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Abstract- A three dimensional finite volume ocean
circulation model with a free surface is presented. The basic
equations are transformed from differential into integral
forms using the hydrostatic and anelastic approximations.
The integral equations are solved for finite volumes (rather
than grid points) with the flux conservation easily enforced
even on arbitrarily meshes. Moreover, this model can easily
incorporate the upwind scheme to increase the
computational stability and the high-order combine
compact schemes to enhance the accuracy. For abrupt
topography, a crystal grid discretization is designed to
reduce computational errors such that the four lateral
boundaries of each finite volume are perpendicular to x and
y axes, and the two vertical boundaries are not purely
horizontal. This grid system reveals a superior feature than
z- and sigma coordinate systems. The accuracy of this
model was tested by the standard seamount test case.

1. INTRODUCTION

Four different schemes are available to solve partial
differential equations numerically: (1) spectral or
spectral transform, (2) finite difference, (3) finite
element, and (4) finite volume. Because of the lateral
boundaries with complicated shape, the ocean basin is
inherently ill suited to the spectral technique. Due to the
flexibility in adapting the grid locally to any desired
resolution, the finite element method has been applied to
2D barotropic problems extensively such as tides and
storm surge (Foreman et al., 1993; Le Provost et al.
1994), and to 3D baroclinic problems only in the recent
years (e.g., Lynch et al., 1996). A principal problem of
this method appears to be the mass conservation. While
globally this conservation is assured, it may not conserve
the mass locally (Kantha and Clayson, 2000).

The finite difference method that transforms the
partial differential equations into difference equations at
grid points is commonly used in regional and basin-scale
ocean modeling. Let (x, y) and z represent the horizontal
and vertical directions. Various finite difference models
use different vertical coordinates such as z-coordinate
(e.g., Bryan, 1969), terrain following sigma (e.g.,
Blumberg and Mellor, 1987) and s-coordinate (Song and
Haidvogel, 1994), and isopycnal coordinate (Bleck et al.,
1992). The solutions of the finite-difference models are
valid only at the grid points. For coastal oceans, the
finite-difference models usually use the terrain following
sigma coordinate and have large truncation errors at
steep topography that is caused by horizontal pressure
gradient errors. Much work has been conducted to
improve the accuracy of the sigma-coordinate finite-

difference models (e.g., Gary, 1973; Beckman and
Haidvogel, 1993; McCalpin, 1994; Mellor et al., 1994;
Song and Wright, 1998a,b; Chu and Fan, 1997, 1998,
1999, 2000, 2001, 2002).

The finite volume method that transforms the partial
differential equations into integral equations at finite
volumes has yet been popular in ocean modeling and
simulation. However, the conservation is easily enforced
even on arbitrary grids because the integral equations
link the temporal variability of the dependent variables
for the volume to the fluxes across the boundary of that
volume (Kobayashi, 1999; Hermeline, 2000). This leads
to the volume setup very flexible that makes the finite
volume method invaluable especially in the abrupt
topography.

In this paper, we present the formulation and
preliminary test of the finite volume ocean model
(VOM). The outline of this part is as follows: A
description of the dynamic and thermodynamic integral
equations is given in section 2. A depiction of the crystal
finite volume, flux computation, and explicit finite
volume scheme is given in sections 3, 4, and 5. The
preliminary model test case is depicted in section 6. The
comparison between the finite difference and finite
volume methods is discussed in section 7. In section §,
the conclusions are presented.

2. DYNAMIC AND THERMODYNAMIC
INTEGRAL EQUATIONS

The model is established on the base of the two
approximation: hydrostatic and anelastic. The anelastic
approximation is to assume that the local time rate of
change in density ( 0 ) is small; the continuity equation

may be approximated by (Ogura and Phillips, 1962)

Oe(pV) = 0. Q.1

Here V = (u, v, w) is the velocity vector and O is the
three-dimensional gradient operator. The momentum
equation is given by

9(pV)
ot

+0(pVV) = -Op + Oe(uOV) +F  (2.22)

where p is the pressure, 4 is the eddy viscosity. F
contains Coriolis force and gravity. Let @ be a scalar



representing temperature, salinity, satisfying the
advection-diffusion equation

b)
a—w + (V) = Oe(k, @) + F,  (2.2b)
t

where Ky and F, are the mixing coefficient and the

source term for @, respectively. The eddy viscosity and

vertical mixing coefficients are determined using the
level-2 turbulence closure (Mellor and Yamada, 1974).

Integration of (2.1) on a finite volume Q (Fig. 1)
leads to

O-(pV)®R = pVendr . 2.3)
I, 9,

Integration of (2.2a) and (2.2b) leads to

j Mdg + g[>r PVVendl

—gSr pdl +§ pOVendrl + [ FdQ. (2.4a)

and
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where ' is the boundary of Q and n is the unit vector
normal to [ (outward positive).
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Fig. 1. Description of a finite volume. Here (ny, ny, n,) are
unit vectors normal to the surface of the volume.

The ocean circulation model written in the integral
form has big advantage to construct conserved numerical
schemes in terrain-following coordinate models. For
example, regional oceanic (or atmospheric) prediction
models usually use terrain-following sigma coordinates.
The water column is divided into the same number of
grid cells independence of depth. We restrict attention to
two dimensions. Let (x, z) denote Cartesian coordinates
and (x*, o) be the sigma coordinates. The conventional

relationship between z- and sigma-coordinates is given
by

x =x* z=0H(x¥),
(2.5)

where z and 0 increase vertically upward such that z =
o = 0 at the surface and g = -1, z = -H at the bottom.
The horizontal pressure gradient can be computed by

op Oop* o 0H 9

xr_r =X 2.6)
Ox Ox* HOx*0do

Using finite difference schemes, the first term in (2.6) is
easily written in a conservation form, but not the second
term. This leads to “hydrostatic inconsistency” problem
(Mesinger, 1984; Haney, 1991). This problem will be
gone when a finite volume ocean circulation model is
used.

For a temporally varying finite volume, the time rate
of change of the volume-integrated @-value is computed

by

Q= 9 dQ + 2 2.7
S [0 =m0+ p—. @)

Substitution of (2.7) into (2.4b) leads to
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which is the basic equation for ¢ (integral @-equation).
Time integration of (2.8) from ¢, to ¢, gives

[ @t)a0 | at)a0 = -e gti)vendr
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where At =t -1t ,and ¢ .If ¢ = #, the scheme

is explicit; if 7 = #,, the scheme is implicit. To adjust 7
may lead to a high-order temporal discrete scheme. The
last term in the right-hand side of (2.9) represents the
temporal volume change due to surface elevation
fluctuation. Similarly, the time integration of (2.4a) can
also be obtained.

3. CRYSTAL VOLUME

Let (e,, e,) and e. be the constant unit vectors in the
horizontal and wvertical, respectively. In VOM, the
integration is over the boundary of a volume. The unit
vectors for each finite volume may not be constant. The
discretization is designed such that the four lateral
boundaries are perpendicular to e, or e, (Fig. 1),



n =e n, e, (3.1)

and the two vertical boundaries are not horizontal, and
the normal unit vector on the vertical boundaries of a
volume (n,) is determined by

n_ = (_anx —z,n, +ez)/\/(zx)2 +(Zy)2 +1.

where

(3.2)

Each finite volume looks like a crystal (Fig. 1), and
therefore this scheme is named the finite crystal volume
scheme.

Since the ocean surface changes with the time, any

finite crystal volume also varies with time. The
discretization in the horizontal directions
x=x(), y=y()), (3.3)

is the same as the z-coordinate system, and vertical
discretization

z =20, k1) (3.4)

varies with the location (7, j) and time (t). To determine
n, in a finite crystal volume enclosed by (x;, X ;+1) in the x
direction and by (yj, yj+1) in the y direction, a bi-linear
interpolation is used to obtain the z-boundary for that
crystal volume,
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where
n = Z(xi’yj.), Z, = Z(xi)yj+] )s
Zy = Z(xi+1,yj ) Zyy = Z(xi+1,yj+1)- (3.6)

Substitution of (3.6) into (3.2) determines the unit vector
n; at (x 412, ¥ j+112)5

Zx(xi+1/2’yj+l/2) cos@ = _Zy(xi+l/2’yj+l/2) ’
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cosd = -

cosd, = ﬁ, (3.7)
A z, +Zy
where
X = 42,072, Y 0, =0+ ,,0)/2

are the horizontal coordinates of the center of the
horizontal cell.

Comparison among the crystal, z- and sigma-grid
systems around a seamount (Fig. 2) shows the least
distortion in the crystal system. The normal gradient of
any variable @ is calculated by

dp dp  O0¢

— — - Z
d * y
99 npn, =% % ¥ (3.8)
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Fig. 2. Comparison among z-coordinate, sigma-coordinate,
and finite volume systems.

4. FLUX COMPUTATION

The surfaces perpendicular to (n,, n,, n) are called
the x-, y- and z-boundaries, respectively. In the basic
equations (2.4a) and (2.4b), various fluxes across the
boundaries of the finite crystal volume need to be
computed. For the x-boundary, the fluxes of mass and
tracer @ are computed by

fr= pVen dT = pubS,

T

x—boundary

QVendl =S ;. (41)

x—boundary

the turbulent flux and pressure forces are computed by

f¢’ = x—boundary ¢V.nxdr = @ASJ’Z’
PY= s, P =0, (42)

where ASyZ is the area of the trapezoid of the x-

boundary.
For the y-boundary, the fluxes of mass and tracer @

are computed by

fl=

y—boundary

v — . — WAS -

fw - J‘y—boundary oV Ilyd r (DVASZX ’

the turbulent flux and pressure forces are computed by
f(py = Ven dl" = @AS,_,

pVen dl = pyAS,..

(4.3)

j y—boundary



D R
P} =pAS,., P’ =0, (4.4)

where AS,  is the area of the trapezoid of the y-

boundary.
For the z-boundary, we have

f’; = ovVen dlr = p(w—uz, —VZy)ASxy,

J. z—boundary

= J.z—boundary ¢V'ﬂzd r= ¢(W U VZ)’ )ASXy ’

fTZ = J.z—boundary KgaD ¢.nzd r = K¢(¢z - WXZX_ ¢yzy )ASxy >

Pl =-pzAS . Pl =-pz AS,, (4.5)

xy?
where ASxy is the area of the trapezoid of the z-

boundary.
It is noticed that the derivatives should be computed

by

@ =—, (4.6)

where 0@/ 0x, dp/dy,and O@/Sz are computed
directly from the grid point data.

5. EXPLICIT FINITE VOLUME SCHEME

The finite volume scheme for solving continuity
equation (3) at (i, j, k) is

vl v Lo
S GF— k) = £, (G ==, . K)
2 2
v ] w1
G j = k)= [, (] ==, k) G.D
2 2
EOT v,
gk +—) = f, (4, ),k ——) = 0.
2 2

If { =t in (2.9), the finite volume scheme is explicit.
The scheme for solving (2.9) at (i, J, k) is given by
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Q
+F(ia jﬂk)Qi,j‘k + N(¢E)i’j’k. (52)

For ¢ = pu, the pressure gradient force can be separated
from the forcing term, i.e., the following term (Pyem)
should be added into the right-hand side if the forcing
term F(i, j, k) does not include the pressure gradient
force,

P

xterm

1 1
=P'(i-—,j.k)=P (i +—,jk)
’ 2 2
. 1. 1
+P (i, j.k ==) = P_(i, j.k +—). (53)
2 2

For ¢ = pv, it should be

yo.o 1 yo.oo 1
P =P (i,j——,k)-P (i,j+—,k)
7 2 d 2

yterm
V4 1 V4 1
+P (i, j,k =—) = P (i, j,k +—). (5-4)
g 2 7 2

6. PRELIMINARY TEST

Usually, verification of a new numerical model
should be divided into stages: (1) evaluating its own
performance, and (2) identifying its difference from the
existing models. Theoretically, the performance of any
numerical ocean model should only be tested against
analytical or known solutions. Coastal ocean hardly has
any analytical solutions. Known solutions become
important. Without atmospheric and lateral forcing, the
ocean that is initially at rest should be at rest forever.
Thus, we have the known solution (V = 0). The
seamount test case (Beckmann and Haidvogel, 1993) is
to use this known solution for model evaluation.

Several advanced test cases have been proposed to
identify the model-model difference and the sensitivity to
the choice of (say) advection algorithm, such as
gravitational adjustment of density front, residual
circulation over a coastal canyon, combined effects of
topography and stratification (Haidvogel and Beckmann,
1998). The second stage test should be conducted after
the first stage test. In this paper, we only present the first
stage evaluation using the seamount test case.

Since the horizontal pressure gradient error is a key
issue in the sigma coordinate finite difference models, it
is the first step to evaluate the value-added of the finite
volume scheme for the horizontal pressure gradient. The
Princeton Ocean Model (POM, Blumberg and Mellor,
1987) is implemented for the seamount test case. Two
experiments were conducted: (1) conventional POM (i.e.,
POM with the pressure gradient computed using the
finite difference scheme), and (2) POM with the pressure
gradient computed using the finite volume scheme. Both
finite volume and finite difference schemes are second-
order.

6.1. Description



Suppose a seamount to be located inside a periodic f-
plane (fy = 10s™) channel with two solid, free-slip
boundaries along constant y. Unforced flow over
seamount in the presence of resting, level isopycnals is
an idea test case for the assessment of pressure gradient
errors in simulating stratified flow over topography. The
flow is assumed to be reentrant (periodic) in the along
channel coordinate (i.e., x-axis). This seamount case is
chosen to test the performance of VOM. The time steps
for barotropic and baroclinic modes are 6 s and 180 s,
respectively. Variable horizontal grid is used with high
resolution over the seamount,

| 7T
(Ax), =8 km {1 -0.5sin[’—ﬂ, =12, M,
Mx

T
(Ay)].ZSkm 1-0.5sin M_ ,J=L2,.,M,
¥

where M, = M, = 64. The horizontal diffusivities are
using the Smagorinsky form with the coefficient chosen
to be 0.2 for this application.

6.2 Topography

The domain is a periodic channel, 300 km long and
300 km wide. The channel has a far-field depth hy,,, and
in the center includes an isolated Gaussian-shape
seamount with a width L and an amplitude h, (Fig. 3),

(x=x)" +(y = ¥,) }}

2

h(x,y) =h,. {1 -09 exp[—
L

(6.1)
where (xo, )o) are the longitude and latitude of the
seamount center. The far-field depth (/) is fixed as
4,500 m. The lateral scale of the seamount (L) is set as
25 km for the study.

6.3. Initial Fields

Suppose that the background fluid is at rest and with
a constant salinity (35 ppt) and an exponentially
stratified initial temperature (unit: °C)

T(z)=5+15exp (LJ : (62)
H

T

where Hy = 1000 m. Since the fluid is initially at rest and
the density field is independent on x and y, without
forcing the velocity and horizontal pressure gradient
should be zero. Any nonzero velocities are
computational errors.

Fig. 3. Seamount geometry.
7. COMPARISON BETWEEN FINITE
DIFFERENCE AND FINITE VOLUME SCHEMES

7.1. Temporal Variations of Error Volume Transport

Both cases are integrated for 20 days for the standard
test. Figure 4 displays errors in the streamfunction after
performing 5, 10, 15, and 20 days of integration using
the finite volume and finite difference schemes. The
volume transport streamfunction has a large-scale eight-
lobe pattern centered on the seamount. The errors in the
volume transport reduce more than 50% from finite
difference to finite volume schemes. For example, on the
20th day, the errors in the volume transport varies from
56 to 84 % 10™ Sv using the finite difference scheme and
from -28 to 45.5x 107 Sv using the finite volume
scheme.

7.2. Temporal Variations of Pressure Gradient Error

Owing to a very large number of calculations
performed, we discuss the results exclusively in terms of
the maximum and spatially averaged absolute values of
the horizontal pressure gradient errors, called the
maximum pressure gradient error (PGy,.c) and the mean
pressure gradient error (PG,,). Figure 5a and 5b show the
time evolution of PG, and PG, for the first 20 days of
integration using the finite difference and finite volume
schemes. Both errors increase with time, however, they
are 10-15 times smaller using the finite volume scheme
than using the finite difference scheme. For example, at
Day-10, PG = 33.42%10° N/m’ using the finite
difference scheme and PG, = 2.16x10” N/m’ using
the finite volume scheme; PG,,=0.449 x 10° N/m’ using
the finite difference scheme and PG,, = 0.04 x 10” N/m’
using the finite volume scheme; at Day-20, PG.x =
58.41x10° N/m’ using the finite difference scheme and
PG, = 4.18 x10° N/m’ using the finite volume
scheme; PG, =1.596x10° N/m’ using the finite
difference scheme and PGy, = 0.150x 10” N/m’ using
the finite volume scheme.



Fig. 4. Volume transport streamfunction (Sv) at day-5, -10,
-15, and -20 using the finite difference and finite volume
schemes.

7.3. Temporal Variations of Error Velocity

Owing to a very large number of calculations
performed, we discuss the results exclusively in terms of
the maximum and spatially averaged absolute values of
the spurious velocity generated by the pressure gradient
errors, called the peak error velocity (V,) and the mean
error velocity (Vy,). Figures S5c and 5d shows the time
evolution of the mean and peak error velocity for the first
20 days of integration using the finite difference and
finite volume schemes. Both peak and mean error
velocities increase with time, however, they are 4 times
smaller using the finite volume scheme than using the
finite difference scheme. For example, at Day-10, V, =

2.61 cm/s using the finite difference scheme and V, =
0.57cm/s using the finite volume scheme; V,, = 0.054
cm/s using the finite difference scheme and V,, = 0.015$
cm/s using the finite volume scheme; at Day-20, V, =
4.25 cm/s using the finite difference scheme and V, =
0.98 cm/s using the finite volume scheme; V,,, = 1.033
cm/s using the finite difference scheme and V,, = 0.028
cm/s using the finite volume scheme.

8. SENSITIVITY STUDY ON TOPOGRAPHY

One of the difficult problems in shallow water
modeling is the uncertainty of the open boundary
condition (OBC). At open boundaries where the
numerical grid ends, the fluid motion should be
unrestricted. Ideal open boundaries are transparent to
motions. Two approaches, local-type and inverse-type,
are available for determining OBC (Chu and Fan, 2001)
with low-order conditions. Before converting any ocean
model from second-order scheme to sixth-order scheme,
it is important to verify if a high-order interior plus low-
order boundary conditions (such as open boundary
conditions) would degrade the interior solution. Consider
a horizontally homogeneous and stably stratified coastal
ocean with a longitudinal and straight coastline and three
open boundaries in the south (20°N), the north (33.5°N),
and the east (x = xg = 320 km). Choose coordinates so
that the y-axis coincides with the coast, positive x
pointing offshore.
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Fig. 5. Comparison between the finite difference and finite
volume schemes on temporal variations of (a) maximum
pressure gradient error (N/m’), (b) mean pressure gradient
error (N/m’), (c) peak error velocity (m/s), and (d) mean
error velocity (m/s).



The coastal water is divided into three parts (Fig. 6):
shelf (0 < x < x)), slope (x, <x < x,), and deep water

(x, <x<xg). Here, the water depth (#) is only a

function of offshore distance x. Analytical bottom
topography (Fig. 6) is proposed such that shelf and slope
are arcs of two circles. The shelf has a smaller radius (7),
and the slope has a larger radius (R). The two arcs are
connected in such a way that tangent of the bottom
topography, di/dx, is continuous at the shelf break (x =
Xo). This requirement is met using the same expanding
angle (@, maximum slope angle) for both arcs, which is
determined by

(1-cos8) =H/(r+R). (8.1)
Off-shore distance (x), vertical coordinate (z), and water
depth (), and (r, R) are non-dimensionalized by
N 16 P

H H H

(8.2)

The analytical bottom topography is given by,

(8.3)
Using the shelf-to-slope ratio, £ = r/R, the non-
dimensional parameters in (8.3) are given by

k . 1
;= , R= ,
") (1-c0s8)” T (1+£)(1-cos0)
. k [$in @
X, =rsinf = ,
(1+%)(1-cos8)
sind

i =(F+R)Bing = . (8.4)
1-cos@
Thus, the nondimensional topography (8.3) has 2 degrees
of freedom (k, @). The larger the angle &, the steeper
the topography is; the large the value of £, the longer the
shelf is. Various types of topography (Fig. 7) can be
modeled with changing values of (k, ). In this study,
@ varies from 5°to 90° and k changes from 0.05 to 1.0.

For a horizontally uniform density field,

p=1025kgm’ [1+0.005(1-¢"")], (8.5)

the horizontal pressure gradient should be zero. Any
nonzero values of the horizontal pressure gradient are
computational errors. Figure 8 shows that the finite-
volume integration scheme (denoted by HPI scheme) has
much smaller errors than the finite difference schemes. It

is also noted that the pressure gradient error increases
rapidly as @ increase, and decrease slowly as & increase.

Fig. 6. Coastal geometry with open boundaries.

Bottom Topography

Fig. 7. Topography with various values of (k, 6 ).
9. CONCLUSIONS

(1) A three-dimensional, finite volume ocean circulation
model has been developed. The basic equations are
transformed from differential into integral forms using
the hydrostatic and anelastic approximations and solved
for finite volumes (rather than grid points) with the flux
conservation enforced on arbitrarily meshes. This model
has great flexibility in establishing model grids.

(2) A crystal grid discretization is proposed such that the
four lateral surfaces are perpendicular to two horizontal
(x, v) axes; and the two surfaces in the vertical follow the
ocean surface and bottom. Such a grid system reveals a
superior feature than both z- and sigma-coordinate
systems over abrupt bottom topography.

(3) Seamount test case is the first step to show the value-
added of using finite volume scheme. The finite volume



scheme leads to a drastic error reduction comparing to
the second-order finite difference scheme using POM.

(4) It is noticed that the seamount test case presented
here is preliminary. More cases should be conducted in
the future for testing the difference between VOM and
the existing ocean models using gravitational adjustment
of a density front, residual circulation over a coastal
canyon, and combined effects of topography and
stratification.

a0y

Fig. 8. Comparison between finite-volume scheme (HPI)
and three finite difference schemes (P-DJ, CD, and CCD)
for various k and 6.
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