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 Abstract— A new data analysis/assimilation scheme, 

optimal spectral decomposition (OSD), has been 
developed to reanalyze fields from noisy and sparse data 
in a domain with open boundary conditions using two 
scalar representations for a three-dimensional 
incompressible flow. The reanalysis procedure is divided 
into two steps: (a) specification of basis functions in the 
spectral decomposition from knowledge of boundary 
geometry and velocity and (b) determination of 
coefficients in the spectral decomposition for the 
circulation solving linear or nonlinear regression 
equations. The basis functions are the eigenfunctions of 
the Laplacian operator with mixed boundary conditions. 
The optimization process is used to obtain unique and 
stable solutions on the base of an iteration procedure 
with special regularization (the filtration. The capability 
is demonstrated using various examples.  
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1. Introduction 
 
 Sparse and noisy ocean data need to be reanalyzed 
before being assimilated into numerical models. Any 
field (temperature, salinity, or velocity) can be 
decomposed into generalized Fourier series using the 
Optimal Spectral Decomposition (OSD) method. The 
three dimensional field is then represented by linear 
combination of the products of basis functions (or called 
modes) and corresponding Fourier coefficients. If a 
rectangular closed ocean basin is considered, the basis 
functions are sinusoidal functions. If a realistic ocean 
basin is considered, the basis functions are the eigen-
values of the three-dimensional Laplace operator with 
real topography. The Fourier coefficients are determined 
from observational data through solving a set of linear 
algebraic equations. Major benefit of using the OSD 
method is that the boundary conditions for the ocean 
variables (temperature, salinity, velocity) are always 
satisfied.  
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  2. Generalized Fourier-Series Expansion 
 
 Let (x, z) be horizontal and vertical coordinates and t 
be time. A physical variable ( , , )c z tx  at depth kz  is 
decomposed using the generalized Fourier series (Chu 
1999b; Ivanov and Chu 2008; Chu et al. 2003a, b, 2005a, 
b) 

( ) ( )0
1

( , , ) ( , ) ,  , ,   

( )

M

k k m k m k
m

k

c z t A z t A z t z

R z
=

= + Ψ

∈

∑x x

x
                         

                                                                                     (1)               
where M is the truncated mode number, ( , )m kzΨ x  and 

( , )m kA z t  are the orthogonal basis functions (or called 
modes) and the spectral coefficients, respectively; 

( )kR z  is the area bounded by the lateral boundary 

( )kzΓ  at depth kz .  The basis functions { ( , )m kzΨ x } 
are eigen-functions of the horizontal Laplace operator 
with the basin geometry and certain physical boundary 
conditions. For temperature and salinity, the   
homogeneous Neumann boundary condition is taken at 
the solid boundary ( )zΓ  (i.e., no heat and salt fluxes),  

2
,      | 0,    1,2,..., ,h m m m h m m Mλ Γ∇ Ψ = − Ψ ∇ Ψ = =ni                        

                                                                                      (2)     
where 2 2 2 2 2/ /h x y∇ ≡ ∂ ∂ + ∂ ∂ , and  n is the unit vector 

normal to ( )zΓ . The basis functions { mΨ } are 
independent of the data and therefore available prior to 
the data analysis. The OSD method has two important 
procedures: optimal mode truncation and determination 
of spectral coefficients {Am}. After the two procedures, 
the generalized Fourier spectrum (3) is used to provide 
data at regular grids in space and time.  
 
 3. Optimal Mode Truncation   
      
 The optimal mode truncation number (Mopt) is defined 
as the critical mode number with the set of spectral 
coefficients {Am} least sensitive to observational data 
sampling and noise. For sample size of P and mode 
truncation of M, the spectral coefficients {Am} are 
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estimated by the least square difference between 
observed and calculated values  
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where the symbol “~” represents the estimated value at 
(x, t). For homogeneously sampled data with low noise 
and without systematic error, the empirical cost function 
Jemp should tend to 0 monotonically as M increases to 
infinity. The set of the spectral coefficients {Am} depends 
on the mode truncation M. Optimal estimation of {Am} is 
equivalent to the determination of Mopt (Chu et al. 2003 
a, b). A modified cost function (Vapnik 1982), 
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is used to determine the optimal mode truncation Mopt. 
Here, τ  is the probability of 
 
                0

emp
J J− →   as M increases.   

 
Usually, for a regional sea such as the Black Sea, Mopt is 
30–50 for the basin-scale (~300 km) variability and 150 
for the mesoscale (~20 km) variability (Chu et al., 
2005a). For sparse and noisy data, it is difficult to get 
reliable and stable estimates of all the necessary spectral 
coefficients, but the first few spectral coefficients 

0 ( , )kA z t� , 1( , )kA z t� , …, ( , )m kA z t�  are reliable and 
stable.  
 
 4. Rotation Matrix Method for Regularization   
 
 Determination of the spectral coefficients is achieved 
by solving a set of linear algebraic equations of 
{ ( , )mA z t� } that are obtained from the optimization 
procedure (1) and (4),   

                      A â =QY.                                 (5)                                
where â  is the estimated state vector (L-dimensional) 
for the exact state vector a; A is a P × L coefficient 
matrix;  Q is a P × P  square matrix (P > L);  Y  is a P-
dimensional observation vector, consisting of a signal Y  
and a noise Y’, 
                               Y = Y + Y' .     
Due to the high level of noise contained in the 
observations, the set of algebraic equations is ill-posed 
and needs to be solved by a regularization method that 
requires: (a) stability (robustness) even for data with high 
noise, and (b) the ability to filter out errors with a-priori 
unknown statistics.  The two known matrices A and Q 

are determined by the physical process or field.  Let …  
be the Euclidean norm and     
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be the noise-to-signal ratio, dimension ratio, and  
condition number of the matrix A. For a particular 
system, 2η  is given.  Usually, 1η  and 3η  are large 
(called “imperfect”),   
 
                         1 31,             1η η≥ >> ,                                           
 
which makes (5) difficult to solve. A new rotation 
method for 2 1η <  is developed to change (5) into a new 
system with possibly minimum coefficient matrix and 
noise-to-signal ratio without a-priori knowledge of noise 
statistics. Nonsingular orthogonal transformation is 
conducted through multiplication of (5) by a plane 
rotation matrix S from the left,   
 
                             SA â=SQY,                                    (7)                 
 
which changes the coefficient matrix and the source term 
from (A, QY) to (SA, SQY)  and provides the 
opportunity to minimize the imperfection of the new 
system (7),  
 
                     2 2

3 1( 1  )  min,η η+ →� �                        (8)                   
Where 
 
   1 / η ′≡ SQY SQY� , 3 / η ≡ SQY a� .              (9)              
 
Minimization (8) leads to   
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which is the procedure to obtain minimum values of  1η�  

and 3η�  without 
2a . Here, the symbol ‘*’ indicates the 

scalar product in the Euclidean space.  The new 
transformed system (7) can be solved by usual algebraic 
methods such as the Gauss method. 
 
 5. Argo Data Analysis  
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 Between November 2003 and January 2005, over 
56000 float days (cumulative) of data were collected in 
the North Atlantic (10oN-60oN) in general at three 
parking depths: 1000 m, 1500 m and 2000 m. The floats 
parking at 2000 m, depths shallower than 1000 m, and 
unknown depths are excluded from the analysis. 
Temperature at 950 m and trajectories at 1000 m and 
1500 m are extracted from all the existing Argo floats. 
The data from 1000 m and 1500 m were grouped 
together to represent the mid-depth.   
 
 The measurement cycle of an Argo profiling float 
includes four stages: ascending, surface drifting, diving 
and deep drifting. The Argo float can only get its 
position fixings while it ascends to the sea surface. The 
vector between two consecutive surface positions during 
the deep drifting divided by the time interval is taken as 
the mid-depth velocity vector. When the Argo float is 
diving, ascending and drifting below the sea surface, no 
data can be transmitted to the ground stations in real 
time. Velocity field after the first step analysis shows 
noisy circulation patterns (Figs. 1 a, b) with   large 
spatial gaps (from 230 km to 800 km).   
 
 Uncertainty in the Argo float data causes errors in the 
velocity field. First, the data extracted from the floats 
parking at two different levels: 1000 m and 1500 m and 
grouped together to represent the mid-depth (1000 m). 
This neglects the vertical shear. Second, the vertical 
shear causes increase or decrease of the distance between 
the points of ascending from and diving to the parking 
depth. Third, the sequence of float trajectory segments 
only approximates the real Lagrangian paths. Fourth, 
preliminary computations (not included here to be 
published in a separate paper) show that high resolution 
elements of circulation in the western North Atlantic, 
such as the northern re-circulation gyre and the Deep 
Western Boundary Current (DWBC) are also revealed by 
the Argo floats. For example Figs. 1 a, b clearly show the 
existence of DWBC. However, such a resolution is not 
available for the whole North Atlantic.   
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Figure 1. Circulation velocities (tiny arrows) 
estimated from the original ARGO float tracks at 
1000 m for (a) Dec 2003–Mar 2004 and (b) Aug 2004–
Nov 2004. The figure scale is given for tiny arrows.  
Red arrows are circulation velocities obtained by 
averaged over appropriate bins (from Chu et al., 
2008).  

 The high-energetic mesoscale eddies and narrow 
boundary currents are classified as “noise” and removed 
from the analysis. Fifth, there are large spatial gaps in 
Argo float trajectories.  The temperature observation 
has higher quality than the velocity observation since the 
former has (a) higher resolution and (b) less spatial gaps. 
Fig. 2 shows typical monthly coverage of observations. 
Interested readers can find the detailed discussion on the 
navigation errors and measurement errors caused by 
temperature sensors in http://argo.jcommops.org. 
 

 Three quality control steps are performed to identify 
and remove temperature profiles corrupted by large 
measurement errors. (1) Explicitly absurd profiles were 
removed after a visual inspection. (2) A portion of 
temperature profiles, which were outside of the 
prescribed accuracy of the climatic data (Levitus et 
al.1998), were also excluded from the further analysis.  
(3) Temperature snapshots computed by the Optimal 
Spectral Decomposition (OSD) method (Chu et al. 
2003a, 2004) should not show explicit outbreaks in 
temperature structure. Any temperature profile 
contributing to such outbreaks was a subject to 
removing. 

 
A parking depth for each Argo float was extracted 

from a “meta” file as the variable 
“PARKING_PRESSURE” (http://www.Argo.ucsd.edu).  
To control the parking depth the variable “PRES” (a 
pressure measured along the float trajectory) from a file 
containing float trajectory data, was used.  Most floats 
launched in the area of interest have measured this 
variable.  
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Figure 2.  Monthly temperature at 950 m  for (a) Feb 2004 
and (b) Dec 2004. Circles are points where temperature was 
measured (from Chu et al., 2008).  
 

 Identification of long Rossby wave of tropical 
North Atlantic at mid-depth (~1000 m) from the Argo 
track data is taken as an example to demonstrate the 
usefulness of the OSD method to reanalyze sparse and 
noisy ocean data (Chu et al., 2007).  Argo float data 
(subsurface tracks and temperature profiles collected 
from March, 04 through May, 05) are used to detect 
signatures of long Rossby waves in velocity of the 
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currents at 1000 m depth and temperature, between the 
ocean surface and 950 m, in the zonal band of 4oN -24oN 
in the Tropical North Atlantic. Different types of long 
Rossby waves (with the characteristic scales between 
1000 km and 2500 km) are identified in the western 
[west of the Mid-Atlantic Ridge (MAR)] and eastern 
[east of the MAR] sub-basins.  

 
Current velocities computed along the original (non-

smoothed) Argo tracks in November-December, 2004 
are shown in Fig. 3 as red arrows.  A strong contribution 
from   intensive eddies, such as that shown in inset B, 
narrow jets and measurement errors is clearly identified 
here. Visually, the velocity pattern corresponding to the 
original data looks quite chaotic, and there are 500-600 
km spatial gaps in observation coverage. To understand 
the reconstruction skill for such data we applied three 
criteria: (1) the formal mean square error (the 
reconstruction error) computed by the “laminar 
ensemble” technique, (2) statistics of angle (α ) between 
the reconstructed and observed velocity at float 
locations, and (3) stability degree of the reconstructed 
snapshot on observation sampling.  Rossby wave 
propagation is also identified from reanalyzed 
temperature field at 550 m depth (Fig. 4).  
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Figure 3. Sensitivity of the reconstructed circulation 
patterns to filtration of the original data: OSD is applied to 
(a) the original data (November-December, 04); (b) the 
original data (November-December, 04) filtered with a 2-
month window; (c) the original data (October-December, 
04) filtered with a 3-month window; (d) the original data 
(October-December, 04) filtered by 4o×4o bin averaging; 
Blue and red arrows correspond to the reconstructed 
circulation and original/filtered data. For α -histograms 
(inserts A) the x-axes is the angleα  and the y-axes is the 
number of comparisons (%) (after Chu et al., 2007). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4. Spatio-temporal structure of semi-annual 
temperature anomaly   at 550 m depth: (a) May 15thand (b) 
June 29th 2004. Here, the gray arrow shows the direction of 
the positive temperature anomaly (after Chu et al. 2007). 
 
 6. Global Surface Current Vector Data 
 
 Near real time ocean surface current (0 – 30 m depth) 
analyses – real time (OSCAR) has been produced by 
NOAA on 5-day interval from sea surface height 
(TOPEX/Poseidon), surface vector wind (SSM/I) and sea 
surface temperature (AVHRR 1 in situ measurements) 
with a diagnostic model using quasi-linear and steady 
physics and the absolute velocity using the mean 
dynamic height inferred from the World Ocean Atlas 
(WOA). This satellite-derived global ocean surface 
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current vector data,    representing combined 
geostrophic, Ekman, and Stommel shear dynamics, has 
been undergone thorough quality control procedures 
such as error analysis using drifter, ship, and moored 
observations.  Detailed information can be found at the 
website: http://www.oscar.noaa.gov/.  During 
constructing the OSCAR data, the lateral boundary 
condition is never considered. This leads to the absence 
of major western boundary currents such as Gulf Stream, 
Kuroshio, Somali Current, California Current, Brazil 
Current, etc. (Fig. 5b). After reanalyzing the OSCAR 
data with the OSD method, the surface ocean current 
field is shown in Fig. 5a (June 15, 2007). Comparison 
between Figs.5a and 3b shows the powerfulness of the 
OSD method.      
       

 
Figure 5. Comparison of global surface ocean currents on 
June 15, 2007 from OSCAR data (a) with OSD and (b) 
without OSD.   
 
 7. Lagrangian Drifter Data  

 
The OSD method was also to process the current 

velocity data collected from the Texas-Louisiana Shelf 
Physical Oceanography Program (LATEX-A) and first 
segment of the Surface Current and Lagrangian Drift 
Program (SCULP-1) into temporally-spatially gridded 
data. With this data set, the TLCS current structure and 
reversal may be identified.  In conjunction with the local 
surface wind data, the wind effect on the TLCS synoptic 
current reversal may also be identified.   
 
 Data for the TLCS fall/winter current reconstruction 
were collected from 31 near-surface current meter 
moorings during LATEX-A at 10-15 m depths (Cho et 
al. 1998) from April 1992 to December 1994 (Fig. 6) and 
from drifting buoys deployed during SCULP-1 from 
October 1993 to July 1994. The current meter moorings 

sample the current velocity (speed and direction), 
temperature, and salinity every 5-min to 2-hour (mostly 
30 min). The drifting buoys record the location at various 
times with inhomogeneous area coverage.  The data were 
interpolated into a uniform temporal grid with time step 
of 3 hours. 
  
 Meteorological data are from 7 buoys (represented by 
squares in Fig. 6) from the National Data Buoy Center 
(C-MAN) in the LATEX-A area. Wang et al. (1998) 
have estimated the zero-crossing spatial scales of winds 
(~350 km) and other meteorological parameters over the 
TLCS shelf after analyzing extensively the 
meteorological data collected during the LATEX-A 
Program observation period. Since the scale of the 
atmospheric systems is larger than the scale of the 
continental shelf, the horizontal mean wind speed and 
direction from 7 buoys are used for analysis. 

 
Figure 6.   Geography and topography of Texas-Louisiana 
continental shelf, LATEX-A current meter stations 
(represented by the symbol ‘ • ’), and meteorological buoys 
(represented by the symbol ‘ , ’) (from Chu et al., 2005a). 
 
 Trajectories of 77 SCULP-I drifting buoys show 
current reversals during January 2-7, 1994 (Fig. 7). The 
OSD reconstructed horizontal velocity vector field shows 
dynamical characteristics of the synoptic current. The 
flow pattern on 30 December 1993 is characterized as a 
cyclonic gyre with a strong westward TLCS flow as the 
northern flank (Fig. 8a).  This current completely 
reverses to the east on 3 January 1994 (total reversal, 
Fig. 8b), and the cyclone re-occurs (6 January 1994) with 
the westward current at the north-central shelf and the 
eastward currents at the western shelf and shelf break 
(partial reversal, Fig. 8c).  The total reversal has a width 
up to 200-m isobath (depth for shelf break), and the 
partial reversal has a width smaller than 200-m isobath. 
During that period (30 December 1993 to 6 January 
1994), southwesterly winds prevail, and no evident 
offshore eddy appears at the shelf edge.  
 
    Recurrence of the TLCS current reversals is 
estimated using the OSD reconstructed velocity fields 
(230 days of duration). A period T (from 5 to 40 days) is 
selected as the time window. The number of total (or 
partial) reversals is counted in each T day window. Let 
(n0, n1, n2, …)  be the numbers of  0-current reversal, 1-
current reversal, 2-current reversals, and m be the all  
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realizations for a given T day window.  The probabilities 
for 0-, 1-, and 2-current reversals are calculated by 

            0
0 ( )

n
P T

m
= , 1

1 ( )
n

P T
m

= , 2
2 ( )

n
P T

m
= ,          (11) 

where P0(T), P1(T), and P2(T) depend on the period T 
(Fig. 5). With T larger than 20 days, the probability for 
zero current reversal is less than 0.2. With T of 15 days, 
the probability for one reversal reaches 0.5.  The 
probability Pk(T) is fitted to the Poisson distribution (Fig. 
9) 

     ( )1
( ) exp( )

!
k

kP T T T
k

μ μ= − ,  k = 0, 1, 2;           (12) 

where μ = 0.08 day-1  is the mean rate of current 
reversal. 

 
Figure 7. TLCS current reversals detected from SCULP-1 
buoy trajectories during January 2-7, 1994. The black dots 
show the starting positions of buoys (from Chu et al., 
2005a). 

 
Figure 8.  OSD reconstructed circulation: (a) cyclonic gyre 
on December 30, 1993,  (b) total reversal on January 3, 
1994 , and (c) partial reversal on January 6, 1994 (from 
Chu et al., 2005a). 

 
Figure 9.   Empirically (dashed curve) and theoretically 
(Poisson distribution, solid curve) estimated recurrence 
probabilities: (a) P0(T),  (b) P1(T), and  (c)  P2(T) as 
functions of duration T (from Chu et al., 2005a).  
 
 8. Conclusions  
 
 Without knowing the background field and 
decorrelation scale, the OSD method can process sparse 
and noisy data.  This method has three components: (1) 
determination of the basis functions,   (2) optimal mode 
truncation, and (3) determination of the Fourier 
coefficients. Determination of basis functions is to solve 
the eigen-value problem. Chu et al. (2003a, b) also 
developed a theory to obtain the basis functions with 
open boundaries. The basis functions are only dependent 
on the geometry of the ocean basin, not dependent on the 
oceanic variables. This is to say, no matter which 
variable (temperature, salinity, or velocity) is concerned, 
the basis functions are the same, and can be pre-
determined before the data analysis. For data without 
error, the more the modes, the more the accuracy of the 
processed field. For data with error, this rule of the 
thumb is no longer true. Inclusion of high-order modes 
leads to increasing error.  The Vapnik variational 
principal is used to determine the optimal mode 
truncation. After the mode truncation, optimal field 
estimation is to solve a set of a linear algebraic equation 
of the Fourier coefficients. This algebraic equation is 
usually ill-posed. The rotation method is employed to 
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change the matrix of the algebraic equation from ill-
posed to well-posed such that a realistic set of the 
Fourier coefficients are obtained.  The OSD method is a 
power tool to process temperature, salinity, and velocity 
data from Lagrangian and Eulerian, remotely sensed and 
in situ observed ocean data.  
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