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Abstract—The classical Ekman spiral is generated by surface

wind stress with constant eddy viscosity in a homogeneous ocean.

In real oceans, the eddy viscosity varies due to turbulent mixing

caused by surface wind and buoyancy forcing. Horizontally inho-

mogeneous density produces vertical geostrophic shear which

contributes to current shear that also affects the Ekman spiral.

Based on similar theoretical framework as the classical Ekman

spiral, the baroclinic components of the Ekman spiral caused by the

horizontally inhomogeneous density are obtained analytically with

the varying eddy viscosity calculated from surface wind and

buoyancy forcing using the K-profile parameterization (KPP).

Along with the three existing types of eddy viscosity due to pure

wind forcing (zero surface buoyancy flux), such an effect is

evaluated using the climatological monthly mean data of surface

wind stress, buoyancy flux, ocean temperature and salinity, and

mixed layer depth.

1. Introduction

On the base of homogeneous density without

considering waves, EKMAN (1905) modeled turbulent

mixing in upper ocean as a diffusion process similar

to molecular diffusion with an eddy viscosity (tur-

bulent plus molecular), K̂ (the symbol ‘^’ indicating

dimensional quantity), which was taken as a constant

with many orders of magnitude larger than the

molecular viscosity. The turbulent mixing generates

an ageostrophic component of the upper ocean cur-

rents (called the Ekman spiral), decaying by an

e-folding over a depth as the current vector rotates to

the right (left) in the northern (southern) hemisphere

through one radian. Several approaches may advance

the classical Ekman theory: (a) replacing constant

eddy viscosity by varying eddy viscosity, and relating

the eddy viscosity to ocean mixing (under surface

wind and/or buoyancy forcing), (b) including ocean

wave effect, and (c) changing homogeneous to in-

homogeneous density.

It was recognized that the eddy viscosity K̂ is not

a constant. After fitting observational ocean currents

to the Ekman spiral (e.g., HUNKINS 1966; STACEY et al.

1986; PRICE et al. 1987; RICHMAN et al. 1987;

CHERESKIN 1995; LENN and CHERESKIN 2009), the in-

ferred K̂ value varies more than an order of

magnitude, from 0.054 m2 s-1 (PRICE et al. 1987)

obtained from the field measurements acquired from

a surface mooring set in the western Sargasso Sea

(34�N, 70�W) as part of the long-term upper ocean

study phase 3 (LOTUS-3) during the summer of

1982, to 0.006 m2 s-1 (STACEY et al. 1986) obtained

from the low-frequency current measurements in the

Strait of Georgia, British Columbia, Canada. The

smaller value (0.006 m2 s-1) may be treated as a

lower bound of the eddy viscosity (PRICE et al. 1987).

Recently, LENN and CHERESKIN (2009) obtained a

mean Ekman spiral from high-resolution repeat ob-

servations of upper-ocean velocity in Drake Passage

along with the constant temperature in the Ekman

layer (implying near neutral stratification). The eddy

viscosities inferred from Ekman theory and the time-

averaged stress was directly estimated as O (10-2–

10-1) m2 s-1.

The turbulent mixing in upper-ocean is also

viewed as being driven by the atmospheric fluxes of

momentum and buoyancy (heat and moisture), and

the shear imposed by the ocean circulation, and is

characterized by the existence of a vertically quasi-

uniform layer of temperature and density (i.e., mixed

layer). Underneath the mixed layer, there exists an-

other layer with strong vertical gradients, such as the

thermocline (in temperature) and pycnocline (in

density) (e.g., KRAUS and TURNER 1967; GARWOOD

1977; CHU and GARWOOD 1991; STEGER et al. 1998;
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CHU et al. 2002). Such vertical mixing generates

varying upper-ocean eddy viscosity. The mixed layer

is a key component in studies of climate, and the link

between the atmosphere and deep-ocean and directly

affects the air–sea exchange of heat, momentum, and

moisture (CHU 1993).

Effect of vertical inhomogeneity of density on the

Ekman spiral (i.e., stratified Ekman layers) has been

identified by observational and modeling studies in

the atmospheric boundary layer (LETTAU and DAB-

BERDT 1970; GRACHEV et al. 2008) and the oceanic

boundary layer (MCWILLIAMS et al. 2009; TAYLOR and

SARKAR 2008). Ocean observations from drifters/floats

show the role of horizontal density gradient in setting

the stratification within the mixed layer. MCWILLIAMS

et al. (2009) computed vertical turbulent mixing

within the boundary layer in a one-dimensional ver-

tical column using the K-profile parameterization

(KPP) scheme with surface mean wind stress, mean

heating, and solar absorption, and idealized repre-

sentations of the heat flux from the interior three-

dimensional circulation. They found that there is not a

single, simple paradigm for the upper-ocean velocity

profiles in stratified Ekman layers for the following

reasons: (a) the Ekman layer is compressed by stable

stratification and surface heating; (b) Ekman currents

penetrate down into the stratified layer; (c) penetrative

solar absorption deepens the mean Ekman layer;

(d) wind, and especially buoyancy rectification ef-

fects, yield a mean Ekman profile with a varying eddy

viscosity, where the mean turbulent stress and mean

shear are not aligned, whereas buoyancy rectification

induces profile flattening. These modeling results are

for the one-dimensional ocean, i.e., no horizontal

gradients of any variables including the density.

Effect of ocean surface gravity waves on the

Ekman spiral has been identified through interacting

waves with ocean currents and wind stresses. As

waves experience breaking and dissipation, momen-

tum passes from waves into ocean currents. Recent

studies show that the influence of the surface wave

motion via the Stokes drift and mixing is important to

understanding the observed Ekman current profiles in

addition to wind stress, depth-varying eddy viscosity,

and density inhomogeneity. SONG and HUANG (2011)

used the WKB method to obtain the analytic solu-

tions for modified Ekman equations including

random surface wave effects when the eddy viscosity

is gradually varying with depth. Their solution was

compared with observational data and with the results

from a large eddy simulation of the Ekman layer

(ZIKANOV et al. 2003).

However, effect of horizontally inhomogeneous

density on the Ekman spiral with varying eddy vis-

cosity due to vertical mixing under various surface

forcing conditions has not yet been studied. Since

horizontally inhomogeneous density leads to non-zero

vertical geostrophic shear and in turn contributes to the

current shear, the equations and surface boundary

conditions for the classical Ekman model need to be

modified. Such modifications may lead to a new

structure of the Ekman spiral. The baroclinic compo-

nents of the Ekman spiral are identified analytically in

this study using the KPP and three existing (due to pure

wind forcing) eddy viscosities without considering

ocean waves. The rest of the paper is organized as

follows. Section 2 introduces the basic equations and

boundary conditions. Sections 3 and 4 describe the

Obukhov length scale (OBUKHOV 1946; MONIN and

OBUKHOV 1954), depth ratio, and KPP. Section 5 pre-

sents the analytical solution of the Ekman spiral in

horizontally inhomogeneous ocean including analytical

barotropic and baroclinic components due to KPP eddy

viscosity. Sections 6 and 7 describe the baroclinic ef-

fects with the KPP eddy viscosity under both surface

wind and buoyancy forcing and with the three existing

eddy viscosities under pure wind forcing. Section 8

presents the conclusions. Appendices 1 and 2 list the

procedures for obtaining the analytical solutions of the

Ekman spiral in horizontally inhomogeneous ocean

with depth-dependent eddy viscosity.

2. Ekman Layer Dynamics

Let (x, y, z) be the zonal (positive eastward),

latitudinal (positive northward), and vertical (positive

upward with z = 0 at the ocean surface) coordinates

with (i, j, k) as the corresponding unit vectors, and û

be the velocity vector. Following the similar steady

dynamics of MCWILLIAMS and HUCKLE (2006) with

modification from homogeneous to inhomogeneous

density, the steady-state horizontal momentum bal-

ance with Boussinesq approximation is given by
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fk� û ¼ � 1

qw

rp � 1

h

o

or
ðMÞ; ð1aÞ

where qw = 1,025 kg m-3, is the characteristic den-

sity of seawater; h is the ocean surface mixed layer

depth; r ¼ �z=h, is the non-dimensional vertical

coordinate; f is the Coriolis parameter (depending on

the latitude); M is the vertical momentum flux due to

turbulent mixing; p is the pressure. It is noted that the

damping for currents due to vertical radiation of in-

ertial waves into the oceanic interior is neglected.

The mixed layer depth (h) can be determined from

temperature and density profiles using subjective and

objective methods (e.g., MONTEREY and LEVITUS 1997;

CHU et al. 2002; CHU and FAN 2010, 2011). The hy-

drographic balance gives

1

qw

op

oz
¼ g � g

q
qw

; ð1bÞ

where q is the density; g is the gravitational accel-

eration (9.81 m s-2). The horizontal velocity consists

of two parts: geostrophic current, [ûg ¼ ðûg; v̂gÞ], and
ageostrophic current [ûE ¼ ðûE; v̂EÞ] (Ekman flow),

û ¼ ûg þ ûE: ð2Þ

where the geostrophic current is given by

fk� ûg ¼ � 1

qw

rp; ð3Þ

and computed solely from the density field (CHU

1995, 2000, 2006). Differentiation of (3) with respect

to z and use of (1b) lead to the thermal wind relation

oûg

oz
¼ �k� g

fqw

rq

� �
: ð4Þ

Substitution of (2) - (3) into (1a) leads to

fk� ûE ¼ � 1

h

o

or
ðMÞ: ð5Þ

The vertical momentum flux M (i.e., turbulent Rey-

nolds stress) is modeled by

MðzÞ ¼ � K̂

h

oû

or
; ð6aÞ

where K̂ is the eddy viscosity that is non-dimen-

sionalized by

K ¼ K̂

hju�
; ð6bÞ

where j ¼ 0:41, is the von Karmen constant. Sub-

stitution of (2) into (6a) and use of (6b) lead to

MðzÞ ¼ �ju�K
oûg

or
þ oûE

or

� �
: ð7Þ

The velocity (ûE) is non-dimensionalized by

uE ¼ ûE
VE

; VE � u2
�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 fj jK̂ð0Þ
q ; ð8Þ

where K̂ð0Þ is the eddy viscosity evaluated at the

surface. Substitution of (7) into (5) and use of (4) and

(8) give

fk� uE �
ju�
h

o

or
K
ouE
or

� �
¼ ju�

fVE

k� o

or
KS½ �;

S � g

qw

rq
ð9Þ

Here, the vector, S = (sx, sy), is defined by

sx ¼
g

qw

oq
ox

; sy ¼
g

qw

oq
oy

; ð10Þ

which represents the baroclinicity (i.e., sx 6¼ 0;

sy 6¼ 0). The ocean is barotropic if

sx ¼ sy ¼ 0: ð11Þ

The second-order differential Eq. (9) needs two

boundary conditions. At the surface (r = 0) we have

Mð0Þ ¼ ŝ
qw

¼ CD

qa

qw

ûaj jûa � u2
�h� ð12aÞ

where CD is the drag coefficient; ŝ is the surface wind
stress; qa = 1.29 kg m-3, is the characteristic atmo-

spheric density; ûa is the wind near the ocean surface;

h� ¼ ½cos h; sin h� is the unit vector of the wind di-

rection; h is the angle of the wind from the east; and

u* is the ocean friction velocity,

u� ¼
CDqa ûaj j2

qw

" #1=2

: ð12bÞ

Evaluation of (7) and (4) at the surface leads to

Mð0Þ ¼ �ju�K
oûg

or
þ oûE

or

� �
r¼0

; ð13aÞ

oûg

or

� �
r¼0

¼ k� gh

fqw

rq

� �
r¼0

: ð13bÞ
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Substitution of (10), (12a), and (13b) into (13a) leads

to the surface boundary condition for the non-di-

mensional Ekman flow uE,

ouE
or

� �
r¼0

¼ � u�
jKð0ÞVE

h� �
h

fVE

k� Sð0Þ: ð14Þ

where K (0) and S (0) represent the values of (K, S)

evaluated at the surface (r = 0). Moreover, the gen-

eral solution of (9) contains exponentially increasing

and decreasing parts with the non-dimensional depth

r. The exponentially increasing part is unphysical and
needs to be eliminated. Therefore, the lower boundary

condition of Eq. (9) is used

uE finite as r ! 1 ð15Þ

to filter out the unphysical solution. In fact, the lower

boundary condition (15) is also used in the classical

Ekman spiral. Generally, Eq. (9) is not closed. One

more equation for the density q is needed. If q is given,
the second-order differential Eq. (9) with the bound-

ary conditions (14) and (15) are well-posed. For depth-

dependent eddy viscosity, (9) is an inhomogeneous

linear differential equation with variable coefficient K.

3. Obukhov Length (L) and Depth Ratio (k)

The eddy viscosity is to characterize vertical

mixing, which is generated by surface wind stress (s)

and surface buoyancy flux (B in m2 s-3, upward

positive),

B ¼ gaQ

qð0Þcp

þ gbðE � PÞS; ð16Þ

where Q is the net heat flux (upward positive,W m-2);

cp is the specific heat for the sea water; S is the surface

salinity [in practical salinity units (psu)]; a is the co-

efficient of thermal expansion; b is the coefficient of

haline contraction; and (E, P) are evaporation and

precipitation (m s-1). Ocean mixed layer is generally

developed by wind stirring and convection (upward

surface buoyancy flux B). To examine dominant

mixing mechanisms, the Obukhov length scale (L) and

the depth ratio (k) are calculated by

L ¼ � u3
�

jB
; k ¼ h

L
¼ ð10 mÞ

L

h

ð10 m)
: ð17Þ

Here, L is the depth where the wind-generated tur-

bulence is balanced by the downward buoyancy flux

(B\ 0) due to surface warming (Q\ 0) and/or

freshening (P[E) and is comparable to the con-

vection-generated turbulence by the upward

buoyancy flux (B[ 0) due to surface cooling (Q[ 0)

and/or salinisation (P\E); and k is the depth ratio.

Monthly depth ratio (k) (Fig. 1) are calculated from

the monthly mean global ocean (10 m)/L and ocean

friction velocity (u*) data (1� 9 1�) downloaded from
http://iridl.ldeo.columbia.edu/SOURCES/.DASILVA/.

SMD94/.climatology/ (DASILVA et al. 1994), and the

monthly mixed layer depth (h) data downloaded from

http://www.nodc.noaa.gov/OC5/WOA94/mix.html

(MONTEREY and LEVITUS 1997).

The depth ratio (k) is used to determine the forcing

regimes (LOMBARDO and GREGG 1989): convective

regime (k\� 10), wind-forcing regime (k[ � 1),

and combined forcing regime (�10� k� � 1). The

depth ratio (k) also serves as a stability parameter (see

next section). The calculated monthly depth ratio (k)
(Fig. 1) shows strong seasonal variability with only

two regimes evident: wind-forcing and combined

forcing regimes since almost no data with k\-10. In

January, the combined forcing (�10� k� � 1) pre-

vails most of the Northern Hemisphere including

North Atlantic, North Pacific, Arabian Sea, Mediter-

ranean Sea, and eastern tropical South Pacific; the

wind forcing (k[ � 1) prevails most of the Southern

Hemisphere. In July, the combined forcing prevails in

the southern hemisphere, and the wind forcing pre-

vails in the Northern Hemisphere

4. KPP

With the surface wind and buoyancy forcing, the

KPP rules for the non-dimensional eddy viscosity (K)

are given by the product of a depth-dependent non-

dimensional turbulent velocity wx (r) (scaled by ju*)

and a dimensionless vertical shape function G (r)
(LARGE et al. 1994)

Kðr; kÞ ¼ wxðr; kÞGðrÞ; if 1� r� 0

wxð1; kÞGð1Þ; if r[ 1

�
; ð18Þ

to represent the capability of deeper mixed layers to

contain larger more effect turbulent eddies. It is noted

2834 P. C. Chu Pure Appl. Geophys.

http://iridl.ldeo.columbia.edu/SOURCES/.DASILVA/.SMD94/.climatology/
http://iridl.ldeo.columbia.edu/SOURCES/.DASILVA/.SMD94/.climatology/
http://www.nodc.noaa.gov/OC5/WOA94/mix.html


that the extension of eddy viscosity K (r, k) from

1� r� 0 to r� 0 is because h was defined as the

boundary layer depth in the original KPP model,

which is usually deeper than the mixed layer depth.

The shape function G (r) is assumed to be a cubic

polynomial (O’BRIEN 1970) and given by (MCWIL-

LIAMS and HUCKLE 2006; Fig. 2)

GðrÞ ¼ r 1� r2
� 	

þ ðr0 � rÞ2

2r0
Hðr0 � rÞ; ð19Þ

where r0 ¼ 0:05; H(a) is the Heaviside step function

(equal to 1 for a[ 0 and 0 otherwise). As pointed out

by MCWILLIAMS and HUCKLE (2006), the second term

in the right-hand side of (19) is the mathematical

aesthetics and computational regularity. The depth

dependent non-dimensional turbulent velocity scale

wx (r) is given by (LARGE et al. 1994)

wxðr; kÞ ¼
1

/ðekÞ ; e\r\1 k\0; e¼ 0:1
1

/ðrkÞ ; otherwise

(

ð20Þ

Here, the function / is defined by the Monin–

Obukhov similarity theory (MONIN and OBUKHOV

1954) such that the dimensional turbulent velocity

scales equal ju* with neutral forcing (k = 0) and are

Figure 1
Monthly depth ratio (k): (a) January, and (b) July. It is noted that only two regimes are evident with the monthly mean data: wind-forcing and

combined forcing regimes. Here, the black contours are referred as k = -1
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enhanced and reduced in unstable (k\ 0) and stable

(k[ 0) conditions. It is given by (LARGE et al. 1994)

/ðrkÞ ¼
1þ 5rk; 0� k

ð1� 16rkÞ�1=4; k\0; r� am=k
ð1:26� 8:38rkÞ�1=3; k\0;r[ am=k

8<
: am

¼ �0:2

ð21Þ

For neutral forcing (k = 0), /ðrkÞ ¼ 1. Substitution

of (19), (20), and (21) into (18) leads to an analytical

non-dimensional KPP eddy viscosity K (r, k). For a

given depth r, / increases with k (Fig. 3a); and K (r,
k) decreases with k (Fig. 3b). Such k-dependence of /
and K (r, k) is quite smooth for k[ 0 and k\ 0, but

very abrupt at k = 0. The /-values are small for k\ 0

(e.g., / ¼ 0:05 for r = 0.5, k = -1) and very large

for k[ 0 (e.g., / 	 30; 000 for r = 0.5, k = 1). The

K-values are large for k\ 0 (e.g., K ’ 7 for r = 0.5,

k = -1) and very small for k[ 0 (e.g., K 	 10�5 for

r = 0.5, k = 1). However, the dependence of/ and K

(r, k) on r is quite mild. Substitution of the KPP eddy

viscosity at the surface K (0, k) into (8) leads to

VE ¼ u3=2
�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 fj jhjKð0; kÞ
p

Monthly Ekman velocity scale (VE), calculated from

the same data sets for the computation of k, has

strong seasonal variability (Fig. 4). In January, larger

VE-values ([0.5 m s-1) occur in the Northern

Hemisphere such as in the Gulf Stream, Kuroshio,

equatorial regions (especially in the eastern Pacific),

and smaller VE-values (\0.2 m s-1) occur in the

Southern Hemisphere. In July, smaller VE-values

(\0.2 m s-1) occur in the Northern Hemisphere ex-

cept some northern tropical regions such as near the

northern African coast and west Arabian Sea, and

larger VE-values ([0.5 m s-1) occur in the Southern

Hemisphere.
Figure 2

The shape function G (r)

Figure 3
Dependence of (a) / and (b) K on r and k for 1� r� 0
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5. Ekman Spiral

Substitution of (18) into (9) leads to

fk� uE �
ju�
h

o

or
Kðr; kÞ ouE

or

� �

¼ ju�
fVE

k� o

or
Kðr; kÞS½ �; ð22Þ

which is an ordinary differential equation with depth-

varying K (r, k). The WKB method was used in this

study to solve the differential Eq. (22) with the

boundary conditions (14) and (15) to get the

approximate analytical solutions uE [= (uE, vE)] (see

Appendix 1),

uE ¼ �uE þ DuE; vE ¼ �vE þ DvE; ð23Þ

where

�uE ¼ exp Fðr; kÞ½ � aþ cos Fðr; kÞ½ � þ a� sin Fðr; kÞ½ �f g;
ð24aÞ

�vE ¼ exp Fðr; kÞ½ � aþ sin Fðr; kÞ½ � � a� cos Fðr; kÞ½ �f g
ð24bÞ

are the barotropic components of the Ekman velocity

(i.e., sx = 0, sy = 0); and

Figure 4
Monthly Ekman velocity scale (VE): a January, and b July
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DuE ¼ c exp Fðr; kÞ½ � bþ cos Fðr; kÞ½ � þ b� sin Fðr; kÞ½ �

 �

� csgnðf Þ
2f 2

Zr

0

o
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kðf; kÞ

p
ðsx � syÞ

� 	
of

þ ðsx � syÞ
o

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kðf; kÞ

p
of

" #
cos Fðr; kÞ � Fðf; kÞ½ �

�
o

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kðf; kÞ

p
ðsx þ syÞ

� 	
of

þ ðsx þ syÞ
o

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kðf; kÞ

p
of

" #
sin Fðr; kÞ � Fðf; kÞ½ �

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

� exp Fðr; kÞ � Fðf; kÞ½ �ð Þ

2
6666666664

3
7777777775

df

� csgnðfÞ
2f 2

Z1

r

o
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kðf; kÞ

p
ðsx � syÞ

� 	
of

þ ðsx � syÞ
o

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kðf; kÞ

p
of

" #
cos Fðr; kÞ � Fðf; kÞ½ �

þ
o

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kðf; kÞ

p
ðsx þ syÞ

� 	
of

þ ðsx þ syÞ
o

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kðf; kÞ

p
of

" #
sin Fðr; kÞ � Fðf; kÞ½ �

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

� exp � Fðr; kÞ � Fðf; kÞ½ �ð Þ

2
6666666664

3
7777777775

df

ð25Þ

DvE ¼ c exp Fðr; kÞ½ � bþ sin Fðr; kÞ½ � � b� cos Fðr; kÞ½ �

 �

� csgnðfÞ
2f 2

Zr

0

o
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kðf; kÞ

p
ðsx þ syÞ

� 	
of

þ ðsx þ syÞ
o

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kðf; kÞ

p
of

" #
cos Fðr; kÞ � Fðf; kÞ½ �

þ
o

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kðf; kÞ

p
ðsx � syÞ

� 	
of

þ ðsx � syÞ
o

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kðf; kÞ

p
of

" #
sin Fðr; kÞ � Fðf; kÞ½ �

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

� exp Fðr; kÞ � Fðf; kÞ½ �ð Þ

2
6666666664

3
7777777775

df

� csgnðfÞ
2f 2

Z1

r

o
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kðf; kÞ

p
ðsx þ syÞ

� 	
of

þ ðsx þ syÞ
o

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kðf; kÞ

p
of

" #
cos Fðr; kÞ � Fðf; kÞ½ �

�
o

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kðf; kÞ

p
ðsx � syÞ

� 	
of

þ ðsx � syÞ
o

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kðf; kÞ

p
of

" #
sin Fðr; kÞ � Fðf; kÞ½ �

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

� exp � Fðr; kÞ � Fðf; kÞ½ �ð Þ
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are the baroclinic components of the Ekman velocity

(i.e., nonzero if sx 6¼ 0; sy 6¼ 0). The parameters are

defined as follows:

c � jh fj j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kð0; kÞ

p
u�

; a
 � ðcos h
 sin hÞsgnðf Þ;

sgnðf Þ ¼
1; if f � 0

�1; if f\0

�
ð27Þ

F r; kð Þ ¼ �

ffiffiffiffiffiffiffiffiffiffi
fj jh

2ju�

s Z r

0

d1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K 1; kð Þ

p : ð29Þ

Here, sgn (f) is the sign function. The non-dimen-

sional barotropic (�uE; �vE), and baroclinic (DuE;DvE)

components of the Ekman spiral are calculated for the

global oceans except the regions near the equator

(5�S–5�N) using (24a), (24b), (25a), (25b) with the

monthly mean global ocean density q (kg m-3) cal-

culated from the World Ocean Atlas 2009

temperature and salinity data (1� 9 1� resolution)

(http://www.nodc.noaa.gov/OC5/WOA09/pubwoa09.

html) using the International Thermodynamic Equa-

tion of Seawater (http://www.teos-10.org/pubs/

TEOS-10_Manual.pdf), the computed KPP eddy

viscosity data K (r, k), the ocean friction velocity (u*)
data (1� 9 1�) from http://iridl.ldeo.columbia.edu/

SOURCES/.DASILVA/.SMD94/.climatology/ (DASILVA

et al. 1994), the monthly mixed layer depth (h) data

from http://www.nodc.noaa.gov/OC5/WOA94/

mix.html (MONTEREY and LEVITUS 1997), and the

angle of surface wind (h) data, which is computed

from the monthly zonal wind data downloaded

from the website: http://iridl.ldeo.columbia.edu/

SOURCES/.DASILVA/.SMD94/.climatology/.u3/

and the monthly meridional wind data downloaded

from the website: http://iridl.ldeo.columbia.edu/

SOURCES/.DASILVA/.SMD94/.climatology/.v3/.

Figure 5 shows examples of dimensional Ekman

spirals (ûE ¼ VEuE) with (solid curve) and without

(dashed curve) baroclinic components. The upper left

panels (a) and (b) show the Ekman spirals at Loca-

tion-1 (11�N, 159�W) (i.e., north equatorial Pacific)

with large baroclinic components. The upper right

panels (c) and (d) indicate the Ekman spirals at Lo-

cation-2 (43�N, 169�E) (i.e., northwestern Pacific

mid-latitude) with small baroclinic components.

Profiles of the horizontal density gradient

(oq=ox,oq=oy) are much larger at Location-1 (lower

left panels) than at Location-2 (lower right panels).

6. Baroclinic Effect

The baroclinic portion of the Ekman spiral can be

effectively determined by the ratio of the vertical

integration of baroclinic Ekman component over the

Ekman velocity,

bþ � �2sgnðf Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kð0; kÞ

p
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p
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� 	
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p
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ð28aÞ
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M ¼

R1
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Du2

E þ Dv2E
p

dr

R1
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2
E þ v2E

p
dr

: ð30Þ

Horizontal distribution of M has strong seasonal

and spatial variability with large M-values (>0.2)

occurring in the tropical North Pacific Ocean,

tropical Atlantic Ocean (10�N–25�N), and eastern

Arabian Sea with the largest value of 0.9 in the

central tropical North Pacific Ocean near the

dateline, and with small M-values (\0.2) occur-

ring in the Southern Hemisphere in January, and

vice versa in July (Fig. 6). Comparison between

Figs. 6 and 1 shows negative correlation between

k and M: large (small) k corresponds to small

(large) M. Such negative correlation is found in

the scatter diagrams of (k, M) for the global

oceans in January (Fig. 7a) and July (Fig. 7b) with

linear regression equations,

M ¼ 0:0239� 0:0195k ðR2 ¼ 0:561Þ for January;
ð31Þ

M ¼ 0:0305� 0:0171k ðR2 ¼ 0:463Þ for July: ð32Þ

The two regression equations are significant on the

level of 0.0005 with the numbers of paired data are

6945 in January (Fig. 7a) and 6940 in July (Fig. 7b).

The negative correlation between k and M may be

related to the increase of the KPP eddy viscosity with

Figure 5
Examples of Ekman spirals (a) ûE, (b) v̂E at Location-1 (11�N, 159�W), (c) ûE; and (d) v̂E at Location-2 (43�N, 169�E) (upper panels) as

well as corresponding horizontal density gradients (lower panels). It is noted that the horizontal density gradients are much stronger at

Location-1 than Location-2
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the decrease of k especially for k\ 0. The baro-

clinicity parameter is identified by the vertical

integration of the magnitude of horizontal s-gradient

(crossing the mixed layer) scaled by f2,

b ¼ 1

f 2

Z1

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2x þ s2y

q
dr; ð33Þ

which shows evident spatial variability and weak

seasonal variability (Fig. 8). Since B is inversely

proportional to f2, the B-value is usually large (B[ 5)

in low latitudes (20�S–20�N), and small (B� 5) in

middle and high latitudes. It is noted that the scale

factor of f2 for the baroclinicity parameter (B) [see

(33)] (scaled by f2) is only used for searching for

baroclinic Ekman components since (DuE;DvE) are

inversely proportional to f2 [see (25), (26), (28a), and

(28b)].The baroclinic effect on the Ekman spiral is

evaluated by the correlation coefficient (R) between

the two parameters, M and b, under the wind

(k� � 1 and combined (k\� 1Þ forcing regimes in

the Northern and Southern hemispheres (Table 1). It

is found that M and b are positively correlated for all

the situations with large R ([0.73) for both hemi-

spheres and months (January and July) under the

surface wind forcing regime (k� � 1, with large R in

the Northern Hemisphere in January (0.77) and in the

Southern Hemisphere in July (0.62) under the com-

bined forcing regime (k\� 1Þ, and with small R in

the Northern Hemisphere in July (0.49) and in the

Southern Hemisphere in January (0.36). The scatter

diagrams of (b, M) for the Northern Hemisphere

Figure 6
Monthly horizontal distribution of M: (a) January and (b) July
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(Fig. 9) and Southern Hemisphere (Fig. 10) also

show similar statistical relationships between M and b

(M increase as B increases). Since M vanishes as b

vanishes, (i.e., no baroclinic Ekman components

when the horizontal density gradient equals zero), the

linear regression equation between M and b is written

by

M ¼ cb; ð34Þ

where the regression coefficient c is obtained using

the least square error method. The regression coeffi-

cient c is always positive (Table 1). It has the largest

value under the combined forcing regime in January

for the Northern Hemisphere (0.0498), and in July for

the Southern Hemisphere (0.0370). It has smallest

value under the combined forcing regime in July for

the Northern Hemisphere (0.00551) (prevailing wind

forcing regime), and in January for the Southern

Hemisphere (0.00932) (prevailing wind forcing

regime). Thus, the baroclinic effect is enhanced in the

hemisphere with prevailing combined forcing regime

and weakened in the hemisphere with prevailing wind

forcing regime.

7. Eddy Viscosity due to Pure Wind Forcing

7.1. General Description

Earlier studies such as in McWILLIAMS and

HUCKLE (2006) and SONG and HUANG (2011) assume

no surface buoyancy flux (B = 0), i.e., the depth ratio

k = 0 [see (17)], the depth-dependent, non-dimen-

sional turbulent velocity scale wx (r) equals 1 [see

(20) and (21)]. Also, the dimensional form of the

Ekman equation is used

fk� ûE �
o

oz
K̂ðzÞ oûE

oz

� �
¼ � 1

f
k� o

oz
K̂ðzÞS
� 	

;

ð35Þ

with the surface (dimensional) boundary condition,

K̂ð0Þ oûE
oz

� �
z¼0

¼ u2
�ĥ� þ k� K̂ð0ÞSð0Þ

f

� �
; ð36aÞ

and the lower boundary condition,

ûE finite as z ! �1; ð36bÞ

where

K̂ð0Þ ¼ 0:004u2
�= fj j: ð36cÞ

With the monthly mean surface wind stress data, the

ocean friction velocity u� [using (12b)] and in turn

the surface eddy viscosity K̂ð0Þ [using (36c)] is cal-

culated except the equatorial region 5�S–5�N.
Figure 11 clearly shows strong horizontal and sea-

sonal variations of K̂ð0Þ. In January, it has large

values ([0.02 m2 s-1) in the western/central tropical

North Pacific and Atlantic oceans (6�N–25�N),
medium values (0.01–0.02 m2 s-1) in the mid-lati-

tudes associated with the Kuroshio and Gulf Stream,

and small values (\0.01 m2 s-1) in rest of the global

oceans. However, in July, it has very large values

([0.03 m2 s-1) in the western Arabian Sea (related to

the southwest monsoon), large values (0.02–

0.03 m2 s-1) in the western Bay of Bengal and the

southern tropical Indian and Atlantic oceans (6�S–
25�S), medium values (0.01–0.02 m2 s-1) in the

southern tropical Pacific Ocean (6�S–25�S), mid-

Figure 7
Scatter diagrams of (k, M) with linear regression: (a) January and

(b) July. It is noted that the negative correlation between (k, M) is

significant on the level of 0.0005
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latitude (35�S–45�S) Indian Ocean, and small values

(\0.01 m2 s-1) in the rest of the global oceans in

July. The eddy viscosity K̂ðzÞ has three different

types: (a) wind and depth dependent using the KPP,

(b) wind-dependent and depth-independent, i.e.,

taking surface value K̂ð0Þ for the whole water col-

umn, and (c) wind- and depth-independent, i.e.,

assigning a constant value. Correspondingly, the so-

lutions for the three types of eddy viscosity are

represented by û
ð1Þ
E ; û

ð2Þ
E ; û

ð3Þ
E ,

Figure 8
Monthly horizontal distribution and zonal mean of B: (a) January and (b) July

Table 1

January and July correlation coefficients and number of paired data between (M, B) for Northern and Southern hemispheres under wind and

combined forcing regimes

Location Statistics Januaryðk� � 1Þ January (k\-1) July ðk� � 1Þ July (k\-1)

Northern Hemisphere Number of paired data 1,181 1,225 2,120 143

R 0.753 0.773 0.797 0.487

c 0.00939 0.0498 0.0101 0.00551

Southern Hemisphere Number of paired data 4,015 220 2,573 1,660

R 0.794 0.358 0.733 0.624

c 0.0142 0.00932 0.0134 0.037
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û
ðiÞ
E ¼ �̂u

ðiÞ
E þ Dû

ðiÞ
E ; v̂

ðiÞ
E ¼ �̂v

ðiÞ
E þ Dv̂

ðiÞ
E ; i ¼ 1; 2; 3

ð37Þ

where ð �̂uðiÞ
E ; �̂v

ðiÞ
E Þ are the components of the Ekman

velocity in barotropic ocean [i.e., the Ekman solu-

tions when (11) is satisfied], and ðDû
ðiÞ
E ;Dv̂

ðiÞ
E Þ are the

baroclinic components of the Ekman spiral. The

baroclinic effect is identified by the root-mean square

(RMS) within the ocean mixed layer of the baroclinic

components [(Dû
ð1Þ
E ;Dv̂

ð1Þ
E ), (Dû

ð2Þ
E ;Dv̂

ð2Þ
E ), (Dû

ð3Þ
E ;

Dv̂
ð3Þ
E )],

Ri ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

J

XJ

j¼1

Dû
ðiÞ
E ðjÞ

h i2
þ Dv̂

ðiÞ
E ðjÞ

h i2� �vuut ; i ¼ 1; 2; 3

ð38Þ

where j denotes the vertical level; and J is the total

number of the vertical levels from the surface to the

mixed layer depth.

7.2. Wind- and Depth-Dependent Eddy Viscosity

The vertically varying eddy viscosity due to the

surface wind stress is given by (SONG and HUANG

2011)

K̂ðzÞ ¼ K̂ð0Þð1� a1zÞ expða2zÞ; ð39Þ

where ða1; a2Þ are positive constants. Fitting (37)

with the flow in the f-plane using the large-eddy

simulations (ZIKANOV et al. 2003) gives the following

semi-empirical formula (SONG and HUANG 2011)

K̂ðzÞ ¼ K̂ð0Þ �Gð fj jz
u�

Þ;

�GðtÞ ¼ ð1� 64:0327tÞ expð4:0073tÞ;
ð40Þ

to calculate the depth-dependent eddy viscosity due

to the surface wind stress. Here, �GðtÞ is the shape

function. Figure 12 shows the dependence of �GðtÞ
versus t, where t is the non-dimensional depth, t ¼
fj jz=u�: It is noted that K̂ð0Þ is inversely proportional

Figure 9
Scatter diagrams of (B, M) with linear regression for the Northern Hemisphere: (a) January, wind forcing regime (k� � 1, (b) January,

combined forcing regime (k\� 1), (c) July, wind forcing regime (k� � 1, and (d) July, combined forcing regime (k\� 1). It is noted that

the positive correlation between (k, M) is significant on the level of 0.0005
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to the magnitude of the Coriolis parameter |f|. For the

same ocean friction velocity u*, the lower the lati-

tude, the higher the value ofK̂ð0Þ.
The Ekman velocity, û

ð1Þ
E ¼ ½ûð1Þ

E ; v̂
ð1Þ
E � are the

approximate analytical solutions of (35) by the WKB

method (see Appendices 1 and 2) with the eddy

viscosity K̂ðzÞ given by (40). The barotropic compo-

nents are given by

�̂u
ð1Þ
E ¼ exp FðzÞ½ � V̂þ cos FðzÞ½ � þ V̂� sin FðzÞ½ �


 �
;

ð41aÞ

�̂v
ð1Þ
E ¼ exp FðzÞ½ � V̂þ sin FðzÞ½ � � V̂� cos FðzÞ½ �


 �
;

ð41bÞ

where

V̂
 ¼ VEa

sgnðf Þ; FðzÞ ¼ �

ffiffiffiffiffiffi
fj j
2

r Z0

z

dfffiffiffiffiffiffiffiffiffiffi
K̂ðfÞ

q

ð42Þ

The baroclinic components are given by

Dû
ð1Þ
E ¼ exp FðzÞ½ � D1V̂

þ cos FðzÞ½ � þ D1V̂
� sin FðzÞ½ �


 �

þ ½sxð0Þ � syð0Þ�
4f

Z0

z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

fj jK̂ðfÞ

s
oK̂ðfÞ
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� �

exp FðzÞ � FðfÞ½ �ð Þdf
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4f
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z
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2
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s
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� �
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4f

Zz

�1
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2
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4f
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2
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s
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� �
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ð43aÞ

Dv̂
ð1Þ
E ¼ exp FðzÞ½ � D1V̂

þ sin FðzÞ½ � � D1V̂
� cos FðzÞ½ �
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Here

D1V̂
þ ¼ �

ffiffiffiffiffiffiffiffiffiffi
K̂ð0Þ
2 fj j
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Figure 13 shows the global horizontal distribution

and zonal mean R1 (m s-1) in January and July. In

January, it has large values (>0.2 m s-1) in the tro-

pical North Pacific and Atlantic oceans (6�N–20�N),
the tropical North Indian Ocean (6�N–10�N), the

tropical South Pacific and Atlantic oceans (6�S–
10�S), medium values (0.02–0.2 m s-1) in the mid-

latitudes associated with the Kuroshio and Gulf

Stream, south tropical Indian Ocean (6�S–30�S) and
small values (<0.01 m s-1) in rest of the global

oceans. In July, it has large values (>0.2 m s-1) in the

tropical oceans (15�S–15�N) with a maximum value

of 0.62 m s-1 in the Arabian Sea. It generally de-

creases with the increasing latitude. In high latitudes,

it is very small (<0.01 m s-1). Zonal mean R1 de-

creases with latitude near-exponentially in both

Northern and Southern hemispheres) from 0.6 m s-1

(0.4 m s-1) at 6�N (6�S) to less than 10-3 m s-1 at

high latitudes near 60�N (60�S). The histograms and

associated probability density functions (PDFs) for

January and July (Fig. 14) show near-exponentially

Figure 10
Scatter diagrams of (B, M) with linear regression for the Southern Hemisphere: (a) January, wind forcing regime (k� � 1, (b) January,

combined forcing regime (k\� 1), (c) July, wind forcing regime (k� � 1, and (d) July, combined forcing regime (k\� 1). It is noted that

the positive correlation between (k, M) is significant on the level of 0.0005
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decreasing probability with R1 (log scale used in the

vertical axis). The probability of R1 larger than

0.2 m s-1 is 2.6 % [= 1 - P (R � 0.2 m s-1) =

1 - 0.974)] in January and 4.6 % (= 1 - 0.954) in

July. The probability of R1 larger than 0.1 m s-1 is

10.0 % in January and 11.5 % in July. The 95th

percentile is 0.173 m s-1 in January and 0.212 m s-1

in July (also see Tables 2 and 3).

7.3. Wind-Dependent and Depth-Independent Eddy

Viscosity

The eddy viscosity is given by

K̂ðzÞ ¼ K̂ð0Þ: ð45Þ

Substitution of (45) into (42) leads to,

Figure 11
Horizontal distribution of eddy viscosity at the ocean surface K̂ð0Þ calculated from monthly mean surface wind stress data (downloaded from

the websites: http://iridl.ldeo.columbia.edu/SOURCES/.DASILVA/.SMD94/.climatology/.u3/ and http://iridl.ldeo.columbia.edu/SOURCES/.

DASILVA/.SMD94/.climatology/.v3/ using (20) and (21): (a) January, and (b) July
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FðzÞ ¼ z

DW

; DW ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
2K̂ð0Þ

fj j

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:008u2

�

fj j3=2

s
; ð46Þ

where (40) is used; Dw is the e-folding decay scale

of the Ekman depth, which varies with the surface

wind stress through K̂ð0Þ, and latitude. For the same

ocean friction velocity (u�), the lower the latitude,

the higher the value of DW. The e-folding scale Dw

is computed from the global data of K̂ð0Þ using

(46). It also has evident horizontal and weak sea-

sonal variations (Fig. 15, equatorial region 5�S–5�N
not computed): large values ([100 m) generally

occur in subtropical regions (10�N–20�N, 10�S–
20�S) in January and July due to small Coriolis

parameter. In the Northern Hemisphere middle and

high latitudes, Dw is larger in January (50–100 m in

the Atlantic Ocean and western Pacific Ocean) than

in July (mostly less than 20 m). In the Southern

Hemisphere middle latitudes, zonal belts with

medium values of Dw (20–50 m) appear at 35�S–
50�S in the three southern oceans (Atlantic, Indian,

and Pacific) in January, but does not appear in the

Southern Pacific in July. Substitution of (46) into

(41a), (41b), (43a), (43b), (44a), and (44b) leads to

the barotropic components

�̂u
ð2Þ
E ¼ expð z

DW

Þ V̂þ cosð z

DW

Þ þ V̂� sinð z

DW

Þ
� �

;

ð47aÞ

�̂v
ð2Þ
E ¼ expð z

DW

Þ V̂þ sinð z

DW

Þ � V̂� cosð z

DW

Þ
� �

;

ð47bÞ

and the baroclinic components

Dû
ð2Þ
E ¼ expð z

DW

Þ D2V̂
þ cosð z

DW

Þ þ D2V̂
� sinð z

DW

Þ
� �

;

ð48aÞ

Dv̂
ð2Þ
E ¼ expð z

DW

Þ D2V̂
þ sinð z

DW

Þ � D2V̂� cosð z

DW

Þ
� �

ð48bÞ

Here (V̂þ; V̂�) are given by (42) and

D2V̂
þ ¼ �DW syð0Þ

f
; D2V̂� ¼ DWsxð0Þ

2f
: ð49Þ

The global horizontal distribution of R2 (m s-1)

(Fig. 16) is similar to that of R1 (Fig. 13) in both

January and July with smaller values in the Gulf

Stream and Kuroshio regions. Latitudinal decrease of

zonal mean RMS with the eddy viscosity is also

comparable in both Northern and Southern hemi-

spheres. The histograms and associated PDFs for

January and July (Fig. 17) also show near-exponen-

tially decreasing probability with R2. For large R2

values (>0.2 m s-1), the probability is zero in Jan-

uary and 0.6 % (= 1–0.994) in July. The probability

of R2 larger than 0.1 m s-1 is 0.28 % in January and

4.7 % in July. The 95th percentile is 0.089 m s-1 in

January and 0.11 m s-1 in July.

Figure 12
Vertical structure function �GðtÞ versus t
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7.4. Wind- and Depth-Independent Eddy Viscosity

For the wind- and depth-independent eddy

viscosity,

K̂ðzÞ ¼ K̂0 ¼ const: ð50Þ

Substitution of (50) into (46) gives

DW ¼ D ¼

ffiffiffiffiffiffiffiffi
2K̂0

fj j

s
; ð51Þ

which is the classical Ekman depth. After replacing

DW by D, (47a) and (47b) lead to the barotropic

components ( �̂u
ð3Þ
E ; �̂v

ð3Þ
E ) and (48a) and (48b) lead to the

baroclinic components (Dû
ð3Þ
E ;Dmv̂

ð3Þ
E ) of the Ekman

velocity. Here, the constant eddy viscosity K̂0 is taken

as 0.054 m2 s-1 (Price et al. 1987).

The global horizontal distribution of R3 (m s-1)

(Fig. 18) is similar to that of R1 (Fig. 13) in January

and July with latitudinal decrease of zonal mean

RMS in the Northern and Southern hemispheres. The

histograms and associated PDFs for January and July

(Fig. 19) also show near-exponentially decreasing

probability with R3. For large R3 values (>0.2 m s-1),

the probability is zero in January and July. The

Figure 13
Horizontal distribution and zonal mean of vertical root-mean square of baroclinic components of the Ekman spiral in neutral ocean, R1

(m s-1), inside the mixed layer with wind-dependent and depth-dependent eddy viscosity K (z): a January and b July
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Figure 14
Histogram and probability density function of R1 (m s-1) with wind-dependent and depth-dependent eddy viscosity K̂ðzÞ: (a) January, and

(b) July

Table 2

Statistical characteristics of the VRMA (within the ocean mixed layer) of the baroclinic components over the global oceans for the three types

of eddy viscosity under zero surface buoyancy flux in January

RMS Q0.5 (m/s) Q0.95 (m/s) P (R � 0.02 m/s) P (R � 0.1 m/s) P (R � 0.2 m/s)

R1 0.0113 0.173 0.669 0.900 0.974

R2 0.00401 0.0888 0.800 0.972 1.000

R3 0.00107 0.0399 0.901 0.999 1.000

Table 3

Statistical characteristics of the VRMA (within the ocean mixed layer) of the baroclinic components over the global oceans for the three types

of eddy viscosity under zero surface buoyancy flux in July

RMS Q0.5 (m/s) Q0.95 (m/s) P (R � 0.02 m/s) P (R � 0.1 m/s) P (R � 0.2 m/s)

R1 0.00929 0.212 0.694 0.875 0.954

R2 0.00306 0.110 0.795 0.953 0.994

R3 0.000769 0.0575 0.883 0.988 1.000
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probability of R3 larger than 0.1 m s-1 is 0.1 % in

January and 1.2 % in July. The 95th percentile is

0.04 m s-1 in January and 0.058 m s-1 in July.

8. Conclusions

Analytical solution of the Ekman spiral in real

oceans is obtained with vertical geostrophic and

ageostrophic shears linking to turbulent stress in up-

per oceans, under surface wind and buoyancy forcing

using the KPP eddy viscosity. The Ekman spiral

contains barotropic and baroclinic components. The

barotropic component is similar to the classical Ek-

man spiral. The baroclinic component is caused by

horizontally inhomogeneous density. The baroclinic

component vanishes as the horizontal density gradi-

ent vanishes.

Figure 15
Horizontal distribution of e-folding depth (Dw) of the Ekman layer with wind-dependent and depth-independent eddy viscosity: (a) January

and (b) July
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Climatological monthly data of global ocean

mixed layer depth, Monin–Obukhov length scale,

friction velocity, surface winds, and density profiles

are used to calculate the depth ratio (k), KPP eddy

viscosity, the barotropic and baroclinic Ekman ve-

locities, the baroclinicity parameter (B), and the

proportion of the baroclinic Ekman component (M).

Large baroclinic proportion is usually associated

with the prevailing combined forcing regime such as

in the Northern (Southern) Hemisphere in January

(July).

Statistical analysis on the calculated global (k, M,

B) values shows significant negative correlation be-

tween k and M: large (small) k corresponds to small

(large) M, and significant positive correlation be-

tween B and M: large (small) B corresponds to large

(small) M. The negative correlation between k and

M may be related to the increase of the KPP eddy

viscosity with the decrease of k especially for k\ 0.

The positive correlation coefficient between B and

M varies with the prevailing wind and combined

forcing regimes. The baroclinic effect is enhanced in

Figure 16
Horizontal distribution and zonal mean of vertical root-mean square of baroclinic components of the Ekman spiral in neutral ocean, R2

(m s-1), inside the mixed layer with wind-dependent and depth-independent eddy viscosity K̂ð0Þ: (a) January and (b) July
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the hemisphere with prevailing combined forcing

regime and weakened in the hemisphere with pre-

vailing wind forcing regime.

For pure wind forcing (i.e., zero surface buoyancy

flux), three types of eddy viscosity from existing

parameterization [wind- and depth-dependent, wind-

dependent and depth-independent, and wind- and

depth-independent (i.e., constant eddy viscosity)] as

well as the vertical root-mean square of the baroclinic

component within the ocean mixed layer (R) of the

analytical Ekman spiral are used to investigate the

baroclinic effect. It enhances with the decreasing

latitude and usually very evident ([0.2 m s-1) in the

tropical oceans in January and July, and extremely

large value of 0.62 m s-1 in the Arabian Sea in July

for all the cases (three types of eddy viscosity). In

middle and high latitudes (especially in the Southern

Hemisphere), it is generally very small (i.e., the

classical Ekman spiral applies) except in the Gulf

Stream and Kuroshio regions in January. These re-

sults are consistent with the earlier observational

studies such as conducted in the Drake Passage (LENN

and CHERESKIN 2009).

The near-exponentially decreasing probability

with the vertical root-mean square of the baroclinic

component is obtained from the histograms. The

statistical characteristics show that the baroclinic

components for the three types of eddy viscosity

under pure wind forcing are all comparable in Jan-

uary and July. Near-exponentially decreasing

Figure 17
Histogram and probability density function of R2 (m s-1) inside the mixed layer with wind-dependent and depth-independent eddy viscosity

K̂ð0Þ: (a) January and (b) July
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probability with R1, R2, or R3 is found. The

probability of R1 larger than 0.2 m s-1 is 2.6 %

[=1 - P (R � 0.2 m s-1) = 1 – 0.974)] in January

and 4.6 % (= 1 – 0.954) in July. The probability of

R1 larger than 0.1 m s-1 is 10.0 % in January and

11.5 % in July. The 95th percentile is 0.173 m s-1 in

January and 0.212 m s-1 in July (also see Tables 2

and 3).

Finally, it is noted that the monthly mean density

fields from the WOA-2009 temperature and salinity

data cannot represent density fronts associated with

submesoscale processes. The computation here is

only to show the importance of horizontally inho-

mogeneous density on the Ekman spiral. Further

computation is needed to verify the good ap-

proximate/analytical solutions again high horizontal-

Figure 18
Horizontal distribution and zonal mean of vertical root-mean square of baroclinic components of the Ekman spiral in neutral ocean, R3

(m s-1), inside the mixed layer with a constant eddy viscosity (0.054 m2 s-1): (a) January and (b) July
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resolution wind and density data if they will be

available.
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Appendix 1: General Solutions of Eq. (22)

Let the Ekman currents (uE, vE) be represented by

a complex variable w,

w ¼ uE þ ivE; i ¼
ffiffiffiffiffiffiffi
�1

p
: ð52Þ

Substitution of (52) into (22) leads to

K
d2w
dr2

þ dK

dr
dw
dr

� if0w ¼ /; ð53Þ

where

f0 ¼
fh

ju�
; / ¼ h2

f0ju�VE

o

or
Ksy

� 	

� i
h2

f0ju�VE

o

or
Ksx½ �:

ð54Þ

The function / represents the baroclinic effect. The

second-order differential equation (53) needs two

boundary conditions. The surface boundary condition

(14) becomes

dw
dr

jr¼0 ¼ � u�
jKð0ÞVE

cos hþ i sin hð Þ

þ h2

f0ju�VE

½syð0Þ � isxð0Þ�: ð55Þ

The lower boundary condition of equation (53) is

given by

wj j finite as r ! 1: ð56Þ

to guarantee a physically meaningful solution, i.e.,

wj j cannot be infinity as r ! 1. Eq. (53) is a linear

Figure 19
Histogram and probability density function of R3 (m s-1) inside the mixed layer with a constant eddy viscosity (0.054 m2 s-1): (a) January

and (b) July
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inhomogeneous ordinary differential equation with

the depth-varying coefficient K (z). Following BERGER

and GRISOGONO (1998), studying the Ekman atmo-

spheric boundary layer, an approximate solution to

the inhomogeneous problem (53) can be found with

the variation of parameters technique, provided that

an approximate solution of the homogeneous problem

of (53),

K
d2w
dr2

þ dK

dr
dw
dr

� i f0w ¼ 0; ð57Þ

exists. If two independent approximate solutions to

homogeneous problem of Eq. (57) are given by w1ðrÞ
and w2ðrÞ, the general solution of Eq. (53) is given

by

w ¼ c1w1ðrÞ þ c2w2ðrÞ þ ĉ1ðrÞw1ðrÞ þ ĉ2ðrÞw2ðrÞ;
ð58Þ

where

ĉ1ðrÞ ¼ �
Z0

r

w2/
KðfÞ½w1ðfÞdw2ðfÞ=df� w2ðfÞdw1ðfÞ=df� df;

ð59Þ

ĉ2ðrÞ ¼
Z1

r

w1/
KðfÞ½w1ðfÞdw2ðfÞ=df� w2ðfÞdw1ðfÞ=df� df:

ð60Þ

Appendix 2: The WKB Method for Solving Eq. (57)

The WKB method can be used to obtain a good

approximate solution of Eq. (57) if the vertical var-

iation of K (r) is slower than that of wðrÞ (GRISOGONO

1995),

w / exp
ðS0 þ S1eþ S2e2 þ . . .Þ

e

� �
; ð61Þ

where e is a presumably small parameter. Substitution

of (61) into (57) leads to a set of equations in terms of

powers of e. If K (r) does not vary too quickly with

depth, we have

Snþ1ðrÞj j
SnðrÞj j � 1; n ¼ 0; 1; 2; . . . ð62Þ

Solving for the first two terms S0 and S1 yields

S0 ¼ 
ð1þ iÞ
ffiffiffiffiffiffi
f0j j
2

r Zr

0

dfffiffiffiffiffiffiffiffiffiffi
KðfÞ

p ; ð63Þ

S1 ¼
1

4
ln

Kð0Þ
KðrÞ

� �
: ð64Þ

Thus, the two approximate solutions of the homoge-

neous equation (55) are

w1ðrÞ ¼ AðrÞ exp½ð1þ iÞFðrÞ�;
w2ðrÞ ¼ AðrÞ exp½�ð1þ iÞFðrÞ�; ð65Þ

where

AðrÞ ¼ Kð0Þ
KðrÞ

� �1=4
; FðrÞ ¼ �

ffiffiffiffiffiffi
f0j j
2

r Zr

0

dfffiffiffiffiffiffiffiffiffiffi
KðfÞ

p :

ð66Þ

Substitution of (55) and (66) into (59) and (60) gives

ĉ1ðrÞ ¼ � ð1� iÞ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 f0j jKð0Þ

p
Zr

0

AðfÞ/ðfÞ exp �ð1þ iÞFðfÞ½ �df;

ð67Þ

ĉ2ðrÞ ¼ � ð1� iÞ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 f0j jKð0Þ

p
Z1

r

AðfÞ/ðfÞ exp ð1þ iÞFðfÞ½ �df:

ð68Þ

Substitution of (65) into (58) gives

w ¼ ½c1 þ ĉ1ðrÞ�AðrÞ exp½ð1þ iÞFðrÞ� þ ½c2
þ ĉ2ðrÞ�AðrÞ exp½�ð1þ iÞFðrÞ�: ð69Þ

It is noted that F (r)\ 0 leads to

w2 ! 1 as r ! 1: ð70Þ

This leads to

c2 ¼ 0 ð71Þ

Substitution of (69) into the surface boundary con-

dition (55) gives

c1 ¼ ĉ2ð0Þ þ ð1� iÞ

� u�ðcos hþ i sin hÞ
j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 f0j jKð0Þ

p �

ffiffiffiffiffiffiffiffiffiffi
Kð0Þ
2f0j j

s
h

f
½syð0Þ � isxð0Þ�

( )
:
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¼ ĉ2ð0Þ þ Vþ � iV�

þ

ffiffiffiffiffiffiffiffiffiffi
Kð0Þ
2f0j j

s
h

f
sxð0Þ � syð0Þ
� 	

þ i sxð0Þ þ syð0Þ
� 	
 �

:

ð72Þ
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