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rily meshes. Moreover, this model can easily 
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NTRODUCTION 

rent schemes are available to solve partial 
quations numerically: (1) spectral or 
form, (2) finite difference, (3) finite 
(4) finite volume. Because of the lateral 
ith complicated shape, the ocean basin is 
uited to the spectral technique. Due to the 
adapting the grid locally to any desired 
 finite element method has been applied to 
 problems extensively such as tides and 
Foreman et al., 1993; Le Provost et al. 
3D baroclinic problems only in the recent 
nch et al., 1996). A principal problem of 

ppears to be the mass conservation. While 
onservation is assured, it may not conserve 
ly (Kantha and Clayson, 2000).  
 difference method that transforms the 
ntial equations into difference equations at 
commonly used in regional and basin-scale 
g. Let (x, y) and z represent the horizontal 
irections. Various finite difference models 
vertical coordinates such as z-coordinate 

1969), terrain following sigma (e.g., 
 Mellor, 1987) and s-coordinate (Song and 
94), and isopycnal coordinate (Bleck et al., 
lutions of the finite-difference models are 

 the grid points. For coastal oceans, the 
ce models usually use the terrain following 
ate and have large truncation errors at 

phy that is caused by horizontal pressure 
rs. Much work has been conducted to 
accuracy of the sigma-coordinate finite-

difference models (e.g., Gary, 1973; Beckman and 
Haidvogel, 1993; McCalpin, 1994; Mellor et al., 1994; 
Song and Wright, 1998a,b; Chu and Fan, 1997, 1998, 
1999, 2000, 2001, 2002). 
      The finite volume method that transforms the partial 
differential equations into integral equations at finite 
volumes has yet been popular in ocean modeling and 
simulation. However, the conservation is easily enforced 
even on arbitrary grids because the integral equations 
link the temporal variability of the dependent variables 
for the volume to the fluxes across the boundary of that 
volume (Kobayashi, 1999; Hermeline, 2000). This leads 
to the volume setup very flexible that makes the finite 
volume method invaluable especially in the abrupt 
topography. 
      In this paper, we present the formulation and 
preliminary test of the finite volume ocean model 
(VOM). The outline of this part is as follows: A 
description of the dynamic and thermodynamic integral 
equations is given in section 2. A depiction of the crystal 
finite volume, flux computation, and explicit finite 
volume scheme is given in sections 3, 4, and 5. The 
preliminary model test case is depicted in section 6. The 
comparison between the finite difference and finite 
volume methods is discussed in section 7. In section 8, 
the conclusions are presented. 
 

2. DYNAMIC AND THERMODYNAMIC 
INTEGRAL EQUATIONS 

 
      The model is established on the base of the two 
approximation: hydrostatic and anelastic. The anelastic 
approximation is to assume that the local time rate of 
change in density ( ρ ) is small; the continuity equation 
may be approximated by (Ogura and Phillips, 1962) 
  
                           ( ) 0.ρ∇ =Vi                                 (2.1) 
 
Here V = (u, v, w) is the velocity vector and ∇  is the 
three-dimensional gradient operator. The momentum 
equation is given by 
  

    
( )

( ) ( )p
t

ρ
ρ µ

∂
+ ∇ = −∇ + ∇ ∇ +

∂

V
VV V Fi i       (2.2a) 

 
where p is the pressure, µ  is the eddy viscosity. F 
contains Coriolis force and gravity. Let φ  be a scalar 
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representing temperature, salinity, satisfying the 
advection-diffusion equation 
  

                 ( ) ( ) F
t φ φ
φ

φ κ φ
∂

+ ∇ = ∇ ∇ +
∂

Vi i          (2.2b) 

 
where φκ  and Fφ  are the mixing coefficient and the 
source term for φ , respectively. The eddy viscosity and 
vertical mixing coefficients are determined using the 
level-2 turbulence closure (Mellor and Yamada, 1974). 
      Integration of (2.1) on a finite volume  (Fig. 1) 
leads to 

Ω

  
                  .                  (2.3) ( )dρ ρ

Ω Γ
∇ Ω =∫ ∫V Vi v dΓni

 
Integration of (2.2a) and (2.2b) leads to 

         
( )

d n
t

ρ
ρ

Ω Γ

∂
Ω + Γ

∂∫ ∫
V

VViv d  

                 ,   (2.4a) pd d dµ
Γ Γ Ω

= − Γ + ∇ Γ + Ω∫ ∫ ∫V n Fiv v
and  

         d n
t

φ
φ

Ω Γ

∂
Ω + Γ

∂∫ ∫ Viv d

φ Ω

 

                   ,                 (2.4b) d F dφκ φ
Γ Ω

= ∇ Γ +∫ ∫niv
  
where  is the boundary of  and n is the unit vector 
normal to  (outward positive).   

Γ Ω
Γ

 
Fig. 1. Description of a finite volume. Here (nx, ny, nz) are 
unit vectors normal to the surface of the volume. 
 
      The ocean circulation model written in the integral 
form has big advantage to construct conserved numerical 
schemes in terrain-following coordinate models. For 
example, regional oceanic (or atmospheric) prediction 
models usually use terrain-following sigma coordinates. 
The water column is divided into the same number of 
grid cells independence of depth. We restrict attention to 
two dimensions. Let (x, z) denote Cartesian coordinates 
and (x*, ) be the sigma coordinates. The conventional 

relationship between z- and sigma-coordinates is given 
by 

σ

             *,x x= ( *),z H xσ=                                     
(2.5)                                      
 
where z and increase vertically upward such that z = 

= 0 at the surface and ,  z =  -H at the bottom.  
The horizontal pressure gradient can be computed by 

σ
σ 1σ = −

           
*

* *

p p H

x x H x

σ
σ

∂ ∂ ∂ ∂
= −

∂ ∂ ∂ ∂

p
.                               (2.6)                      

Using finite difference schemes, the first term in (2.6) is 
easily written in a conservation form, but not the second 
term. This leads to “hydrostatic inconsistency” problem 
(Mesinger, 1984; Haney, 1991).  This problem will be 
gone when a finite volume ocean circulation model is 
used. 
      For a temporally varying finite volume, the time rate 
of change of the volume-integrated φ -value is computed 
by 
  

       d d
t t

φ
φ

Ω Ω

∂ ∂
Ω = Ω +

∂ ∂∫ ∫ t
φ

∂Ω

∂
.                      (2.7) 

 
Substitution of (2.7) into (2.4b) leads to 
  
 

       
.

d d
t t
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i
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                      (2.8) 

 
which is the basic equation for φ  (integral φ -equation). 
Time integration of (2.8) from t1 to t2 gives  

2 1

ˆ

ˆ( ) ( ) ( )

ˆ ˆ( ) ( ) ( )t

t d t d t t d

t t d t F t d t
tφ φ

φ φ φ

κ φ φ

Ω Ω Γ

Γ Ω

Ω − Ω = −∆ Γ

∂Ω
+∆ ∇ Γ + ∆ Ω + ∆

∂
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i

i

v
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                                                                                   (2.9) 
where , and t t . If t  = t2t t t∆ = −

ˆ
1 21

ˆ t≤ ≤ ˆ 1, the scheme 

is explicit; if t  = t2, the scheme is implicit.  To adjust  
may lead to a high-order temporal discrete scheme. The 
last term in the right-hand side of (2.9) represents the 
temporal volume change due to surface elevation 
fluctuation. Similarly, the time integration of (2.4a) can 
also be obtained. 

t̂

 
                  3. CRYSTAL VOLUME 
  
      Let (ex, ey) and  ez be the constant unit vectors in the 
horizontal and vertical, respectively. In VOM, the 
integration is over the boundary of a volume. The unit 
vectors for each finite volume may not be constant. The 
discretization is designed such that the four lateral 
boundaries are perpendicular to ex or ey (Fig. 1),   
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                        n                              (3.1) ,x x=n e ,y = e y

and the two vertical boundaries are not horizontal, and 
the normal unit vector on the vertical boundaries of a 
volume (nz) is determined by  

( ) ( ) ( )22/z x x y y z x yz z z z= − − + + +n n n e 1 . 

                                                                                   (3.2) 
where 

                      ,     .x y
z z

z
x y

z∂ ∂
=

∂ ∂
=  

Each finite volume looks like a crystal (Fig. 1), and 
therefore this scheme is named the finite crystal volume 
scheme. 
      Since the ocean surface changes with the time, any 
finite crystal volume also varies with time. The 
discretization in the horizontal directions  
 
                       ( ),     ( ),x x i y y j= =                        (3.3) 
 
is the same as the z-coordinate system, and vertical 
discretization  
 
                                                        (3.4) ( , , , )z z i j k t=
 
varies with the location (i, j) and time (t). To determine 
nz in a finite crystal volume enclosed by (xi, x i+1) in the x 
direction and by (yj, yj+1) in the y direction, a bi-linear 
interpolation is used to obtain the z-boundary for that 
crystal volume,  
 

1 1 1
11 12

1 1 1 1

1
21 22

1 1 1 1

( )( ) ( )(
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( )( ) ( )(

( )( ) ( )( )

( )( ) ( )( )

i j i

i i j j i i j j

i j i j

i i j j i i j j

x x y y x x y y
z x y z z

)

)
j

x x y y x x y y

x x y y x x y y
z z

x x y y x x y y

+ + +

+ + + +

+

+ + + +

− − − −
= +

− − − −

− − − −
+ +

− − − −
                                                                                    (3.5) 
where  
            11 , 12 , 1( ),   (i j i jz z x y z z x y += = ),

).+                      (3.6)

  
21 1, 22 1, 1( ),   (i j i jz z x y z z x y+ += =

Substitution of (3.6) into (3.2) determines the unit vector 
nz at (x i+1/2, y j+1/2), 
 

1/ 2 1/ 21/ 2 1/ 2

2 2 2 2

( ,( , )
cos ,   cos

1
,i ji j yx

x y

x y x y

z x yz x y

z z z z
θ θ + ++ += − = −

+ + + +

)

1

  
2 2

1
cos

1
z

x yz z
θ =

+ +
,                                            (3.7) 

where  
  1/ 2 1 1/ 2 1( ) / 2,   y ( )i i i j j jx x x y y+ + += + = +

are the horizontal coordinates of the center of  the 
horizontal cell.  
      Comparison among the crystal, z- and sigma-grid 
systems around a seamount (Fig. 2) shows the least 
distortion in the crystal system. The normal gradient of 
any variable φ  is calculated by 
  

   
( ) ( )22

1
.

x y

z
z x y

z z
z x y

n z z

φ φ φ
φ

φ
+ +

∂ ∂ ∂
− −

∂ ∂ ∂ ∂= ∇ =
∂

ni                    (3.8) 

 
Fig. 2. Comparison among z-coordinate, sigma-coordinate, 
and finite volume systems. 
 
 
              4. FLUX COMPUTATION 
  
      The surfaces perpendicular to (nx, ny, nz) are called 
the x-, y- and z-boundaries, respectively. In the basic 
equations (2.4a) and (2.4b), various fluxes across the 
boundaries of the finite crystal volume need to be 
computed. For the x-boundary, the fluxes of mass and 
tracer φ  are computed by 
 
 ,x

m xx boundary
f dρ ρ

−
= Γ =∫ V ni yzu S∆  

 ;x
xx boundary

f dφ φ φ
−

= Γ =∫ V ni yzu S∆        (4.1)  

 
the turbulent flux and pressure forces are computed by 
 
            ,x

x yx boundary
f dφ φ φ

−
= Γ =∫ V ni zu S∆

x

 

                                          (4.2) ,   0,x
x yz yP p S P= ∆ =

where ∆  is the area of the trapezoid of the x-
boundary.  

yzS

      For the y-boundary, the fluxes of mass and tracer φ  
are computed by 
 ,y

m yy boundary zxf dρ ρ
−

= Γ =∫ V ni v S∆  

 ;y
yy boundary

f dφ φ φ
−

= Γ =∫ V ni zxv S∆        (4.3)  

the turbulent flux and pressure forces are computed by / 2+             ,y
y zy boundary

f dφ φ φ
−

= Γ =∫ V ni xv S∆  
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                                             (4.4) ,   0,y
y zx yP p S P= ∆ =x

where  is the area of the trapezoid of the y-
boundary. 

zxS∆

       For the z-boundary, we have 
 

( )z
m z xz boundary

f d w uz vzρ ρ
−

= Γ = − −∫ V ni ,y xyS∆

( ,)z
z x yz boundary

f d w uz vzφ φ φ
−

= Γ = − −∫ V ni xyS∆  

( ,)z
z z x x y yz boundary

f d z zτ φ φκ κ φ φ φφ
−

= Γ = −∇ −∫ ni

,   ,z z
x x xy y y xyP pz S P pz S= − ∆ = − ∆

xyS∆

                    (4.5) 

where  is the area of the trapezoid of the z-
boundary. 

xyS∆

      It is noticed that the derivatives should be computed 
by  

 ,   ,x x y yz z
x z y

δ
z

φ δφ δφ δφ
φ φ

δ δ δ δ
= − = −  

               ,z z

δφ
φ

δ
=                                                    (4.6) 

where / ,  / ,x yδφ δ δφ δ and / zδφ δ  are computed 
directly from the grid point data. 
 

 5. EXPLICIT FINITE VOLUME SCHEME 
 
       The finite volume scheme for solving continuity 
equation (3) at (i, j, k) is  

           

1 1
( , , ) ( , , )

2 2
1 1

( , , ) ( , , )
2 2

1 1
( , , ) ( , , ) 0

2 2
.

x x
m m

y x
m m

z x
m m

f i j k f i j k

f i j k f i j k

f i j k f i j k

+ − −

+ + − −

+ + − − =

       (5.1) 

If  = tt̂ 1 in (2.9), the finite volume scheme is explicit. 
The scheme for solving (2.9) at (i, j, k) is given by  

 1
, , , , , ,

1 1
( ) ( , , ) ( ,

2 2
n n x x
i j k i j k i j k f i j k f i j kφ φφ φ+ − Ω = − − + , )  

1 1
( , , ) ( , , )

2 2
y yf i j k f i j kφ φ+ − − +  

1 1
( , , ) ( , , )

2 2
z zf i j k f i j kφ φ+ − − +  

1 1
( , , ) ( , ,

2 2
x xf i j k f i j kτ τ+ − − + )  

1 1
( , , ) ( , , )

2 2
y yf i j k f i j kτ τ+ − − +  

1 1
( , , ) ( , , )

2 2
z zf i j k f i j kτ τ+ − − +  

, , , ,( , , ) ( ) .i j k
n
i j kF i j k

t
t φ

∂Ω
+ Ω

∂
+ ∆                              (5.2) 

For ,uφ ρ=  the pressure gradient force can be separated 
from the forcing term, i.e., the following term (Pxterm) 
should be added into the right-hand side if the forcing 
term F(i, j, k) does not include the pressure gradient 
force,  

    
1 1

( , , ) ( , , )
2 2

x x
xterm x xP P i j k P i j= − − + k  

    
1 1

( , , ) ( , , ).
2 2

z z
x xP i j k P i j k+ − − +                          (5.3) 

 
For ,vφ ρ=  it should be  

1 1
( , , ) ( , , )

2 2
y y

yterm y yP P i j k P i j= − − + k  

    
1 1

( , , ) ( , , ).
2 2

z z
y yP i j k P i j k+ − − +                 (5.4)  

 
6. PRELIMINARY TEST 

  
      Usually, verification of a new numerical model 
should be divided into stages: (1) evaluating its own 
performance, and (2) identifying its difference from the 
existing models. Theoretically, the performance of any 
numerical ocean model should only be tested against 
analytical or known solutions. Coastal ocean hardly has 
any analytical solutions. Known solutions become 
important. Without atmospheric and lateral forcing, the 
ocean that is initially at rest should be at rest forever. 
Thus, we have the known solution (V = 0). The 
seamount test case (Beckmann and Haidvogel, 1993) is 
to use this known solution for model evaluation. 
      Several advanced test cases have been proposed to 
identify the model-model difference and the sensitivity to 
the choice of (say) advection algorithm, such as 
gravitational adjustment of density front, residual 
circulation over a coastal canyon, combined effects of 
topography and stratification (Haidvogel and Beckmann, 
1998). The second stage test should be conducted after 
the first stage test. In this paper, we only present the first 
stage evaluation using the seamount test case. 
      Since the horizontal pressure gradient error is a key 
issue in the sigma coordinate finite difference models, it 
is the first step to evaluate the value-added of the finite 
volume scheme for the horizontal pressure gradient. The 
Princeton Ocean Model (POM, Blumberg and Mellor, 
1987) is implemented for the seamount test case. Two 
experiments were conducted: (1) conventional POM (i.e., 
POM with the pressure gradient computed using the 
finite difference scheme), and (2) POM with the pressure 
gradient computed using the finite volume scheme. Both 
finite volume and finite difference schemes are second-
order. 
  
6.1. Description 
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      Suppose a seamount to be located inside a periodic f-
plane (f0 = 10-4s-1) channel with two solid, free-slip 
boundaries along constant y. Unforced flow over 
seamount in the presence of resting, level isopycnals is 
an idea test case for the assessment of pressure gradient 
errors in simulating stratified flow over topography. The 
flow is assumed to be reentrant (periodic) in the along 
channel coordinate (i.e., x-axis). This seamount case is 
chosen to test the performance of VOM. The time steps 
for barotropic and baroclinic modes are 6 s and 180 s, 
respectively. Variable horizontal grid is used with high 
resolution over the seamount, 
  

 ( ) 8 km 1 - 0.5sin ,  1, 2, ...,i
x

i
xx i M

M

π
∆ = =

  
    

 

     ( ) 8 km 1 - 0.5sin ,  j 1, 2, ...,j
y

j
y

M

π
∆ = =

  
  

  
yM  

 
where Mx = My = 64. The horizontal diffusivities are 
using the Smagorinsky form with the coefficient chosen 
to be 0.2 for this application. 
 
6.2 Topography 
      The domain is a periodic channel, 300 km long and 
300 km wide. The channel has a far-field depth hmax and 
in the center includes an isolated Gaussian-shape 
seamount with a width L and an amplitude hs (Fig. 3), 
  

 
2 2

0 0
max 2

( ) ( )
( , ) 1 0.9 exp

x x y y
y h

L

− + −
= − −

 
  

h x  



                                                                                (6.1) 
where (x0, y0) are the longitude and latitude of the 
seamount center. The far-field depth (hmax) is fixed as 
4,500 m. The lateral scale of the seamount (L) is set as 
25 km for the study. 
 
6.3. Initial Fields 
 
      Suppose that the background fluid is at rest and with 
a constant salinity (35 ppt) and an exponentially 
stratified initial temperature (unit: oC) 

( ) 5 15exp
T

z
T z

H
= +



 


 ,                                (6.2) 

 
where HT = 1000 m. Since the fluid is initially at rest and 
the density field is independent on x and y, without 
forcing the velocity and horizontal pressure gradient 
should be zero. Any nonzero velocities are 
computational errors. 

 
Fig. 3. Seamount geometry. 

7. COMPARISON BETWEEN FINITE 
DIFFERENCE AND FINITE VOLUME SCHEMES  

  
7.1. Temporal Variations of Error Volume Transport 
      Both cases are integrated for 20 days for the standard 
test. Figure 4 displays errors in the streamfunction after 
performing 5, 10, 15, and 20 days of integration using 
the finite volume and finite difference schemes. The 
volume transport streamfunction has a large-scale eight-
lobe pattern centered on the seamount. The errors in the 
volume transport reduce more than 50% from finite 
difference to finite volume schemes. For example, on the 
20th day, the errors in the volume transport varies from 
56 to 84 × 10-3 Sv using the finite difference scheme and 
from -28 to 45.5 10× -3 Sv using the finite volume 
scheme.  
 
7.2. Temporal Variations of Pressure Gradient Error 
  
      Owing to a very large number of calculations 
performed, we discuss the results exclusively in terms of 
the maximum and spatially averaged absolute values of 
the horizontal pressure gradient errors, called the 
maximum pressure gradient error (PGmax) and the mean 
pressure gradient error (PGm). Figure 5a and 5b show the 
time evolution of PGmax  and  PGm for the first 20 days of 
integration using the finite difference and finite volume 
schemes. Both errors increase with time, however, they 
are 10-15 times smaller using the finite volume scheme 
than using the finite difference scheme. For example, at 
Day-10, PGmax = 33.42 × 10-9 N/m3 using the finite 
difference scheme and PGmax = 2.16 × 10-9 N/m3 using 
the finite volume scheme;  PGm=0.449 × 10-9 N/m3 using 
the finite difference scheme and PGm = 0.04 × 10-9 N/m3 
using the finite volume scheme; at Day-20, PGmax = 
58.41 10× -9 N/m3  using the finite difference scheme and 
PGmax = 4.18 × 10-9 N/m3 using the finite volume 
scheme; PGm =1.596 10× -9 N/m3 using the finite 
difference scheme and PGm = 0.150 × 10-9 N/m3  using 
the finite volume scheme. 
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Fig. 4. Volume transport streamfunction (Sv) at day-5, -10, 
-15, and -20 using the finite difference and finite volume 
schemes. 
7.3. Temporal Variations of Error Velocity 
  
      Owing to a very large number of calculations 
performed, we discuss the results exclusively in terms of 
the maximum and spatially averaged absolute values of  
the spurious velocity generated by the pressure gradient 
errors, called the peak error velocity (Vp) and the mean 
error velocity (Vm). Figures 5c and 5d shows the time 
evolution of the mean and peak error velocity for the first 
20 days of integration using the finite difference and 
finite volume schemes. Both peak and mean error 
velocities increase with time, however, they are 4 times 
smaller using the finite volume scheme than using the 
finite difference scheme. For example, at Day-10, Vp = 

2.61 cm/s using the finite difference scheme and Vp = 
0.57cm/s using the finite volume scheme;  Vm = 0.054 
cm/s using the finite difference scheme and Vm = 0.015$ 
cm/s using the finite volume scheme; at Day-20, Vp = 
4.25 cm/s using the finite difference scheme and Vp = 
0.98 cm/s using the finite volume scheme; Vm = 1.033 
cm/s using the finite difference scheme and Vm = 0.028 
cm/s using the finite volume scheme. 
  

8. SENSITIVITY STUDY ON TOPOGRAPHY 
 
     One of the difficult problems in shallow water 
modeling is the uncertainty of the open boundary 
condition (OBC). At open boundaries where the 
numerical grid ends, the fluid motion should be 
unrestricted. Ideal open boundaries are transparent to 
motions. Two approaches, local-type and inverse-type, 
are available for determining OBC (Chu and Fan, 2001)  
with low-order conditions. Before converting any ocean 
model from second-order scheme to sixth-order scheme, 
it is important to verify if a high-order interior plus low-
order boundary conditions (such as open boundary 
conditions) would degrade the interior solution. Consider 
a horizontally homogeneous and stably stratified coastal 
ocean with a longitudinal and straight coastline and three 
open boundaries in the south (20oN), the north (33.5oN), 
and the east (x = xE = 320 km). Choose coordinates so 
that the y-axis coincides with the coast, positive x 
pointing offshore. 
 

 
Fig. 5. Comparison between the finite difference and finite 
volume schemes on temporal variations of (a) maximum 
pressure gradient error (N/m3), (b) mean pressure gradient 
error (N/m3), (c) peak error velocity (m/s), and (d) mean 
error velocity (m/s). 
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      The coastal water is divided into three parts (Fig. 6): 
shelf ( 0 0x x≤ ≤ ), slope ( 0 1x x x≤< ), and deep water 

( 1 Ex x x≤

θ

< ). Here, the water depth (h) is only a 
function of offshore distance x.  Analytical bottom 
topography (Fig. 6) is proposed such that shelf and slope 
are arcs of two circles. The shelf has a smaller radius (r), 
and the slope has a larger radius (R). The two arcs are 
connected in such a way that tangent of the bottom 
topography, dh/dx, is continuous at the shelf break (x = 
x0). This requirement is met using the same expanding 
angle ( , maximum slope angle) for both arcs, which is 
determined by 
               ( ) (1 cos / ) .H r Rθ− = +                          (8.1) 
Off-shore distance (x), vertical coordinate (z), and water 
depth (h), and (r, R) are non-dimensionalized by 

( ) .ˆ ˆˆ ˆ ˆˆ,   ,   ,   ,  
x z h r

x z h x r R
R

H H H H
= = = = =

H
   (8.2) 

  
The analytical bottom topography is given by,  
  

( ) ( )

2 2
0

2
1 0

1

2

ˆ ˆ ˆ ˆ ˆ,     if    

ˆ ˆ ˆˆ ˆ ˆ1 ,   if

ˆ ˆ1,                         if    

ˆ ˆ 

r r x x x

h x R R x x

x x
1ˆx x x=

− − ≤

− + − −

>


 < ≤



 

                                                                                 (8.3) 
Using the shelf-to-slope ratio, k = r/R, the non-
dimensional parameters in (8.3) are given by   

 
( ) ( ) ( ) ( )

1ˆˆ ,   ,
1 1 cos 1 1 cos

k
r R

k kθ θ
= =

+ − + −
  

( ) ( )0

sin
ˆ ˆ sin ,

1 1 cos

k
x r

k

θ
θ

θ
⋅

= =
+ −

( )

 

1

sinˆˆ ˆ sin
1 cos

x r R
θ

θ
θ

= + ⋅ =
−

.                           (8.4) 

Thus, the nondimensional topography (8.3) has 2 degrees 
of freedom (k, ). The larger the angle , the steeper 
the topography is; the large the value of k, the longer the 
shelf is.  Various types of topography (Fig. 7) can be 
modeled with changing values of (k, ). In this study, 

varies from 5

θ θ

θ
θ o to 90o and k changes from 0.05 to 1.0.     
      For a horizontally uniform density field,  
 
               (8.5)  (3 2 /1025 kg/m   1 0.005 1 ,z Heρ = + −  )
the horizontal pressure gradient should be zero. Any 
nonzero values of the horizontal pressure gradient are 
computational errors.  Figure 8 shows that the finite-
volume integration scheme (denoted by HPI scheme) has 
much smaller errors than the finite difference schemes. It 

is also noted that the pressure gradient error increases 
rapidly as  increase, and decrease slowly as k increase. θ
 

 
Fig. 6. Coastal geometry with open boundaries.  
 

 
Fig. 7. Topography with various values of (k, ). θ
       
9. CONCLUSIONS 
  
(1) A three-dimensional, finite volume ocean circulation 
model has been developed. The basic equations are 
transformed from differential into integral forms using 
the hydrostatic and anelastic approximations and solved 
for finite volumes (rather than grid points) with the flux 
conservation enforced on arbitrarily meshes. This model 
has great flexibility in establishing model grids. 
  
(2) A crystal grid discretization is proposed such that the 
four lateral surfaces are perpendicular to two horizontal 
(x, y) axes; and the two surfaces in the vertical follow the 
ocean surface and bottom. Such a grid system reveals a 
superior feature than both z- and sigma-coordinate 
systems over abrupt bottom topography. 
  
(3) Seamount test case is the first step to show the value-
added of using finite volume scheme. The finite volume 
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scheme leads to a drastic error reduction comparing to 
the second-order finite difference scheme using POM.   
  
(4) It is noticed that the seamount test case presented 
here is preliminary. More cases should be conducted in 
the future for testing the difference between VOM and 
the existing ocean models using gravitational adjustment 
of a density front, residual circulation over a coastal 
canyon, and combined effects of topography and 
stratification. 
 

 
Fig. 8. Comparison between finite-volume scheme (HPI) 
and three finite difference schemes (P-DJ, CD, and CCD) 
for various k and . θ
 
ACKNOWLEDGMENTS 
      This work was funded by the Office of Naval 
Research, the Naval Oceanographic Office, and the 
Naval Postgraduate School. 
  
REFERENCES 
 
[1] Bleck, R., C. Roothe, D. Hu, and L. Smith, 1992: Salinity-
driven thermocline transients in a wind- and thermohaline-
forced isopycnal coordinate model of the North Atlantic. J. 
Phys. Oceanogr., 22, 1486-1505.  
 
[2] Blumberg, A.F., and G.L. Mellor, 1987: A description of a 
three-dimensional coastal ocean circulation model. In: Three-
Dimensional Coastal Ocean Models (edited by N. Heaps), pp. 
1-16, Amer. Geophys. Union, Washington D.C.. 
 
[3] Bryan, K., 1969: A numerical model for the study of the 
circulation of the world oceans. J. Comput. Phys., 4, 347-359. 

 
[4] Chu, P.C., and C.W. Fan, 1997: Sixth-order difference 
scheme for sigma-coordinate ocean models. J. Phys. Oceanogr, 
27, 2064-2071. 
 
[5] Chu, P.C., and C.W. Fan, 1998: A three-point combined 
compact difference scheme. J. Comput. Phys., 140, 370-399. 
 
[6] Chu, P.C., and C.W. Fan, 1999: A three-point sixth-order 
nonuniform combined compact difference scheme. J. Comput. 
Phys., 149, 1-12. 
 
[7] Chu, P.C., and C.W. Fan, 2000: A three-point sixth-order 
staggered combined compact difference scheme. Math & 
Computer Modeling, 32, 323-340. 
 
[8] Chu, P.C., and C.W. Fan, 2001: An accuracy progressive 
sixth-order finite difference scheme. J. Atmos. Oceanic 
Technol., 18, 1245-1257. 
 
[9] Chu, P.C., and C.W. Fan, 2002: Hydrostatic consistency in 
sigma coordinate ocean models. Geophys. Res. Let., submitted.  
 
[10] Ezer, T., H. Arango, A.F. Shchepetkin, Developments in 
terrain-following ocean models: intercomparisons of numerical 
aspects. Ocean Modelling, 4, 249-267, 2002. 
 
[11] Foreman, M.G.G., R.F. Henry, R.A. Walters, and V.A. 
Ballantyne, 1993: A finite element model for tides and 
resonance along the north coast of British Columbia. J. 
Geophys. Res., 98, 2509-2532. 
 
[12] Haidvogel, D.B., and A. Beckmann, 1997: Numerical 
modeling of the coastal ocean. The Sea (edited by K.H. Brink 
and A.R. Robinson), Vol 10, pp. 457-482, Wiley, New York. 
 
[13] Hermeline, F. 2000: A finite volume method for the 
approximation of diffusion operators on distorted meshes. J. 
Comput. Phys., 160, 481-499. 
 
[14] Kantha, L.H., and C.A. Clayson, 2000: Numerical Models 
of Oceans and Oceanic Processes. Academic Press, San Diego, 
940pp. 
 
[15] Kobayashi, M.H., 1999: On a class of Pade finite volume 
methods. J. Comput. Phys., 156, 137-180. 
 
[16] Le Provost, C., M.L. Genco, F. Lyard, P. Vincent, and P. 
Canceil, 1994: Spectroscopy of the world tides from a finite 
element hydrodynamic model. J. Geophys. Res., 99, 24777-
24797. 
 
[17] Lynch, D.R., J.T.C. Ip, C.E. Naimie, and F.E. Werner, 
1996: Comprehensive coastal circulation model with 
application to the Gulf of Maine. Cont. Shelf Res., 16, 875-906. 
 
[18] Mellor, G.L., T. Ezer, and L.-Y. Oey, 1994: The pressure 
gradient conundrum of sigma coordinate ocean models. J. 
Atmos. Oceanic Technol., 11, 1 126-1 134. 
[19] Ogura, Y. and N.A. Phillips, 1962: Scale analysis of deep 
and shallow convection in the atmosphere. J. Atmos. Sci., 19, 
173-179. 
 
[20] Song, Y. and D.B. Haidvogel, 1994: A semi-implicit 
ocean circulation model using a generalized topography-
following coordinate. J. Comput. Phys., 115, 228-244.  

 8


