantify the sensitivity of a naval ASW system, 

specifically the Mk 48 torpedo WAPP, to the assimilation of satellite altimetry data when 

MODAS is used as WAPP’s source of SSP information.  This was done by examining the 

relative difference (RD) in the output of WAPP when two different MODAS fields were 

used as separate SSP inputs, as depicted in Figure 1.  The MODAS fields were identical 

in each case except that one had satellite altimetry data assimilated while the other did 

not.   

If a significant degree of sensitivity is discovered, then the next logical step would 

be to determine if the addition of satellite altimetry caused WAPP to respond more like it 

would have if in situ measurements were used as SSP input.  This could be achieved in an 

experiment designed to compare WAPP output when MODAS fields and in situ 

measurements are used as separate SSP inputs.  The question of how valuable this 
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altimetry data is can then be more fully explored.  On the other hand, if this study shows 

little sensitivity to the different MODAS fields, then the value of satellite altimetry 

information, at least as an input to MODAS, can be assessed as low. 

Satellite 
SST & 
SSH

MODAS WAPP

Satellite 
SST only

Presets

Presets

Satellite 
SST & 
SSH

MODAS WAPP

Satellite 
SST only

Presets

Presets

Relative
Difference

 
Figure 1.   Thesis process flowchart. 

 

C. THESIS SCOPE 
The daily MODAS fields chosen for analysis were produced on two days picked 

in two different seasons to introduce some seasonal variability.  For each day there were 

two fields: one with altimetry data assimilated into it and one without altimetry data.  The 

fields that included altimetry received the data from the three satellite systems having 

operational altimeters at the time: NASA’s TOPEX, the U.S. Navy’s GEOSAT Follow-

On, and the European Space Agency’s ERS-2 (Fox et. al., 2002).  In order to keep the 

data analysis manageable, but at the same time to gather a large enough number of data 

comparison points, three geographic regions, each five by five degrees in latitude and 

longitude, were cut out of the MODAS fields for each day.  The boxes, shown in Figure 

2, were located in the East China Sea region (ECS), the Sea of Japan region (SOJ), and 

the Kuroshio Current area south of Japan (KCA), and were chosen for their varying 

amounts of mesoscale variability as well as their tactical significance.  Segregating these 

regions by the two dates created six MODAS cases to analyze. 

WAPP was used to run five different tactical scenarios for each case: two Anti-

Surface Warfare (ASUW) scenarios and three ASW scenarios.  One of the ASUW 

scenarios involved a low Doppler, or slow moving, target while the other had a high 

Doppler target.  One of the ASW scenarios involved a low Doppler target in a shallow 

depth band, representative of a diesel submarine.  The other two ASW scenarios 



 

4 

consisted of a high and a low Doppler target in a deep depth band, representative of 

nuclear submarine capabilities.  The output of WAPP used for comparison was area 

coverage, or the fraction of the search region having signal excess greater than 0 dB.  A 

statistical software package was then used to determine the number of search 

depth/search angle combinations with relative differences in area coverage within a 

specified range.  Histograms were generated to graphically display these statistics for 

each scenario in each case. 

 
Figure 2.   Geographic  regions. 
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II. MODAS 

A. BACKGROUND 
MODAS, developed in the mid 1990s, is a global ocean analysis tool presently 

running at various navy facilities.  It produces three-dimensional grids of temperature and 

salinity with horizontal resolutions ranging from one half to one eighth of a degree and 

uses these fields to derive other oceanographic fields of interest, such as density, sound 

speed, mixed layer depth, and geostrophic velocity.  Unlike traditional “static 

climatologies,” such as Levitus Climatology and the Generalized Digital Environmental 

Model that simply represent historical averages of ocean conditions, MODAS can 

assimilate real-time observations and produce an “adjusted” climatology that more 

closely represents the actual ocean conditions (Fox et. al., 2002). 

To produce its “dynamic climatology,” MODAS starts with a static, bi-monthly, 

gridded climatology of temperature and salinity that is derived from an archive of 

millions of profile measurements.  The sea surface temperature (SST) and sea surface 

height (SSH) observations from satellites are used to generate two-dimensional, gridded 

fields of SST and SSH.  This is accomplished by using optimum interpolation (OI) to 

calculate the SST and SSH values at the regularly spaced grid points within the fields.  OI 

is a technique used for combining a background, or first guess, field and measured data 

by using a model of how nearby data are correlated (Fox et. al., 2002a).  In the case of 

SST for example, the interpolated temperature is calculated by adding an interpolated 

temperature anomaly to the first guess grid value, as shown in the following equation: 

 
1

( )
N

a f o f
k k kj j j

j
T T T T

=

= + α −∑ , (1) 

where a
kT is the analyzed SST at the k-th grid point, f

kT is the first guess temperature at the 

k-th grid point valid at the analysis time, o
jT is the observed SST at location j, f

jT is the 

first guess temperature at location j valid at the observation time, kjα is a weighting factor 

applied to the observation, and N is the number of observations assimilated at the k-th 
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grid point.  The anomaly is, therefore, determined as the linear combination of observed 

anomalies after each one is weighted to account for spatial and temporal sampling. 

The weighting factors are estimated by minimizing the least square difference 

between the interpolated and actual grid point values and solving the following set of 

equations for the space-time autocorrelation between location j and grid point k, kjη : 

 
1

( )
N

o
ij ij i kj kj

j=

η + δ λ α = η∑ ,  (2)  

for i = 1, 2, …N, where o
iλ is the signal to noise ratio for the i-th observation.  To simplify 

this, the autocorrelation function for i-th observation at location j, ijη , is given the simple 

form of 

 2 2 2 2 2 2exp( )ij k ij k ij k ijA x B y C tη = − ∆ − ∆ − ∆ , (3) 

where ijx∆ , ijy∆ , and ijt∆ are the east-west, north-south, and time separation of location j 

from the grid point, respectively.  The values 1
kA− , 1

kB− , and 1
kC−  are east-west, north-south, 

and temporal decorrelation scales. 

The first guess fields used by MODAS for the OI calculations are yesterday’s 

MODAS field for SST and a large-scale weighted average of 35 days of altimetry for 

SSH.  For the first OI iteration, the static climatology is used for the SST first guess.  

Synthetic temperature profiles can then be created by projecting these fields downward in 

the water column to a depth of 1500 m using relationships determined from a least-

squares regression analysis of historical temperature profiles that relate both SST and 

SSH to the subsurface temperature (Fox et. al., 2002). 

The result is a “dynamic climatology” that more accurately reflects the mesoscale 

temperature variability, as seen in Figure 3.  The figure shows a vertical cross-section 

along a line where XBTs were dropped.  The center panel shows the measurements made 

by the XBTs and reveals a subsurface cold-core eddy just to the right of center.  The 

climatology panel on the left, as expected, indicates no mesoscale eddy.  The MODAS 

synthetic analysis on the right was produced by assimilating satellite sensed SST and 
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SSH only (no in situ data).  The MODAS cross-section indicates the eddy is present, 

although it does not quite resolve the smaller variations within the eddy itself. 

 
Figure 3.   Comparison of climatology, XBTs, and MODAS (After Ref. Fox, 2004). 

OI is also used to merge in situ temperature measurements into the dynamic 

climatology to produce a final temperature analysis.  From this, a salinity analysis is 

produced using temperature-salinity regression relationships to estimate salinity at each 

depth.  Similar to the temperature analysis, in situ salinity measurements can then be 

combined using OI to produce the final salinity analysis (Fox et. al., 2002a).  An outline 

of the MODAS process is presented in Figure 4.  The final temperature and salinity 

analyses are what MODAS uses to produce the other derived fields, such as sound speed. 
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Figure 4.   MODAS process flowchart. 
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B. APPLICATION 
Global MODAS fields are produced at the Naval Oceanographic Office on a daily 

basis.  The daily MODAS fields chosen for analysis were produced on June 30, 2001 and 

October 10, 2001.  Two versions of each daily field were used to provide the 

environmental properties needed by WAPP to run its ray tracing model.  The MODAS 

field versions were identical for the given day, with the exception of one had satellite 

altimetry data assimilated while the other did not.  It was out of these global fields that 

the three five by five degree geographic regions mentioned earlier were selected.  They 

are described by boxes located at 30-35N and 125-130E in ECS, 35-40N and 130-135E 

in SOJ, and 30-35N and 135-140E in KCA.  The resolution of MODAS in these regions 

is one eighth of a degree, which yielded three grids of 41 by 41 points each.  After 

eliminating grid points over areas of land, the number of vertical profiles made available 

to WAPP for each case was: 1,495 pairs for SOJ; 1,448 pairs for ECS; and 1,436 pairs for 

KCA, for a total of 4,379 pairs of profiles.  Each vertical profile pair was for the same 

location and day, but one each was taken from the two different versions of MODAS 

fields.  The output of WAPP could therefore be compared using each pair of vertical 

profiles to determine the sensitivity of the output to the altimetry data. 

 

C. COMPARISON OF MODAS FIELDS 

1. Statistical Methods 
The two versions of MODAS fields for each case were compared by computing 

the difference in temperature, salinity, and sound speed (all denoted as iX∆ , where X can 

be any of the aforementioned parameters) at each horizontal grid point and depth.  The 

mean of these differences, or bias,  

 
1

1 n

i
i

X X
n =

∆ = ∆∑ , (4) 

standard deviation of these differences, 

 2

1

1 ( )
1

n

X i
i

X X
n

σ∆
=

= ∆ −∆
− ∑ , (5) 

and root mean square difference, 
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 2

1

1 n

i
i

RMSD X
n =

= ∆∑ , (6) 

over the entire volume for each case were calculated.  Also, histograms were generated 

using these differences, scatter plots were produced, and vertical profiles of horizontally 

averaged bias and RMSD were produced for each parameter and case. 

2. Volume RMSD 
The volume RMSD values, plotted in Figure 5, give a general indication of how 

much difference there was in the MODAS analyses for each case.  The largest differences 

in the temperature fields occurred in KCA on both days and in SOJ on Oct 10, where the 

volume RMSD values ranged from 1.58 to 1.80 °C.  The other cases had RMSD values 

of 1.18 °C or less.  Salinity differences were also largest in KCA on both days, but ECS 

on Jun 30 had a large volume salinity RMSD as well.  These three cases had values 

ranging from 0.0759 to 0.0822 psu, whereas the other cases had values of 0.056 psu or 

less.  The derived sound speed analyses closely followed the temperature fields, which is 

to be expected as temperature changes typically have the largest affect on sound speed.  

The largest sound speed volume RMSD values ranged from 1.62 to 1.84 m/s and 

occurred in the same cases as they did for the temperature analyses.  The remaining cases 

had values of 1.15 m/s and smaller. 
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Figure 5.   MODAS field RMSDs. 
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3. Horizontally Averaged RMSD 

The vertical profiles of horizontally averaged RMSD allow for a more detailed 

comparison by showing at what depths the largest average differences occurred for each 

case.  The largest differences in the temperature analyses occurred in the Oct 10 profiles 

for KCA and SOJ.  Both had horizontally averaged RMSD values of well over 3 °C at 

different depths, as shown in Figure 6.  The maximum values in the KCA profile 

occurred between 300 and 500 m, whereas in the SOJ profile they were in the 50 to 200 

m range. 
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Figure 6.   Vertical RMSD profiles for KCA (left) and SOJ (right) October. 
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Figure 7.   MODAS temperature at 100 m on Oct 10, 2001. 
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A comparison of the horizontal temperature fields on Oct 10 at 100 m (Figure 7) 

and 500 m (Figure 8) lend some explanation for the high RMSD values in these cases.  

The panel with altimeter data in Figure 7 reveals a subsurface eddy system, comprised of 

both a warm-core and a cold-core eddy, and a stronger Polar Front in SOJ; the eddies are 

noticeably absent from the panel without altimeter data.  The panel with altimeter data in 

Figure 8 shows a much stronger subsurface front in KCA, including cooler water to the 

north and warmer water to the south of the front, than the panel without altimeter data. 
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Figure 8.   MODAS temperature at 500 m on Oct 10, 2001. 

The largest differences in the salinity analyses occurred in the KCA profiles on 

both days.  They had horizontally averaged RMSD values of about 0.15 psu or more, 

with maximum values in the 200 to 400 m range, as shown in Figure 9.  The horizontal 

salinity fields at 300 m are shown in Figures 10 and 11.  Similar to the temperature field 

shown above, a much stronger front is depicted in the panel with altimetry data, with a 

larger contrast in salinity on either side of the front.  This is true for both days. 

As is to be expected, the horizontally averaged RMSD plots for the sound speed 

fields look very similar to the temperature plots.  It follows, then, that the largest values 

of well over 3 m/s occurred in the Oct 10 profiles for KCA and SOJ at the same depth 

ranges as the temperature profiles: 300 to 500 m in the KCA profile and 50 to 200 m in 

the SOJ profile.  The other cases with smaller differences in their analyses show similar, 

although less obvious, patterns between the horizontally averaged RMSD vertical profiles 
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and the horizontal parameter fields.  (All of the MODAS field temperature, salinity, and 

sound speed statistical plots for each case can be found in Appendix A.) 
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Figure 9.   Vertical RMSD profiles for KCA June (left) and October (right). 
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Figure 10.   MODAS salinity at 300 m on Jun 30, 2001. 

 



 

13 

125 130 135 140

30

35

40

Longitude (E)

La
tit

ud
e 

(N
)

MODAS Salinity WITH Altimeters

34.1 34.2 34.3 34.4 34.5 34.6 34.7 34.8 34.9
Salinity (psu)

125 130 135 140

30

35

40

Longitude (E)

La
tit

ud
e 

(N
)

MODAS Salinity WITHOUT Altimeters

34.1 34.2 34.3 34.4 34.5 34.6 34.7 34.8
Salinity (psu)  

Figure 11.   MODAS salinity at 300 m on Oct 10, 2001. 
 

4. Sound Speed Profiles 

The horizontally averaged RMSD plots previously discussed help to explain the 

SSP pattern observed for each case.  Figures 12 and 13 illustrate this well for the two 

cases with the largest differences in the sound speed (and temperature) MODAS 

analyses, the Oct 10 fields for KCA and SOJ.  The nine SSP pairs in each figure are 

displayed so that their positions correspond to their locations within the area.  For 

example, the top left panel shows the SSP pair for a location in the northwest portion of 

the box; the center panel is for a location near the center of the box, and so on.  (Note: the 

horizontal scale may change from panel to panel, so care must be taken to understand the 

relative changes between panels.)  This type of display provides the additional 

information of horizontal positioning of the largest differences as well as their depths.  

(Appendix B contains all of the MODAS SSP diagrams.) 

The largest deviations seen in the SSP pairs in Figure 12 correspond to the depth 

band already identified as having the largest RMSD values for KCA on Oct 10, that being 

300 to 500 m.  The top-right, center, and two bottom-left panels show the most deviation 

and correspond to the locations of the largest temperature differences in Figure 8.  The 

top three panels are profiles from within the front, showing the stronger gradient 

discovered earlier for the field with altimetry than for the one without.  These stronger 

gradients produce the stronger sound channels evident in the right two panels.  The 
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middle and bottom panels show the result of the field with altimetry having much warmer 

water to the south of the front: the sound speeds are much faster there.  They also show 

more of a gradient in the non-altimetry field; a result of that field depicting a more spread 

out front than the tightly packed, stronger front of the altimetry field.  Another obvious 

difference in the center and two bottom-left panels is the second, shallow sound channel 

in the altimetry field profiles, where one does not exist (or is very weak) in the non-

altimetry field. 
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Figure 12.   MODAS SSPs for KCA October. 

Looking now at SOJ on Oct 10, shown in Figure 13, the largest deviations in the 

SSP pairs are seen in the left most panels in the upper 200 m, corresponding to where the 

eddy system was located in Figure 7.  In all the panels, for the most part, the altimetry 
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profiles show higher sound speeds in the upper 300 m or so, this mostly being due to the 

prevalent warmer temperatures in the altimetry field there.  Very noticeable in the middle 

and bottom panels is a more pronounced sonic layer at the surface in the altimetry fields, 

corresponding to the existence of, or a deeper, mixed layer. 
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Figure 13.   MODAS SSPs for SOJ October. 

The differences in the MODAS fields may have an effect on the output of WAPP, 

depending on the sensitivity of WAPP to changes in input.  The cases highlighted here 

have fairly significant differences in the temperature, salinity, and sound speed fields.  

WAPP would have to be extremely insensitive to changes in input for these differences to 

have little impact on its output. 
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III. WAPP  

A. BACKGROUND  
WAPP is an automated, interactive program designed to provide the fleet with an 

onboard means of generating acoustic presets for multiple variants of Mk 48 torpedoes 

and visualizing their performance.  Developed by Naval Undersea Warfare Center 

(NUWC), Division Newport, RI, it consists of several elements including a graphical user 

interface (GUI) for entering various data, a computational engine for generating acoustic 

performance predictions, and various forms of output (NUWC, 2004). 

 
Figure 14.   EDE window (From Ref. NUWC, 2004). 
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The GUI has several pull-down menus that allow the user to select between 

various data input, processing, and output display screens.  The types of input data 

necessary include tactical (such as tactic type and depth zone of interest), target (such as 

acoustic and Doppler characteristics), weapon (such as type, mod, and active or passive 

acoustic mode), and environmental information.  To input the environmental information, 

the user selects the “environment” pull-down menu of the GUI to bring up the 

Environmental Data Entry (EDE) window.  This window, shown in Figure 14, allows the 

entry of water column parameter profiles (such as temperature, salinity, sound speed, and 

volume scattering strength) for a specified latitude and longitude.  Other environmental 

input entered via the EDE consists of sea surface conditions (wind speed, wave height, 

and sea state) and bottom conditions (depth and type).  Operationally the environmental 

data is received from the Sonar Tactical Decision Aid. 

 
Figure 15.   WAPP presetting process flowchart. 

Once the necessary information is input (or default values are selected), WAPP is 

ready to undergo the presetting process.  This process is begun by using the “compute” 

pull-down menu of the GUI and is outlined in Figure 15.  The first step is to establish a 

valid set of search depth / search angle (SD/SA) combinations.  The program then 

invokes a search angle selection algorithm to identify the optimal pitch angle for each 

search depth.  Next, the computational engine traces, in a series of time steps, a fan of 

rays that bound the torpedo beam pattern for each resulting SD/SA combination (NUWC, 

2004).  A signal excess computation is performed and mapped to a gridded search region 

at each time step using the monostatic, active sonar equation for the reverberation limited 

case,  
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 SL - 2TL + TS - RL - DT = SE , (7) 

where SL is the active sonar source level, 2TL is the two-way transmission loss between 

the sonar and the target, TS is the target strength, RL is the reverberation level, and DT is 

the detection threshold (Etter, 1991).  The signal excess map is used to determine the 

effectiveness ratio (the fraction of the prosecutable search region with signal excess 

greater than 0 dB, also called area coverage) and laminar distance (the location of signal 

excess center of mass).  WAPP then ranks the SD/SA combinations based on these 

computations (along with some other mitigating factors) and makes a recommendation as 

to the best preset for the given scenario (NUWC, 2004). 

In solving equation (7), the SL, DT, and TS terms are based on properties of the 

sonar system and target involved, so they are selected by the program or entered by the 

user, as is the case for TS.  The TL and RL terms are computed using a range-

independent, ray theory propagation model that accounts for geometric spreading, 

refractive effects, volumetric effects, and boundary interactions with the ocean surface 

and bottom.  The vertical sound speed profiles used by the ray tracing model can be input 

via the EDE window or calculated by WAPP from the temperature and salinity profiles 

using the Chen-Millero-Li equation (APL-UW, 1994).  Geometric spreading and 

refractive losses are determined using the transmission loss equation derived using ray 

theory 
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where kR is the horizontal range at some position downrange, oθ is the initial angle of the 

ray, and kθ is the angle of the ray at range kR .  Volume absorption is introduced into the 

transmission loss term using absorption coefficients calculated from the chemical 

relaxation equation of Francois-Garrison (APL-UW, 1994). 

The reverberation field and losses created by scattering and absorption at the 

surface and bottom are handled by a group of algorithms included in the Oceanographic 
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and Atmospheric Master Library’s (OAML) High Frequency Environmental Acoustic 

(HFEVA) Component Models.  The HFEVA algorithms are based on environmental 

acoustic models used in simulation studies at the Applied Physics Laboratory, University 

of Washington, and include the Surface Absorption Loss Algorithm, the Surface 

Backscattering Strength Algorithm, the Surface Reflection Loss Algorithm, the Bottom 

Reflection Loss Algorithm, and the Bottom Backscattering Strength Algorithm (NAVO, 

2004).  The water column profile values and surface and bottom conditions input via the 

EDE window are used by these FORTRAN routines. 

To offer a means of user interaction, the output of WAPP is in the form of a 

ranked listset of search depths, pitch angles, laminar distances, and effectiveness values.  

This allows the user to view all SD/SA combinations, not just the recommended one, and 

select the most appropriate one for the situation.  The listset is, therefore, a list of possible 

presetting choices from which the operator can choose.  In addition, the ray traces and 

signal excess maps are viewable using the GUI’s “acoustic coverage” pull-down menu.  

These forms of output provide a visual interpretation of the acoustic performance of the 

torpedo, including boundary interactions and refraction effects. 

 

B. RAY THEORY MODEL 
Ray theory models, such as the one used by WAPP, use a technique called ray 

tracing to calculate transmission loss (Etter, 1991).  Beginning with the linear, second-

order, time-dependent form of the wave equation, 

 
2

2
2 2

1
c t

∂ Φ
∇ Φ =

∂
, (9) 

where 2∇ is the Laplacian operator,Φ is the potential function for the sound pressure 

field, c is the sound speed, and t is the time; if a harmonic type disturbance of the form 
i te− ωΦ = φ , which describes a fixed source that vibrates at a single sinusoidal frequency, 

ω, is assumed to be the solution, then equation (9) reduces to the Helmholtz equation, 

 2 2 0k∇ φ+ φ = . (10) 
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In equation (10),φ is the time-independent potential function, or the sound pressure 

field’s spatial structure, and k is the wave number (ω/c).  The objective of ray theory is to 

solve the Helmholtz equation by trying a local plane wave solution of the form iPAeφ = , 

where ( , )A A r z= is the pressure amplitude function and ( , )P P r z= is the phase function, 

or eikonal.  Doing this and collecting real and imaginary terms yields an equation that 

defines the ray geometry, 

 [ ]22 21 0A P k
A
∇ − ∇ + = , (11) 

and one that determines the wave amplitudes, 

 [ ] 22 0A P A P∇ •∇ + ∇ = , (12) 

respectively. 

The basic assumption behind ray theory is the geometrical acoustics 

approximation, 2 21 A k
A
∇ , which simply requires that the change in sound speed be 

small over one wavelength.  Using this approximation, the first term in equation (11) can 

be neglected, reducing it to the eikonal equation, 

 [ ]2 2P k∇ = , (13) 

from which differential equations for rays can be derived (Etter, 1991).  The rays are the 

normals to surfaces of constant phase ( P =constant), or the wavefronts, along which the 

wavefronts propagate.  For the range-independent case, where c=c(z), solving the ray 

equations produces Snell’s Law: 

 0

0

sinsin a
c c

θθ
= = , (14) 

whereθ is the angle of incidence of the ray, the subscripted terms denote initial values, 

and a is the ray parameter.  For the more complicated range-dependent case, c=c(r,z), the 

solution requires a modification to Snell’s Law.  In either case, ray tracing is 

accomplished by determining the path along which the ray parameter is conserved. 
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Since the propagation model uses ray theory, it has all the shortcomings 

associated with it, such as being limited to higher frequencies.  In this case, this is an 

acceptable condition because the Mk 48 torpedo has a suitably high operating frequency.  

Another deficiency of ray theory is the poor handling of shadow zones due to the 

assumption that no acoustic energy leaks out of the ray tube.  This is also acceptable 

because, from a weapon presetting standpoint, it is unrealistic to direct a torpedo to home 

in on a target in a shadow zone, so an accurate description of the sound field there is not 

necessary.  Finally, ray theory has the issue of causing energy to approach infinity at 

caustics and turning points.  This last concern is mitigated through the use of a caustic 

correction that modifies the propagation equations, thereby avoiding the case where the 

denominator becomes zero, and approximates the signal level near the caustic. 

Because the propagation model is range-independent, it assumes cylindrical 

symmetry, meaning it does not have range-varying properties.  For example, sound speed 

is a function of depth only and, since bathymetry is absent, a flat, homogeneous bottom is 

used.  Therefore, the resulting ray traces are assumed to be valid for any direction from 

the source location, as the model environment looks the same down any bearing (Etter, 

1991).  This is not ideal for determining accurate sound propagation characteristics, 

especially in regions where the oceanography changes rapidly with horizontal distance, 

and could affect the weapon presets.  Under less variable conditions, this shortcoming 

would probably have little or no affect on the weapon presets, as the typical Mk 48 

torpedo engagement would only involve a few kilometers of ocean.  Regardless, there is 

an effort currently underway to utilize the Comprehensive Acoustic Sonar Simulation 

(CASS) for range-dependent performance predictions for torpedo presetting.  The 

assumption of range independence is consistent with the large number of areas where 

there is little to no bathymetric variation over torpedo detection ranges and also with 

cross-slope predictions in more variable environments, and so provides a reasonable 

assessment of the importance of satellite altimetry data using the current weapon system. 

 

C. APPLICATION 
As stated earlier, WAPP was used in this study as the yardstick for measuring 

sensitivity to satellite altimetry data assimilation by MODAS.  To accomplish this, a 
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routine was developed by NUWC, Division Newport, that broke down each MODAS 

field into its constituent grid points and fed them into WAPP one by one (bypassing the 

EDE manual data entry window).  WAPP then performed its presetting process for each 

MODAS grid point using the vertical profile data for each location.  (Grid points over 

land had no vertical profiles, of course, and were discarded.)  The vertical sound speed 

profile was calculated by WAPP from the temperature and salinity profiles, as opposed to 

using the sound speed profile available from the MODAS field.  The same default values 

for volume scattering strength and surface and bottom conditions were used for each run.  

This procedure was repeated for the two MODAS field versions, for both days, for each 

geographic region, and for all five tactical scenarios.  The tactical scenarios were 

prescribed using the GUI to change the tactic (“surface craft” for the ASUW scenarios, 

“unknown sub” for the ASW scenarios), the target maximum depth (50 ft for the ASUW 

scenarios, 700 ft for the shallow ASW scenarios, and 1300 ft for the deep ASW 

scenarios), and the target Doppler (“low” for the low Doppler scenarios, “high” for the 

high Doppler scenarios). 

Recalling from the MODAS section, the number of vertical profiles available for 

each case (region and day) was: 1,495 pairs for SOJ; 1,448 pairs for ECS; and 1,436 pairs 

for KCA, for a total of 4,379 pairs.  Since one listset was produced for each profile and 

five different tactical scenarios were run for each case, five times as many listsets were 

produced as there were MODAS profiles.  These listsets can be considered as pairs, just 

as the vertical profiles were; one pair for each location, day, and tactical scenario, each 

being comprised of one listset for each of the two MODAS field versions. 

To compare each pair of listsets, a configuration management program and its 

included statistical software package was employed.  This program was actually designed 

to check WAPP output for differences during verification testing upon completion of 

software upgrades.  In that application, the input is held constant between the two WAPP 

software versions, so any differences in output are due to software changes (the aim is to 

have no differences).  For the current application, the input was varied and the WAPP 

version was held constant.  Therefore, any differences in the output can be attributed to 

differences in the input. 
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The statistical package produced multiple tables of various differences in the 

listsets.  The tables that listed relative differences in area coverage for different SD/SA 

combinations were selected for in depth analysis based on the following reasoning.  The 

presetting process had generated pairs of listsets in which some SD/SA combinations 

were the same and some were different.  The listset can be thought of as a list of 

presetting choices; the choices on one list sometimes matched those on the other list and 

sometimes they did not.  The instances in which WAPP produced different SD/SA 

combinations for a profile pair are the cases in which an actual engagement would have 

greater potential for a different outcome because, given these different choices, the 

torpedo would not be searching at the same depth, looking at the same search angle, or 

both.  Determining the sensitivity of WAPP to input differences in these cases was 

important because of the potential for weapon effectiveness to be affected.  The thing to 

remain aware of here is that the actual environment is whatever it is, regardless of 

differences in the MODAS fields.  In the cases where the same SD/SA combinations 

(same choices) were generated for the two MODAS versions, the outcome of the 

engagement would be very similar, subject to other targeting considerations, because the 

same presets and environment were involved. 

Utilizing MATLAB coding and graphing tools, the table for each scenario was 

converted into a histogram by reading in digital versions of the tables and plotting the 

values.  Each histogram displays the number of different SD/SA combinations with area 

coverage relative differences in specified ranges, or bins.  The probabilities of the relative 

difference being greater than 0.1, 0.2, and 0.5 were determined, as was the mean of the 

relative differences for each histogram.  These histograms were the basis for the technical 

analysis that follows. 
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IV. RESULTS  

A. GENERAL STATISTICS 
For the most part, in each of the 30 scenario histograms (found in Appendix C), 

the number of different SD/SA combinations dropped off with increasing relative 

difference.  In other words, the peak in relative difference was usually in the lowest bin 

(less than 0.05) and decreased with each successive bin in a decaying fashion, as 

illustrated by the left panel in Figure 16.  The most notable exceptions are the two ASUW 

tactics for the SOJ October case, which have peaks in the bin for 0.3 to 0.4, one of which 

is shown in the right panel of Figure 16.  (Relative difference as used here is the 

fractional change in area coverage obtained by dividing the absolute difference in the two 

area coverages by the original one: RD = |AC1-AC2|/AC1.) 
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Figure 16.   Example histograms.  

The next two figures display collectively some of the values determined for each 

histogram, including the probabilities of the relative differences being greater than 0.1 

and 0.2, hereafter referred to as Prob(RD>0.1) and Prob(RD>0.2), respectively; and the 

mean of the relative differences, hereafter referred to as mean RD.  The results are 

grouped by case and broken down into each tactic. 

Figure 17 shows the two probability curves, which tend to parallel each other with 

varying amounts of separation between them.  The general trend for each case (except for 

SOJ June) was for the probability values to decrease with increasing tactic depth band.  In 
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other words, one or both ASUW tactics tended to have the highest probability values 

followed by the shallow ASW tactic, with the deep ASW tactics having the lowest 

probability values.  Interestingly, this trend was reversed for the SOJ June case.  The 

other obvious tendency was for the values of Prob(RD>0.1) to be several times greater 

than the values of Prob(RD>0.2), reiterating the decaying pattern. 
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Figure 17.   WAPP RD probabilities by scenario. 

The highest Prob(RD>0.1) was 91.5%, attained by the high Doppler ASUW tactic 

in the SOJ October case.  The low Doppler ASUW tactic in the same case also had a high 

value at 81.8%.  The next highest were in the fifty percent range.  The same two 

scenarios also achieved the highest Prob(RD>0.2), with 84.1% and 62.3%, respectively.  

The next highest values were about 30 percent or lower.  Only nine of the histograms had 

non-zero Prob(RD>0.5) values (not shown in the figure), all of them being for ASUW 

tactics, the largest of which was a mere 1.8%.  These scenarios with high probability 

values are the ones in which the outcome of an engagement would most probably be 

different because they had a higher chance of having large differences in predicted 

performance. 
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The lowest Prob(RD>0.1) was 1.4%, attained by the low Doppler ASUW tactic in 

the SOJ June case.  The high Doppler ASUW tactic in that case also had a very low value 

of 2.4%.  The next lowest was over three times the probability at 8.1%.  The same two 

scenarios also achieved two of the lowest Prob(RD>0.2), with 0.3% and 0.5%, 

respectively.  The high Doppler deep ASW tactic for ECS October had the other lowest 

value of 0.4%.  The next lowest values were greater than one percent.  These scenarios 

with low probability values are the ones least likely to have had an impact on engagement 

outcome because they have a very low chance of having large differences in predicted 

performance. 
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Figure 18.   WAPP mean RDs by scenario. 

Figure 18 shows the mean RDs, which followed the probability curves fairly 

closely.  Once again, the values decreased with tactic depth band, except for the same 

maverick as before: the SOJ June case.  This pattern makes sense since scenarios with a 

higher mean RD would be expected to have a higher probability of having larger relative 

differences.  The highest mean RDs were 0.303 and 0.241, attained again by the high and 

low Doppler ASUW tactics in the SOJ October case, respectively.  The next highest were 
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less than 0.15.  The lowest mean RDs were 0.0382 and 0.0396, attained again by the low 

and high Doppler ASUW tactics in the SOJ June case.  The next lowest was 0.0472. 

The following tables, each for a different case, display in tabular format the same 

information as the two previous figures, but with the addition of Prob(RD>0.5) values. 

ECS Jun HD 
Deep ASW

ECS Jun LD 
Deep ASW

ECS Jun LD 
Shallow ASW

ECS Jun 
HD ASUW

ECS Jun LD 
ASUW

Prob (RD > 0.1) 17.51 21.82 21.77 39.59 26.29
Prob (RD > 0.2) 2.64 4.10 3.65 19.63 9.45
Prob (RD > 0.5) 0.00 0.00 0.00 0.28 0.06
Mean RD 0.0618 0.0725 0.0723 0.111 0.0818  

Table 1. ECS June WAPP output. 
KCA Jun HD 
Deep ASW

KCA Jun LD 
Deep ASW

KCA Jun LD 
Shallow ASW

KCA Jun 
HD ASUW

KCA Jun LD 
ASUW

Prob (RD > 0.1) 39.26 37.52 46.76 55.98 43.62
Prob (RD > 0.2) 6.63 6.44 8.46 30.19 17.20
Prob (RD > 0.5) 0.00 0.00 0.00 0.05 0.04
Mean RD 0.0924 0.0925 0.102 0.145 0.109  

Table 2. KCA June WAPP output. 
SOJ Jun HD 
Deep ASW

SOJ Jun LD 
Deep ASW

SOJ Jun LD 
Shallow ASW

SOJ Jun HD 
ASUW

SOJ Jun LD 
ASUW

Prob (RD > 0.1) 17.50 18.91 11.63 2.43 1.43
Prob (RD > 0.2) 2.86 3.03 1.20 0.47 0.34
Prob (RD > 0.5) 0.00 0.00 0.00 0.00 0.00
Mean RD 0.0616 0.0623 0.0509 0.0396 0.0382  

Table 3. SOJ June WAPP output. 
ECS Oct HD 
Deep ASW

ECS Oct LD 
Deep ASW

ECS Oct LD 
Shallow ASW

ECS Oct HD 
ASUW

ECS Oct LD 
ASUW

Prob (RD > 0.1) 8.11 11.83 15.36 49.23 51.90
Prob (RD > 0.2) 0.42 1.09 4.71 13.99 25.39
Prob (RD > 0.5) 0.00 0.00 0.00 0.00 0.99
Mean RD 0.0472 0.052 0.0611 0.11 0.142  

Table 4. ECS October WAPP output. 
KCA Oct HD 
Deep ASW

KCA Oct LD 
Deep ASW

KCA Oct LD 
Shallow ASW

KCA Oct HD 
ASUW

KCA Oct LD 
ASUW

Prob (RD > 0.1) 35.68 33.48 50.74 43.63 47.49
Prob (RD > 0.2) 4.53 3.38 8.34 8.51 6.93
Prob (RD > 0.5) 0.00 0.00 0.00 0.02 0.07
Mean RD 0.0861 0.0834 0.106 0.0997 0.103  

Table 5. KCA October WAPP output. 
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SOJ Oct HD 
Deep ASW

SOJ Oct LD 
Deep ASW

SOJ Oct LD 
Shallow ASW

SOJ Oct HD 
ASUW

SOJ Oct LD 
ASUW

Prob (RD > 0.1) 29.61 26.55 36.71 91.45 81.77
Prob (RD > 0.2) 5.11 4.41 8.79 84.11 62.30
Prob (RD > 0.5) 0.00 0.00 0.00 1.82 1.01
Mean RD 0.0793 0.0777 0.0921 0.303 0.241  

Table 6. SOJ October WAPP output. 

For the deeper-based tactics, at least three factors seemed to influence the amount 

of relative difference in the WAPP output.  The first was the horizontally averaged sound 

speed RMSD peak value for the MODAS fields (refer to Appendix A for MODAS sound 

speed RMSD and other statistical plots).  When this was high, so were the mean RD and 

probability values.  The second factor was the depth of this peak.  A deep RMSD peak 

axis tended to lead to high WAPP output values.  Finally, the shape of the peak played a 

part, as the higher values can also be associated with broader peaks vice narrower ones.  

The cases with the obviously larger values in Figure 19, which shows WAPP output 

values for both of the deep ASW tactics, are the SOJ October case and both of the KCA 

cases (the same is true for the shallow ASW tactic).  All three of these had one or more of 

the aforementioned factors in their favor. 
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Figure 19.   Deep ASW WAPP output values. 

These results can be understood with help from Figure 6, the RMSD plot for KCA 

October, which shows that RMSDs of 2 m/s or more occurred in a band from about 100 
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m to 700 m.  This band encompasses much of the depth zones of interest for both the 

deep and shallow ASW tactics (down to about 400 m and 200 m, respectively).  The 

MODAS SSPs in Figure 12 further illustrate the large differences in the sound speed 

fields at these depths.  The larger these differences (higher the RMSD peak value) and the 

more they extend into the depth zone of interest (owing to the depth and shape of the 

peak), the larger the difference in the predicted sound propagation for the two MODAS 

fields in that depth zone, thus leading to the large probability and mean RD values in 

WAPP’s output for the ASW tactics. 

 

B.  PHYSICAL MECHANISMS  

1. Sonic Layer 
A quick look at the SSPs, shown in Appendix B, helps to physically explain the 

reason why the ASUW tactics often had large mean RDs.  In every case, except SOJ 

June, one of the two MODAS fields showed a more pronounced sonic layer at the surface 

in at least one location, as seen earlier in Figures 12 and 13.  A sonic layer occurs when 

the sound speed increases with depth from the surface to a maximum then decreases 

below, as seen in Figure 20. 
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Figure 20.   Existence of a sonic layer (October 10, 2001). 
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A stronger sonic layer would have two effects on near surface sound propagation 

characteristics.  If the sound source were in the layer, it would more effectively trap the 

sound energy by refracting it back to the surface, where it would be reflected back into 

the water, allowing it to travel greater distances before being diminished.  For a source 

below the layer it would more effectively prevent sound energy from penetrating into it 

by refracting it down away from the layer, creating a relatively sound-free layer near the 

surface.  Because only one of the MODAS fields produced these effects in each case, the 

sound propagation characteristics near the surface would differ substantially resulting in 

equally dissimilar predictions of sound propagation.  This is what led to more significant 

differences in the presets that WAPP produced for the shallower-based tactics. 
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Figure 21.   No sonic layer for SOJ June case. 
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On the other hand, as shown in Figure 21, none of the SSPs in the SOJ June case 

had a sonic layer or any other near surface variations between the two MODAS sound 

speed fields, leading to very similar sound propagation characteristics near the surface.  

The sound propagation predictions would, therefore, be alike and resulted in the minimal 

differences in output for these ASUW scenarios. 

2. Sound Channel 

One reason for the differences in the ASW scenarios is the existence of sound 

channels.  Sound channels exist when sound speed first decreases with depth then 

increases again (see Figure 22).  This produces a refractive environment that focuses the 

sound energy in a depth band about the channel axis, due to bending above and below the 

axis.  This focusing allows the sound to be detectable at longer distances than it otherwise 

would because it is less spread out and, thus, more intense.  When a sound channel exists 

or is stronger in one MODAS field, the channeling effect produces significant differences 

in sound propagation between the two fields. 

 
Figure 22.   Sound channel depiction. 

 

C. EXTREME CASES 

The two cases with the largest relative differences in WAPP area coverage for 

ASUW and ASW tactics deserve a closer look: the SOJ October case for ASUW tactics, 

and the KCA Jun case for ASW tactics.  The former case was examined in detail during 

the MODAS discussion.  Recall that RMSDs greater than 3 °C existed in a band from 50 
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to 200 m due to both a subsurface eddy system and a stronger SOJ Polar Front.  These 

produced large differences in the SSPs in this depth band, shown again in Figure 23 for 

ease of reference, and now shown statistically in Figure 24 by the horizontally averaged 

RMSD and bias plots.  The result was a very pronounced sonic layer over much of the 

SOJ region in the altimetry MODAS field, but almost no layer in the non-altimetry field. 
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Figure 23.   MODAS SSPs for SOJ October. 

As discussed earlier, the effect of the sonic layer would be to cause WAPP to 

generate very different near surface sound propagation predictions for the two MODAS 

fields, leading to the large relative differences in area coverage.  In the histograms for the 

two ASUW tactics, shown in Figure 25, the radically displaced relative difference peaks 
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(in the bin for 0.3 to 0.4) as compared to the rest of the histograms are apparent.  Once 

again, these two scenarios had the highest probability values and mean RDs of all the 

scenarios, not just the ASUW ones, and so were very likely to have had a different 

outcome in an actual engagement. 
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Figure 24.   MODAS sound speed statistics for SOJ October. 
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Figure 25.   ASUW histograms for SOJ October. 

The much larger differences seem to be due to the extra large differences in the 

MODAS fields.  Looking at Figure 23, the sonic layer in the altimetry field was very 

strong, with sound speed increasing by several meters per second over the depth of the 

layer in several locations.  Some of the other scenarios had equally strong sonic layers, 

but only in one or two locations.  The other big difference that sets these two scenarios 

apart from the rest is that the other MODAS field (non-altimetry, in this case) had no 

appreciable sonic layer anywhere in the region.  The other scenarios with strong sonic 
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layers in one field also had a weaker sonic layer in the other field, which helped to offset 

the difference and apparently limited the affect on WAPP’s output. 

Shifting now to the largest WAPP output differences for ASW tactics, the KCA 

June case just edged out the October case in the same region.  These two cases had very 

similar MODAS fields, as discussed in the MODAS chapter, and they were both 

mentioned earlier as having all three influencing factors in their favor: a high sound speed 

RMSD peak value, a peak axis well into the depth zone of interest, and a broad peak 

increasing the extent of the high RMSD values throughout more of the zone of interest. 
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Figure 26.   MODAS temperature at 400 m on Jun 30, 2001. 

Just like the October 10 temperature fields in Figure 8, the June 30 temperature 

fields in Figure 26 show a much stronger subsurface front in the panel with altimetry, as 

well as cooler water to the north and warmer water to the south of the front as compared 

to the panel without altimetry.  The salinity field with altimetry (Figure 10) also indicates 

the existence of a stronger front. 

The combination of these temperature and salinity fields produced the MODAS 

sound speed field, some of the statistics for which are displayed in Figure 27.  Similar to 

the October timeframe, the largest RMSD and bias values exist in a band from about 100 

to 600 m.  As discussed for the general case, this depth zone includes much of the ASW 

zone of interest.  Therefore, the predicted sound propagation for the two MODAS fields 
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in the ASW zone was more dissimilar, thus leading to the large differences in WAPP’s 

output for the ASW tactics. 
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Figure 27.   MODAS sound speed statistics for KCA June. 

The MODAS SSPs in Figure 28 illustrate characteristics similar to the SSPs for 

KCA October in Figure 12.  The large differences in the sound speed fields in the ASW 

depth zone of interest are partially due to the MODAS field with altimetry having a 

stronger sound channel, evident in the top-right two panels, which are produced by the 

stronger frontal gradients in that MODAS field.  Another contribution to the sound speed 

differences in the ASW band can be seen in the four bottom-left panels, which show a 

second sound channel with an axis near 100 m in the altimetry field profiles, where one 

does not exist (or is very weak) in the non-altimetry field.  As discussed earlier, these 

sound channels would refract sound in a way that would significantly affect sound 

propagation and, therefore, the output of WAPP when using this MODAS field.  The 

outcome of an engagement would probably have been significantly different, depending 

on which MODAS field was used.  For completeness, the histograms for the three ASW 

tactics are shown in Figure 29. 
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Figure 28.   MODAS SSPs for KCA June. 
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Figure 29.   ASW histograms for KCA June. 
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V. CONCLUSIONS AND RECOMMENDATIONS  

A. CONCLUSIONS 
From the preceding discussion it is apparent that, in some of the scenarios, WAPP 

output was quite sensitive to changes in input environmental fields, such as MODAS with 

satellite altimetry data assimilated versus MODAS without altimetry data.  Table 7 is a 

compilation of the probability values for each scenario, grouped by case, in an effort to 

more easily compare the sensitivities of each scenario.  The Prob(RD>0.1) and 

Prob(RD>0.2) columns represent the chance of having a different engagement outcome if 

one assumes 0.1 and 0.2 are large enough relative differences in area coverage to change 

the outcome, respectively. 

With this in mind, the Prob(RD>0.1) values ranged from 1.4 to 91.5 and the 

Prob(RD>0.2) values ranged from 0.3 to 84.1, which suggests that the sensitivity of 

WAPP was extremely variable and, therefore, so was the chance of affecting the outcome 

of an engagement.  Although the ranges were large, most of the 30 scenarios were in the 

lower halves of them; only one sixth had Prob(RD>0.1) values greater than 50%, one 

third had values greater than 40%, just over half had values greater than 30%, and only 

one tenth of the scenarios had Prob(RD>0.2) values greater than 30%.  Based on this 

sensitivity analysis, the satellite altimetry data contributed as much as an 80-90% chance 

of having a different engagement outcome (once again, assuming 0.1-0.2 is enough of a 

relative difference in area coverage to change the outcome), but in most of the scenarios 

the contribution was less than 50%. 

The scenarios in which WAPP was the most sensitive were the ones where the 

input MODAS fields differed significantly, especially in the depth zone of interest for the 

given tactic.  The MODAS fields usually differed in their depiction of mesoscale 

features, such as eddy systems (as in the case of SOJ October) and subsurface fronts (as 

in the KCA October and June cases), due to only one field having the benefit of satellite 

altimetry data to help MODAS resolve them.  This resulted in differences in the SSP 

characteristics for the two fields, such as the sonic layer being more pronounced, sound 

channels being stronger and, in some cases, one of the fields having no sonic layer or 
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having secondary sound channels.  Quite expectedly, this led to large differences in the 

sound propagation predictions made by WAPP for the two fields, and thus to large 

relative differences in area coverage. 

Scenario Prob(RD>0.1) Prob(RD>0.2)

ECS Jun HD Deep ASW 17.5 2.6
ECS Jun LD Deep ASW 21.8 4.1
ECS Jun LD Shallow ASW 21.8 3.6
ECS Jun HD ASUW 39.6 19.6
ECS Jun LD ASUW 26.3 9.4

KCA Jun HD Deep ASW 39.3 6.6
KCA Jun LD Deep ASW 37.5 6.4
KCA Jun LD Shallow ASW 46.8 8.5
KCA Jun HD ASUW 56.0 30.2
KCA Jun LD ASUW 43.6 17.2

SOJ Jun HD Deep ASW 17.5 2.9
SOJ Jun LD Deep ASW 18.9 3.0
SOJ Jun LD Shallow ASW 11.6 1.2
SOJ Jun HD ASUW 2.4 0.5
SOJ Jun LD ASUW 1.4 0.3

ECS Oct HD Deep ASW 8.1 0.4
ECS Oct LD Deep ASW 11.8 1.1
ECS Oct LD Shallow ASW 15.4 4.7
ECS Oct HD ASUW 49.2 14.0
ECS Oct LD ASUW 51.9 25.4

KCA Oct HD Deep ASW 35.7 4.5
KCA Oct LD Deep ASW 33.5 3.4
KCA Oct LD Shallow ASW 50.7 8.3
KCA Oct HD ASUW 43.6 8.5
KCA Oct LD ASUW 47.5 6.9

SOJ Oct HD Deep ASW 29.6 5.1
SOJ Oct LD Deep ASW 26.6 4.4
SOJ Oct LD Shallow ASW 36.7 8.8
SOJ Oct HD ASUW 91.5 84.1
SOJ Oct LD ASUW 81.8 62.3  

Table 7. Sensitivity table. 

 

B. RECOMMENDATIONS FOR FUTURE WORK 
The most accurate way to assess the satellite altimetry data’s overall value is to 

relate it to how it would affect the outcome of actual engagement, or weapon 

effectiveness.  The value could then be based on whether or not the outcomes were 

affected positively, which in an ASW engagement typically means the torpedo hit the 
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target versus missed it.  In this study, torpedo performance in the real world was not 

readily quantifiable because, although the MODAS field with satellite altimetry is 

certainly closer to the actual environmental conditions, neither field could be considered 

as being the actual environment like an in situ measurement could (within the accuracy of 

the device used).  Therefore, there was no way to relate the performance predictions to 

the expected real world performance.  (The only real world performance assertion was 

made to single out the different SD/SA combinations for the sensitivity analysis, namely 

that the engagement would have been very similar if the weapon was assigned the same 

presets, regardless of which MODAS field was used).  Also, a relative difference in area 

coverage of 0.1 to 0.2 was arbitrarily chosen for analysis, although higher or lower levels 

of difference may actually be necessary to affect engagement outcome. 

To quantify the effect on weapon effectiveness, a two-part study needs to be 

conducted.  Part 1 would compare the output of WAPP using MODAS fields (one with 

altimetry data and one without, as done here) and in situ measurements of the local 

environment.  The in situ measurements could be performed by any number of assets, 

such as a U. S. Navy ship during an exercise or a research vessel, although the area 

sounded should be one with large variability, such as in the Gulf Stream or Kuroshio 

Current, to obtain the most benefit from the altimetry data.  Of course, as with any 

experiment involving in situ measurements, the data set will be much smaller than the 

one used in this study.   

With this type of comparison, any differences in WAPP output could be 

correlated to the torpedo’s predicted real world performance and, therefore, so could the 

benefit of the satellite altimetry data.  For example, if the predicted performance was 

similar for the MODAS field with altimetry and the in situ data, but the performance 

differed appreciably for the MODAS field without altimetry, the altimetry data would be 

quite valuable.  If the predicted performance differed appreciably between all three inputs 

or between the in situ input and both MODAS fields, the altimetry data would be deemed 

as being less beneficial.  Of course, the predicted performance is still not real world 

performance, however. 
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To even better assess the effect of the satellite altimetry data on weapon 

effectiveness, Part 2 would need to include simulations of torpedo engagements.  The 

Weapons Analysis Facility (WAF) at NUWC, Division Newport has the capability to 

simulate engagements using torpedo hardware-in-the-loop and a high fidelity virtual 

environment.  Using the WAF and presets generated by the MODAS fields and in situ 

data in Part 1, many virtual torpedo engagements could be conducted to examine the 

effects of the different MODAS fields on virtual performance.  This could be done for 

any number of scenarios, by alternately using presets generated by each of the 

environmental inputs to WAPP: the MODAS field without altimetry, the MODAS field 

with altimetry, and the in situ data; and then comparing the ratios of hits to misses for the 

virtual engagements. 

This experiment introduces an operational element by enabling the presets to be 

chosen by an operator for each engagement.  It would also eliminate the need to use the 

relative difference in area coverage and the associated uncertainty in the threshold that 

produces changes in engagement outcome.  This is because the proposed metric, the hit-

miss ratio, is not a prediction of performance (like area coverage) but, rather, a direct 

assessment of it (once again, in a virtual environment).  Aside from the cost and logistics 

prohibitive alternative of putting many torpedoes in the water, an experiment such as this 

would provide the next best analysis of the value of assimilating satellite altimetry data 

into MODAS with regard to torpedo effectiveness. 

Finally, to arrive at answers to some of the broader questions in this line of 

research, other comparisons need to be included.  These are the questions of how many 

satellite altimeters are required to ensure maximum weapon effectiveness and at what 

point does additional altimeter input no longer increase weapon effectiveness.  To answer 

these questions, MODAS fields with varying numbers of altimeters assimilated would 

need to be used as environmental inputs to WAPP and could be incorporated into Part 1 

or added at a later date. 
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APPENDIX A MODAS FIELD STATISTICAL PLOTS 
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Figure 30.   ECS MODAS temperature statistics for June 30. 
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Figure 31.   ECS MODAS salinity statistics for June 30. 
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Figure 32.   ECS MODAS sound speed statistics for June 30. 
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Figure 33.   ECS MODAS temperature statistics for October 10. 
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Figure 34.   ECS MODAS salinity statistics for October 10. 
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Figure 35.   ECS MODAS sound speed statistics for October 10. 
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Figure 36.   KCA MODAS temperature statistics for June 30. 
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Figure 37.   KCA MODAS salinity statistics for June 30. 
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Figure 38.   KCA MODAS sound speed statistics for June 30. 
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Figure 39.   KCA MODAS temperature statistics for October 10. 
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Figure 40.   KCA MODAS salinity statistics for October 10. 
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Figure 41.   KCA MODAS sound speed statistics for October 10. 
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Figure 42.   SOJ MODAS temperature statistics for June 30. 
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Figure 43.   SOJ MODAS salinity statistics for June 30. 
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Figure 44.   SOJ MODAS sound speed statistics for June 30. 
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Figure 45.   SOJ MODAS temperature statistics for October 10. 
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Figure 46.   SOJ MODAS salinity statistics for October 10. 
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Figure 47.   SOJ MODAS sound speed statistics for October 10. 
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APPENDIX B MODAS SOUND SPEED PROFILES 
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Figure 48.   ECS MODAS SSPs for June 30. 
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Figure 49.   ECS MODAS SSPs for October 10. 
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Figure 50.   KCA MODAS SSPs for June 30. 
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Figure 51.   KCA MODAS SSPs for October 10. 
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Figure 52.   SOJ MODAS SSPs for June 30. 
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Figure 53.   SOJ MODAS SSPs for October 10. 
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APPENDIX C WAPP OUTPUT HISTOGRAMS 
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Figure 54.   ECS Jun WAPP histograms 
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Figure 55.   ECS Oct WAPP histograms 
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Figure 56.   KCA Jun WAPP histograms 
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Figure 57.   KCA Oct WAPP histograms 
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Figure 58.   SOJ Jun WAPP histograms 
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Figure 59.   SOJ Oct WAPP histograms 
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