Empirical Mode Decomposition for Change Detection and Mine Detection

> Peter Chu Naval Postgraduate School Monterey, California 5/18/2010

Airborne Laser Mine Detection System (ALMDS)

L3-Klein 5500 Sidescan Sonar

Image \rightarrow detecting mine

How can we detect mine from image such as sidescan sonar?

Efficient Method \rightarrow

Empirical Mode Decomposition

(Huang et al., 1998)

One Dimensional EMD \rightarrow

Time Series Analysis

Empirical Mode Decomposition: Methodology : Test Data

Empirical Mode Decomposition: Methodology : data and m1

Empirical Mode Decomposition: Methodology: h1 & m2

Empirical Mode Decomposition: Methodology: h3 & m4

Empirical Mode Decomposition: Methodology: h4 & m5

Empirical Mode Decomposition Sifting : to get one IMF component $x(t) - m_1(t) = h_1(t),$

$$m_1(t) - m_2(t) = h_2(t),$$

$$m_{k-1}(t) - m_k(t) = h_k(t).$$

$$\Rightarrow x(t) = m_k(t) + \sum_{i=1}^k h_i(t).$$

 h_{i} (t) \rightarrow Intrinsic Mode Function (IMF)

 $m_k(t) \rightarrow Trend$

The Stoppage Criteria

The Cauchy type criterion: when SD is small than a pre-set value, where

$$SD = \frac{\sum_{t=0}^{T} |h_{k-1}(t) - h_{k}(t)|^{2}}{\sum_{t=0}^{T} h_{k-1}^{2}(t)}$$

$EMD \rightarrow two modes$

Wavelet-based signal separation → 6 modes

Bi-dimensional EMD (BEMD) \rightarrow

Image Data Analysis

Methods for Spline in BEMD

- Radial Based Function
- Thin Plate Interpretation
- Delaunay Triangulation
- By Slicing
- NURBS : NonUniform Rational B-Spline

Radial Based Function

Linear

Cubic splines Thin plate splines Hardy's multiquadrics Inverse multiquadrics **Exponential** splines Gaussian splines *Compactly supported spline* $\phi(r) = r$ $\phi(r) = r^3$ $\phi(r) = r^2 \log(r)$ $\phi(r) = \left(r^2 + c^2\right)^{1/2}$ $\phi(r) = \left(r^2 + c^2\right)^{-1/2}$ $\phi(r) = exp(-cr)$ $\phi(r) = exp(-cr^2)$ $\phi(r) = (1-r)^m + p(r)$

Thin Plate Smoothing

Thin plate smoothing spline calculates the function f(x,y) so that it minimizes the integral bending norm, I_f , over the entire image

$$I_{f} = \iint_{R} \left[\left(\frac{\partial^{2} f}{\partial x^{2}} \right)^{2} + 2 \left(\frac{\partial^{2} f}{\partial x \partial y} \right)^{2} + \left(\frac{\partial^{2} f}{\partial y^{2}} \right)^{2} \right] dx dy$$

This means the solution of a linear system with as many unknown as there are data points.

Delaunay Triangulations

 On the basis of Delaunay triangulation we will calculate maximum envelop using the Bernstein-Bezier fitting and interpolation The Bernstein-Bezier calculation includes an optimal fitting around any maximum point and first order smooth connecting along each adjacent edge of Delaunay triangles.

The basis of Delaunay triangulation

Examples of BEMD

Original image:

http://www.sonoworld.com/Sonoworld/Galleries/ShowCategoryImages.aspx?CategoryID=30#

Transverse sonogram, left breast palpable mass. Small, well defined anechoic cyst. IMFs: 1 2 3 4 5 6

Combination of IMF 1 and IMF 2 gives the obvious uniform region. Left is the contour figure and right is the Image.

EMD → Effective Method for Identifying Change Detection

Intelligence Preparation of the Environment

INTEGRATION: Mine Detection and Classification

Change Detection

Contact eliminated as prior ID'd non-Mine

Contact not in pre-exercise imagery. Confirmed as Mk25 Bottom Mine.

IPE Objective: To gain efficiency in the detection of mine like objects for further prosecution Unclassified

After Image Coregistration

Baseline Image

Repeat Image

My Plan

EMD \rightarrow Difference of the Two Images

→ Change Detection

Proposed Work

- (1) Development of efficient EMD software for analyzing 2D images
- (2) Analysis of NSWC-PC image data (sidescan sonar, laser, radar, ...) for software validation and verification
- (3) Implementation of the software into Navy mine detection platforms such as sidescan sonar, ALMDS, ...
- (4) Development of simple and efficient method for identifying change detection