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                            Abstract 
 
Atmospheric and oceanic numerical models are usually initial-value and/or boundary-value problems. Change 
in either initial or boundary conditions leads to a variation of model solutions. Much of the predictability 
research has been done on the response of model behavior to an initial value perturbation. Less effort has been 
made on the response of model behavior to a boundary value perturbation. In this study, we use the latest 
version of the National Center for Atmospheric Research (NCAR) Community Climate Model (CCM3) to 
study the model uncertainty to tiny SST errors. The results show the urgency to investigate the second kind 
predictability problem for the climate models.   
 
1. Introduction 
 
  Usually we use the Lorenz system (Lorenz, 1963) 
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to illustrate the predictability due to the initial 
conditions X( ), Y( ), and Z( ). This system 0τ 0τ 0τ

was derived from the two-dimensional convection 
model consisting of a horizontal vorticity and heat 
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equations. Here, X, Y, and Z are the first three 
terms in double Fourier series of stream function 
and temperature, is the dimensionless time, is 
the Prandtl number, b is the nondimensional 
parameter related to horizontal wavenumber, and r 
is the ratio between the Rayleigh number and its 
critical value and is proportional to the 
temperature difference between the lower and 
upper boundaries. Thus, the boundary condition 
error is represented by the error in r. 

τ σ

  Recently, Chu (1999) found two kinds of 
predictability in the Lorenz system, namely, the 
model uncertainty due to the initial condition error 
(first kind) and due to the boundary condition 
error (second kind). The difference between the 
two is obvious. For the first kind predictability, 
the error is introduced only at the initial time 
instance ( ).  However, for the second kind 
of predictability, the error can be introduced at 
any time instance. To illustrate this, Chu (1999) 

0τ τ=
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integrated (1)-(3) for three cases: a control run and 
two sensitivity runs. In the control run, he used the 
same initial conditions 
       ,       (4) (0) 0,   (0) 1,   (0) 0c c cX Y Z= = =
and the same values for model parameters 
             ,           (5) 28,   10,   8 / 3c c cr bσ= = =
as in Lorenz (1963). Here, the subscript c denotes 
the control run. In the two sensitivity runs 
everything was kept the same as the control run 
except the initial condition  
              ,                      (6) (0) (0)(1 )i cY Y ε= +
for the sensitivity-to-initial condition run, and 
except the parameter  r,  
                  r r ,                            (7) (1 )b c ε= +
for the sensitivity-to-boundary condition run. Here, 

 is a small error, and subscripts i and b represent 
the two sensitivity runs. 
  Introducing a same small relative error 

 to eitherthe initial or boundary 
condition, the Lorenz system has error growing 
and  oscillation periods. For the parameter r, this 
error is equivalent to 0.01

ε

ε 0.0001=

oC of the lower 
boundary temperature, 10% of the instrumentation 
accuracy for surface temperature measurement 
(Chu, 1999). Comparison of model output 
between the control run and the two sensitivity 
runs shows error growing and error oscillating 
stages (Fig. 1). During the growing period, the 
relative model error (i.e., error versus model 
internal variability) in both cases increases from 0 
to an evident value larger than 1.    During the 
oscillation period, the model error oscillates 
between two evident values. The model error 
growth is stronger and the growing period is 
shorter in the second kind (boundary condition 
error) than in the first kind (initial condition error).  

 
Figure 1. Model error evolution in the Lorenz 
system due to: (a) initial error, and (b) boundary 
error (from Chu 1999). 

  Is this phenomenon (predictability regarding 
boundary condition error) universal? What is the 
practical implication of the second kind 
unpredictability? We will use a recent version of 
the well-developed National Center for 
Atmospheric Research (NCAR) Community 
Climate Model Version 3 (CCM3) to test the 
existence of the second kind unpredictability. 
More precisely, we will investigate the 
atmospheric response to tiny and random 
disturbances of the sea surface temperature (SST). 
If the atmosphere is not sensitive to small random 
SST disturbances, we might consider 
nonexistence of the second kind predictability and 
use low resolution (in space and time) SST input 
to run atmospheric models. If the atmosphere is 
very sensitive to tiny and random SST 
disturbances, we must consider the second kind 
predictability and use high quality and high 
resolution SST data.  
  The outline of this paper is as follows. A model 
description and the experiment design are given in 
section 2. A depiction of the statistical test is 
given in section 3. The synoptic three-dimensional 
thermal structure and inverted velocity field is 
discussed in section 4. In section 5 we present our 
conclusions. 
 
2. Numerical Experiment 
 
  2.1. Model Description 
 
  CCM3 has evolved from the Australian spectral 
model described by Bourke et al. (1977) and 
McAvaney et al. (1978). CCM3 is the most recent 
version of the NCAR Community Climate Model. 
It should be noted that CCM3 has a drastic change 
to the previous version, CCM2, especially due to 
the addition of the Biosphere-Atmosphere 
Transfer Scheme (BATS) documented in 
Dickinson et al. (1993). CCM3 still uses the 
spectral transform method for the dynamic 
equations but uses a semi-Lagrangian method for 
transporting water (Rasch and Williamson, 1991). 
The model we used here contains 18 levels in the 
vertical with a top at 2.917 mb, and uses spherical 
harmonics as horizontal basis functions with a 
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triangular truncation at wavenumber 21 
(approximately a 5.6o× 5.6o transform grid). The 
reader is referred to the foregoing articles for 
detailed description of the model physics (e.g., 
Kiehl 1990; Hack et al., 1993), apart from the 
radiative processes (e.g., Ramanathan et al., 1983; 
Briegleb, 1992; Slingo, 1989), atmospheric 
boundary layer processes (Troen and Mahrt, 1986; 
Holtslag et al., 1990), and mass flux scheme 
representing all types of moist convection (Hack, 
1993). 
 
  2.2. Tiny Gaussian-Type SST 
Anomalies 
 
  We use a Gaussian-type random variable ( ) 
to represent SST anomalies. The probability 
distribution function is given by 

Tδ

        
( )2

2

1
( ) exp

22

T
F T

δ
δ

σπ
= −

 

 

 ,             (8) 

where is a random variable with a zero mean 
and a standard deviation of .  Since our interest 
is to see the response of atmosphere to tiny 
random SST anomalies, we set 

Tδ
σ

                    o0.025 Cσ =
in this study. This value (0.025oC) is much less 
than the current instrumentation error. If the 
atmosphere has a strong response to this tiny 
random SST error, we may conclude the existence 
of the second kind predictability problem. 
  2.3 Experiment Design 
 
   2.3.1. Control Run 
 
  The initial condition used in this study is 1 
September's climatology of the atmospheric and 
surface fields, which was provided by the NCAR 
Climate and Global Dynamics (CGD) Division. 
The surface boundary conditions were monthly 
sea and land surface temperatures (also obtained 
from NCAR CGD Division) linearly interpolated 
onto each time step (20 min). We integrate CCM3 
for ten months from 1 September to 30 June of the 
second year, and use the data between 1 January 
and 30 June of the second year for comparison. 

  2.3.2. Anomaly Run 
 
  After four months of the control run, we added a 
tiny Gaussian-type random SST anomaly with 
zero mean and 0.025oC standard deviation 
generated by the FORTRAN random number 
generator applied to monthly SST data, and then 
interpolated into each time step. The rest of the 
forcing was kept the same.   For the anomaly run, 
the model was integrated from the output of the 
control run on 1 January to 30 June of the second 
year (Fig. 2).  

               
  Figure 2. Control and anomaly runs. 
 
  We compare the model outputs such as surface 
level pressure, temperature, zonal and latitudinal 
velocities for 1 January to 30 June of the second 
year between the two runs, and call the difference 
between anomaly and control runs as the anomaly 
response. 
 
3. Statistical Analysis 
 
  For a given vertical level, the anomaly response 
of any variable ψ  is a function of space (x, y), 
and time t. We computed the standard deviation of 
the model output from the control run as the 
model internal variability and the root-mean-
squares error (RMSE) between the control and the 
anomaly runs as the model anomaly response to 
the SST disturbance. The model internal 
variability of the variable ψ  is depicted by its 
standard deviation of the model output for the 
control run, 
 

[ ]21
( ) ( , , ) ( )

1 c i j c
i j

SDV t x y t t
Mψ ψ ψ= −

−
∑∑

                                                                           (9) 
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where M is the total number of horizontal grid 
points, the subscript ‘c’ indicates the control run,  
and cψ  is the horizontal mean of  ψ . 
  RMSE is defined by, 
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                                                                       (10) 
where the subscript a denotes the anomaly run. 
The ratio between RMSE and SDV, 

                       
( )

( )
( )

RMSE t
E t

SDV t
ψ

ψ
ψ

= ,              (11) 

is the model relative error due to the tiny random 
SST disturbances. 
 
4. Model Error Input 
 
   To detect the error propagation from SST to the 
atmosphere, we should first compute the relative 
SST error, ESST(t). The internal variability of 
surface temperature that is the standard deviation 
of the NCAR monthly sea and land surface 
temperatures is around 11.7oC. The root-mean-
squares error of SST, RMSESST(t )= 0.025oC, is a 
constant throughout the experiment. The relative 
SST error, ESST(t), is 2 10× -3 throughout the 
experiment. 
 
5. Model Error Output 
 
  To investigate the error propagation and 
amplification from SST to the atmospheric models, 
we should compute the relative error. The larger 
the  the more uncertainty of the model due 
to the   boundary condition (SST) error, and the 
more evident the existence of second kind 
unpredictability. 

( ),E tψ

 
  5.1. Surface Level Pressure (SLP) 
 
  The internal variability of the SLP field 
fluctuates between 80 mb and 87 mb (Fig. 3a). 

The RMSE of the SLP increases almost linearly 
from 0 to 14.2 mb within the 30 days (rapid 
growing period), and oscillates between 8 mb and 
15 mb afterwards (Fig. 3b). The relative SLP error, 
ESLP(t), increases from 0 to 0.18 during the 
growing period, and oscillates between 0.10 and 
0.18 during the oscillatory period after 30 days 
Fig.3c).  
 
  5.2. Temperature 
 
  The internal temperature variability has a little 
change with height: SDVT(t) varies between 14.2o-
17.5oC at 850 mb (Fig. 4a), between 13.7o-15.5oC 
at 500 mb (Fig. 4b), and between 9.7o-14oC at 100 
mb (Fig. 4c). The relative temperature error, ET(t), 
increases rapidly from 0 to noticeable values 
within 30 days at all heights: 0.48 at 850 mb (Fig. 
4d), 0.37 at 500 mb (Fig. 4e), and 0.33 at 100 mb 
(Fig. 4f). 
 
  5.3. Zonal Wind 
 
  The internal variability of zonal winds increases 
with height: SDVU(t) varies between 6.5 - 8.2 m/s 
at 850 mb (Fig. 5a), between 8.7 - 11.6 m/s at 500 
mb (Fig. 5b), and between 9.1-16.5 m/s at 100 mb 
(Fig. 5c). The relative zonal wind error, EU(t), 
increases rapidly from 0 to noticeable values 
within 30 days at all heights: 1.26 at 850 mb (Fig. 
5d), 1.18 at 500 mb (Fig. 5e), and 0.9 at 100 mb 
(Fig. 5f). 
 
  5.4. Latitudinal Wind 
 
  The internal variability of latitudinal winds 
increases with height: SDVV(t) varies between 5.0 
- 7.0 m/s at 850 mb (Fig. 6a), between 6.7 -9.8 
m/s at 500 mb (Fig. 6b), and between 5.5-9.5 m/s 
at 100 mb (Fig. 6c). The relative zonal wind error, 
EV(t), increases rapidly from 0 to noticeable 
values within 30 days at all heights: 1.35 at 850 
mb (Fig. 6d), 1.30 at 500 mb (Fig. 6e), and 1.38 at 
100 mb (Fig. 6f). 
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Figure 3. Response of sea level pressure to tiny SST 
errors: (a) internal variability (mb), (b) RMS error 
(mb), and (c) relative error. 
 

 
Figure 4. Response of air temperature  to tiny SST 
errors: internal variability (oC) at (a) 850 mb, (b)  
500 mb, (c) 100 mb), and  relative error at (d) 850 
mb, (e) 500 mb,  (f)  100 mb. 
 

 

 
Figure 5. Response of zonal wind to tiny SST errors:  
internal variability (m/s) at (a) 850 mb, (b)  500 mb, 
(c) 100 mb), and  relative error at (d) 850 mb, (e) 500 
mb,  (f)  100 mb. 
 
6. Conclusions 
 
  (1) The second kind unpredictability is 
confirmed in this study using the NCAR CCM3. 
The climate model is sensitive to boundary 
condition error. Introducing a small relative SST 
error (0.002), the atmosphere has a growing 
period (0 to 30 day) and an oscillation period 
(after 30 days). During the growing period, the 
model error is amplified several hundred times as 
the error input from SST. During the oscillation 
period, the model error oscillates between two 
evident values. 
 
(2) The global atmospheric response to a tiny 
random SST error (zero mean and 0.025oC 
standard deviation) is quite strong. For example, 
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at 850 mb the RMS error of the zonal velocity is 
1.35 time of the internal variability. This will lead 
to almost 10 m/s error. 
 
  (3) We estimate that the global atmospheric 
uncertainty comparing to the internal variability is 
around 0.3 to 0.5 for temperature, 0.9 to 1.3 for 
zonal wind, and 1.3 to 1.4 for latitudinal wind. 
 
(4) Integration of an atmospheric model needs 
accurate SST data. The noise in the SST data may 
bring drastic change in the model results. 
 

 
 
Figure 6. Response of latitudinal wind to tiny SST 
errors: (a) internal variability (m/s) at (a) 850 mb, (b)  
500 mb, (c) 100 mb), and  relative error at (d) 850 
mb, (e) 500 mb,  (f)  100 mb. 
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