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1. Introduction 

The world oceans contribute significantly to the 
global redistribution of heat necessary to 
maintain the earth’s thermal equilibrium. Surface 
layer horizontal fluxes of momentum, heat, water 
mass and chemical constituents are typically 
nonlinear in the speed (Galanis et al. 2005; 
Lozano et al. 1996), so the space or time average 
flux is not generally equal to the flux that would 
be diagnosed from the averaged current speed. In 
fact, the average flux will generally depend on 
higher-order moments of the current speed, such 
as the standard deviation, skewness, and 
kurtosis. From both diagnostic and modeling 
perspectives, there is a need for 
parameterizations of the probability distribution 
function (PDF) of the current speed w (called w-
PDF here).  
      Recent study on the equatorial Pacific (Chu 
2008) showed that the w-PDF satisfies the two-
parameter Weibull distribution in the upper layer 
(0 – 50 m) after analyzing the hourly Acoustic 
Doppler Current Profiler (ADCP) data (1990-
2007) at all the six stations along during the 
Tropical Atmosphere Ocean (TAO) project.  
Question arises: Can such a result (e.g., the 
Weibull distribution for the equatorial Pacific 
surface current speeds) be extended to global 
oceans? To answer this question, we use the 5-
day Ocean Surface Currents Analyses – Real-
time (OSCAR) data to construct the 
observational w-PDF for the global ocean 
surface circulation. Special characteristics of the 
statistical parameters such as mean, standard 
deviation, skewness, and kurtosis will also be 
identified.  
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 2. The OSCAR Data  

The OSCAR data are available for the world 
oceans from 60oN to 60oS on 1o× 1o grid to a 
broad-based user community via a web-based 
interactive data selection interface on a time base 
with exactly 72 steps per year (about 5 day 
interval) starting from October 1992 (Fig. 1). 
The velocity is automatically computed from 
gridded fields of surface topography and wind 
derived on the base of the Ekman dynamics from 
satellite altimeter (JASON-1, GFO,   ENVISAT) 
and scatterometer (QSCAT) vector wind data. 
See website: http://www.oscar.noaa.gov/ for 
detailed information.   
 

 
Fig. 1. Global ocean surface current vectors (5-day 
mean and anomaly) derived from satellite altimeter 
and scatterometer data. The data can be 
downloaded from the website:  
 http://www.oscar.noaa.gov/. 
 
3. Stochastic Differential Equations 
for Surface Currents 
 
Let (x, y) be the horizontal coordinates and z be 
the vertical coordinate. Vertically averaged 
horizontal velocity components (u, v) from the 
surface to a constant scale depth (h) of surface 
mixed layer are given by (Chu 2008)  
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represent the residual between the Ekman 
transport and surface wind stress. Here, K is the 
eddy viscosity; f is the Coriolis parameter; 
( ,x yτ τ ) are the surface wind stress components; 
and (UE, VE) are Ekman transports computed by  
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where ( ,u v ) are the vertically varying horizontal 
velocity components; and (ug, vg) are the 
geostrophic velocity components.  With absence 
of horizontal pressure gradient, e.g., ug = vg = 0,   
Equations (1) and (2) reduce to the commonly 
used wind-forced slab model (Pollard and 
Millard 1970). For the sake of convenience, we 
assume that the residual between the Ekman 
transports (UE,   VE) and surface wind stress does 
not depend on the horizontal current vector (u, 
v). Away from the equator, this approximation is 
similar to a small Rossby number approximation 
(Gill 1982). If the forcing ( ,u vΛ Λ ) is fluctuating 
around some mean value,  
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where the angle brackets represent ensemble 
mean and the fluctuations are taken to be 
isotropic and white in time: 
             1 2 1 2( ) ( ) ( )i j ijW t W t t tδ δ= − ,          (6) 

with a strength that is represented by Σ . Note 
that the Ekman transport is determined by the 
surface wind stress for time-independent case, 
and therefore the ensemble mean values of 
( ,u vΛ Λ ) are zero,  

      0,   0u vΛ = Λ = .                             (7)  
Substitution of (5)-(7) into (1) and (2) gives  
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which is a set of stochastic differential equations 
for the surface current vector. The joint PDF of 
(u, v) satisfies the Fokker-Planck equation, 
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which is a linear second-order partial differential 
equation with the depth scale (h) taken as a 
constant. Transforming from the orthogonal 
coordinates (u, v) to the polar coordinates (w, ϕ ) 
respectively the current  speed and direction,  
           cos ,   sinu w v wϕ ϕ= = .               (11) 
 The joint PDF of (u, v) is transformed into the 
joint PDF of (w, ϕ ),  
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Integration of (12) over the angle ϕ  from 0 to 
2π yields the marginal PDF for the current 
speed alone,  
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For a constant eddy viscosity (K) at z = -h, the 
steady state solution of equation (10) is given by                                      
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where A is a normalization constant. Substitution 
of (14) into (12) and use of (13) yield the 
Rayleigh distribution 
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with the scale parameter a. The basic postulation 
of constant K may not be met always at the upper 
ocean. Hence we require a model that can meet 
the twin objectives of (a) accommodating 
Rayleigh distribution whenever the basic 
hypothesis (constant K) that justifies it is 
satisfied and (b) fitting data under more general 
conditions. This requirement is supposed to be 
satisfied by the Weibull probability density 
function, 
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where the parameters a and b denote the scale 
and shape of the distribution.  This distribution 
has been recently used in investigating the ocean 
model predictability (Ivanov and Chu, 2007a,b). 
 
4. Parameters of the Weibull 
Distribution 
 



 

 The four parameters (mean, standard deviation, 
skewness, and kurtosis) of the Weibull 
distribution are calculated by (Johnson et al. 
1994), 
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where Γ  is the gamma function. The parameters 
a and b can be inverted (Monahan 2006) from 
(17) and (18),  
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The skewness and kurtosis are computed by 
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which depend on the parameter b only [see (20) 
and (21)] for the Weibull distribution. The 
relationship between the kurtosis and skewness 
can be determined from (20) and (21).  
 
 5. Observational w-PDF 
 
The data depicted in Section 2 are used to 
investigate the statistical features of the global 
surface current speeds (w). The four parameters 
(mean, standard deviation, skewness, and 
kurtosis) can also be calculated from the 
observational data (w)  
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for the each grid point.  The mean, standard 
deviation, skewness, and kurtosis fields of w 
estimated from the OSCAR data are displayed in 
Fig. 2. Large values of mean(w) occur in the 
western boundaries such as in the Gulf Stream, 
Kuroshio, and Somali Current, Malvinas Current  
and; secondary maxima in the equatorial zones 
especially in the western and central equatorial 
Pacific. Minima of mean(w) occur in the 
subtropical horse latitudes. The standard 
deviation of w is also large near the western 
boundaries and in the equatorial zones. In 
general, w is positively skewed in the most part 
of the global oceans and negatively skewed in 
the equatorial zones and Southern Ocean. The 
kurtosis field is much noisier than those of 
mean(w), std(w), or skew(w).  
 

 
Fig. 2. First four parameters of the surface current 
speeds calculated from the OSCAR data (1992-
2008). 



 

      The Weibull parameters (a, b) were 
calculated from mean(w) and std(w). The 
distribution of the parameter a over the global 
oceans (Fig. 3a) is quite close to the distribution 
of mean(w), i.e., with large values in western 
boundaries and equatorial zone. The distribution 
of the Weibull  parameter b is shown in Fig. 3b. 
Thus, a four-parameter dataset has been 
established each location. The scatter diagrams 
were drawn for global oceans during all or 
different time periods. 
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Fig. 3.  Same as in Fig. 2, but for Weibull  
parameters (a, b). 
 
      The relationships between skew(w) and  
mean(w)/std(w)  (representing the parameter b) 
and between the kurt(w)  and the skew(w) may 
be used to identify the fitness of the Weibull 
distribution for observational w-PDFs.  The solid 
curve on these figures shows the relationship for 
a Weibull variable. Fig. 4 shows the kernel 
density estimates of joint PDFs of 
mean(w)/std(w) versus skew(w) and kurt(w) 
versus skew(w) for January (left panels) and July 
(right panels)  OSCAR data from 1992 to 2008.  
Fig. 5 shows the similar items from the OSCAR 
data during (a) 1993-1997 (b) 1998-2002, and (c) 
2003-2007.    The contour intervals are 
logarithmically spaced. The thick black line is 
the theoretical curve for a Weibull variable.  
 For the observational surface current 
speeds (w), the skew(w) is evidently  a concave 
function of the ratio mean(w)/std(w) (the same as 
the Weibull distribution), such that the 
theoretical function is positive for small values 
of this ratio and negative for large values. 
However, for the core of the kernel with the joint 
probability higher than 0.32,  mean(w)/std(w)  is 
always less than 2.2 and skew(w) is always 
positive (Fig. 4, upper panes). Similarly, the 

relationship between skew(w) and kurt(w) in the 
observations is  similar to that for a Weibull 
variable  (Fig. 4, lower panels) with smaller 
kurtosis. These features are almost the same 
between January (Fig. 4a) and July (Fig. 4b), and 
among three time periods: 1993-1997 (Fig.5a), 
1998-2002 (Fig. 5b), and 2003-2007 (Fig. 5c).  
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Fig. 4. Kernel density estimates of joint PDFs of 
(top)  mean(w)/std(w) and skew(w)  and (bottom) 
skew(w) and kurt(w) for (left) for (a) January and 
(b) July OSCAR data from 1992 to 2008.  The 
contour intervals are logarithmically spaced. The 
thick black line is the theoretical curve for a 
Weibull variable.  
                                  (a) 
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                    (b)                            (c) 

1.5 2 2.5 3 3.5
−1

−0.5

0

0.5

1

1.5

2

2.5

3

mean(w)/std(w)

sk
ew

(w
)

oscar − 1998 to 2002

0.01

0.0178

0.0316

0.0562

0.1

0.1778

0.3162

0.5623

1

1.7783

−1 0 1 2
−2

−1

0

1

2

3

4

5

6

skew(w)

ku
rt

(w
)

0.01

0.0178

0.0316

0.0562

0.1

0.1778

0.3162

0.5623

    

1.5 2 2.5 3 3.5
−1

−0.5

0

0.5

1

1.5

2

2.5

3

mean(w)/std(w)

sk
ew

(w
)

oscar − 2003 to 2007

0.01

0.0178

0.0316

0.0562

0.1

0.1778

0.3162

0.5623

1

1.7783

−1 0 1 2
−2

−1

0

1

2

3

4

5

6

skew(w)

ku
rt

(w
)

0.01

0.0178

0.0316

0.0562

0.1

0.1778

0.3162

0.5623

 
Fig. 5. Kernel density estimates of joint PDFs of 
(top)  mean(w)/std(w) and skew(w)  and (bottom) 
skew(w) and kurt(w) for (left) from  the OSCAR 
data during (a) 1993-1997 (b) 1998-2002, and (c) 
2003-2007.  The contour intervals are 
logarithmically spaced. The thick black line is the 
theoretical curve for a Weibull variable.  
 



 

      The agreement between the moment 
relationships in the OSCAR data and those for a 
Weibull variable reinforces the conclusion that 
these data are Weibull to a good approximation.
  
6. Conclusions  
 
This study has investigated the probability 
distribution function of the surface current 
speeds (w), using long-term (1992-2008) 5 day 
“Ocean Surface Current Analyses – Real Time 
(OSCAR)” (OSCAR) data; and theoretically, 
using a stochastic model derived using upper 
boundary layer physics. The following results 
were obtained. 
       
     (1) probability distribution function of the 
global surface current speeds (w) approximately 
satisfies the two-parameter Weibull distribution.  
In the upper ocean with a constant eddy viscosity 
K, the probability distribution function satisfies a 
linear second-order partial differential equation 
(i.e., the Fokker-Planck equation) with an 
analytical solution – the Rayleigh distribution 
(special case of the 2 parameter Weibull 
distribution). 
      
     (2) Four moments of w (mean, standard 
deviation, skewness, kurtosis) have been 
characterized. It was found that the relationships 
between mean(w)/std(w) and skew(w) and 
between skew(w) and kurt(w) from the data are 
in  fairly well agreement  with the theoretical 
Weibull distribution for the upper (0 - 50 m) 
tropical Pacific for the whole period The 
OSCAR  data also show that the ratio 
mean(w)/std(w) is generally less than 2.2 and the 
skewness is generally positive for the whole 
global oceans.   
       
      (3) The Weibull distribution provides a good 
empirical approximation to the PDF of global 
ocean surface current speeds with little seasonal 
and interannual variations. This may  improve 
the representation of the horizontal fluxes that 
are at the heart of the coupled physical–
biogeochemical dynamics of the marine system. 
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