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1. INTRODUCTION  
  A practical question is commonly 

asked: How long is an ocean (or 
atmospheric) model valid since being 
integrated from its initial state? Or what is 
the model valid prediction period (VPP)? To 
answer this question, uncertainty in ocean 
(or atmospheric) models should be 
investigated. It is widely recognized that the 
uncertainty can be traced back to three 
factors [Lorenz, 1963; 1984]: (a) 
measurement errors, (b) model errors such 
as discretization and uncertain model 
parameters, and (c) chaotic dynamics. The 
measurement errors cause uncertainty in 
initial and/or boundary conditions. The 
discretization causes small-scale “subgrid” 
processes to be either discarded or 
parameterized. The chaotic dynamics may 
trigger a subsequent amplification of small 
errors through a complex response.  

The three factors are related to each 
other causing model uncertainty.  Chu [1999 
pointed out that the boundary errors act as a 
forcing term (stochastic forcing) in the 
Lorenz system. This suggests that the 
oceanic (or atmospheric) variables are 
sensitive to measurement errors (uncertain 
initial and/or boundary conditions), model 
errors (discretization), and chaotic (or 
stochastic) dynamics.    

Currently, some time scale (e.g., e-
folding scale) is computed from the 
instantaneous error (IE) growth to represent 
the model VPP. The faster the IE grows, the 
shorter the e-folding scale is, and in turn the 
shorter the VPP is.  Using IE, evaluation of 
deterministic models becomes stability 
analysis in terms of either the leading 
(largest) Lyapunov exponent [e.g., Lorenz, 
1969] or the amplification factors calculated 
from the leading singular vectors [e.g., 
Farrell and Ioannou, 1996 a, b]. For 
stochastic model, the statistical analysis 
becomes useful [Ehrendorfer, 1994 a, b; 

Nicolis, 1992]. The probabilistic properties of 
the prediction error are described using the  
probability density function (PDF) satisfying 
the Liouville equation or the Fokker-Plank 
equation.  Solving this equation, the mean 
and variance of errors can be obtained.  
Nicolis [1992] investigated the properties of 
error-growth using a simple low-order model 
(projection of Lorenz system into most 
unstable manifold) with stochastic forcing. A 
large number of numerical experiments were 
performed to assess the relative importance 
of average and random elements in error 
growth.  
 
In fact, the IE growth rate is not the only 
factor to determine VPP. Other factors, such 
as the initial error and tolerance level of 
prediction, should also be considered. The 
tolerance level of prediction is defined as the 
maximum error the model can afford  (still 
keeping the meaningful prediction). For the 
same IE growth rate, the higher the 
tolerance level (initial error) the longer 
(shorter) the model VPP is. Thus, the model 
VPP should be defined as the time period 
when the model error first exceeds a pre-
determined criterion (i.e., the tolerance level 
ε). The longer the VPP, the higher the model 
predictability will be.  In this study, we 
develop a theoretical framework of model 
predictability evaluation using VPP, and 
illustrate the usefulness and special features 
of VPP. The outline of this paper is depicted 
as follows. Description of prediction error of 
deterministic and stochastic models is given 
in Section 2. Estimate of VPP is given in 
Section 3. In Section 4, determination of 
VPP for a one-dimensional stochastic 
dynamic system is discussed. In Section 5, 
the conclusions are presented.  
 

2. Prediction Error  
2.1.   Dynamic Law  

Let x(t) = [x(1)(t), x(2)(t), …, x(n)(t)] be the 
full set of variables characterizing the 
dynamics of the ocean (or atmosphere) in a 



certain level of  description. Let the dynamic 
law be given by  

( , )d t
dt

=x f x                                           (1)                            
Use of IE is to investigate the model 

error growth due to an initial error,  
where f is a functional. Deterministic 
(oceanic or atmospheric) prediction is to find 
the solution of (1) with an initial condition  
                                                   (2)              0( )t =x                                  

                                 

where t0  is the initial time. To evaluate 
model predictability becomes to analyze 
stability of the system to the given initial 
analysis error, z0. Thus, many instability 
theories can be easily incorporated, such as 
the leading (largest) Lyapunov exponent 
[e.g., Lorenz 1969] or the amplification 
factors calculated from the leading singular 
vectors [e.g., Farrell and Ioannou, 1996 a, 
b].      Taking  a linear time-dependent 
dynamical system 

0x

where   is an initial value of  x.     0x
With a linear stochastic forcing, 

q(t)x, Eq.(1) becomes  

     ( , ) ( )d t q t
dt

= +x f x x                                  (3)             

Here, q(t) is assumed to be a random 
variable with zero mean 
     ( ) 0q t =                                               (4)   
and pulse-type variance   

    2 ( ) ( ) ( )q t q t q t tδ′ = −

2q

′             (5)                
where the bracket < >  is defined as 
ensemble mean over realizations generated 
by the stochastic forcing,  δ is the Delta 
function, and   is the intensity of the 
stochastic forcing. 

                     

( ) ,d t
dt

=x A x                                            (9)                                 

as an example. The first Lyapunov  
exponent is defined as 

 
2.2.  Prediction Model and Error 

Variance 
Let y(t) = [y(1)(t), y(2)(t), …, y(n)(t)]  be  

the  estimate of x(t) using a  prediction  
model   

( , )d t
dt

=y h y .                                     (6a)                                                   

where I is the unit matrix.  The only 
information we can get here is: the larger the 
value of λ, the shorter the model VPP.  
Usually, the e-folding scale relating to the IE 
growth rate is used to represent VPP. 

with an initial condition  
                                            (6b)                
where y

0( )t =y
0 is the initial value of y. 

                                    
     To quantify VPP, we first define two 
model error limits:  minimum  (noise level 
(ξnoise) and maximum  (tolerance level ε). 
The model prediction is considered 
‘accurate’ if the model error is less than the 
noise level, 

0y

         Difference between reality (x) and 
prediction (y) at any time t (> t0 )   
                          yx−=z  
is defined by the prediction error vector and 
this difference at t0    
          000 yxz −=  
is defined by the initial error vector.  If the 
components [x(1)(t), x(2)(t), …, x(n)(t)] are not 
equally important in terms of prediction, the 
uncertainty of model prediction can be 
measured by the error variance                 

 Var(z)=〈ztAz〉.                                (7)                                                    

representing an ellipsoid Sε(t) with y(t) as its 
center (Fig. 1).  VPP is represented by a 
time period (t – t0) at which z (the error) first 
goes out of the ellipsoid Sε(t).  The 
parameter (t – t0) is usually a random 
variable. The joint probability density 
function of  (t – t0) and z0  satisfies the 
backward Fokker-Planck equation [Section 
3.6 in Gardiner, 1983] 

Here, the superscript `t’ indicates the 
transpose of the prediction error vector z.  A 
is an n×n  weight matrix.  
 
      3.  Valid Prediction Period  

         3.1.  Indirect Estimation from IE 
Growth Rate 

      z(t0) = z0                               (8) 

( )0ln( || ( , ) ||
limsup
t

t t
t

λ
→∞

=
Φ

                         (10)                                 

where the propagator  Φ(t) is given by 
[Coddington and Levinson, 1955] 
                      

.                                     
0 0 0

0( , ) ( ) ( ) ( ) ...
t t r

t t t

t t s ds r dr s ds= + + +∫ ∫ ∫Φ I A A A

     3.2.  Direct Calculation 

          Var(z)≤ξnoise
2.                               (11)                                 

The model prediction is meaningful only if 
the error variance is less than tolerance 
level,                                                
           Var(z)≤ε2                                       (12)                                 
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Figure 1.   Phase space trajectories of model 
prediction y (solid curve) and reality x 
(dashed curve) and error ellipsoid Sε(t) 
centered at y.  The positions of reality and 
prediction trajectories at time instance are 

denoted by “*” and  “o ”, respectively).  A 
valid prediction is represented by a time 
period (t – t0) at which the error first goes out 
of the ellipsoid Sε(t).   

If the initial error exceeds the tolerance level 
[i.e., z0 hits the boundary of Sε (t0)], the 
model loses prediction capability initially 
 .                      (14)                    00 0

( , ( ),0) 0P t S tε∈z                          

                                

         Usually, two steps are used in 
computing the mean and variance of VPP: 
(a) to obtain P(t0, z0, t – t0)  after solving the 
backward Fokker-Planck equation (13), and 
(b) to compute the mean and variance of 
VPP using (16) and (17).  For an 
autonomous dynamical system,  

The model also loses prediction capability at 
t = ∞ [Gardiner, 1984] 
   .                                              00 0t

 ( , , ) 0Lim P t t t
→∞

− =z

Temporal integration of P(t0, z0, t – t0) from t0 
to ∞ should be one, 

    .                            (15)             

Since P(t
0

0 00( , , ) 1
t

P t t t dt
∞

− =∫ z

0, z0, t – t0)  is the probability of 
VPP (t – t0) with the initial error vector z0 at 
t0, its  first moment      

                                     

we multiply the backward Fokker-Planck 
equation  (13) is by (t – t0) and  (t – t0)2 ,   
integrated both equations with respect to t 
from t0 to ∞, and obtain the mean VPP 
equation 

                              

              (16)                         

denotes the ensemble mean  VPP.  Its 
second moment 

( )
0

1 0 000
( ) ( , , )

t

P t t t t t dtτ
∞

= − −∫z z

                              

                                 

(17)  indicates the variation of VPP.  Both 
(16) and (17) indicate the dependence of the 
ensemble mean and variance of VPP on the 
initial error z

( )
0

2

0 0 0002
( ) ( , , )

t

P t t t t t dtτ
∞

= − −∫z z

0. 

                 

Both (18) and (19) are linear, time-
independent, and second-order differential 
equations with he initial error z0 as the only 
independent variable.  To solve these two 
equations, two boundary conditions for τ1 
and τ2 are needed. When the initial error 
reaches the tolerance level, Var(z0)= ε2, the 
model prediction capability is lost no matter 
how good the model is, and τ1 and τ2 
become zero,   

 
 

 
          3.3.  Autonomous Dynamical  
System  

                         0( )=f f z

    
22 2

01 1
0

00 0

( ) 1
2
qτ τ∂ ∂+

∂ ∂ ∂
zf z

z z z
= −                   (18)                                 

and the VPP variability equation 

   
22 2

02 2
0 1

0 0 0

( ) 2
2
qτ τ τ∂ ∂+

∂ ∂ ∂
z

z z z
= −f z (19)                                                

  for Var(z
1

0,τ =
2

0τ = 0)=ε2.    (20)                                 
When the initial error is below the noise 
level, ξnoise, the initial condition is considered 
as ‘accurate’. The model capability of 
prediction does not depend on the initial 
condition error (i.e., τ1 and τ2 are 
independent on z0), 

 1

0

0,τ∂ =
∂z

2

0

0τ∂ =
∂z

for Var(z0)=ξ2
noise.         (21)              

 
4. Example 

4.1 One-Dimensional Stochastic 
Dynamical System  
 
            We use a one-dimensional 
probabilistic error growth model [Nicolis, 
1992] 
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  2( ) (d )g v t
dt
ξ σξ ξ ξ= − + ,  0 ξ≤ < ∞         (22)                               

         How long is the model (22) valid 
since being integrated from the initial state? 

Or what are the mean and variance of VPP 
of (22)? To answer these questions, we 
should first find the equations depicting VPP 
of (22).  Applying the theory described in 
Sections 3.2 and 3.3 to the model (22), the 
PDF for the random variable (t – t0), [i.e., 
VPP] satisfies the backward Fokker-Planck 
equation,     

as an example to illustrate the process of 
computing mean VPP and VPP variability. 
Here, the variable ξ corresponds to the 
positive Lyapunov exponent σ, g is a non-
negative parameter whose properties 
depend on the underlying attractor, and v(t)ξ  
is the stochastic forcing satisfying the 
condition                      

2( ) 0,            (t) (t ) ( )v t v v q t tδ′= = ′− .                           ∂ ∂     

                                            

[ ]
2

2 2

20 0 0 0

1 0
2

P Pg q
t

σξ ξ
ξξ

∂ ∂ ∂− − − =
∂

          (27)                                 P

Without the stochastic forcing, v(t)ξ, the 
model (22) becomes the projection of the 
Lorenz attractor onto the unstable manifold.   
 4.2. IE Analysis 
         The PDF of the random variable ξ in 
(22), P̂ (ξ, t), satisfies the Fokker-Planck 
equation [Nicolis, 1992] 
                       

2 2
2

2

ˆ ˆ[( ) ] ( )
2

P q 2 ˆg P
t

σξ ξ ξ
ξ ξ

∂ ∂ ∂+ − =
∂ ∂ ∂

P         (23)                                                                           
22 2

22 02 10 0 2
0 0

( )
2
qd dg

d d
ξτ τσ 2ξ ξ τ

ξ ξ
− + = −            (29)                                 Multiplying both sides of (23) by ξ and 

averaged over P̂ (ξ, t) leads to the time 
evolution of the ensemble mean error 

 
2 2d

g g
dt
ξ

σ ξ ξ ξ= − − ∆             (24)                                           

where 
2

ξ∆  is the variance. Both  (23) and  
(24) are used to evaluate model 
predictability with given initial condition, 
ξ |t=0, or initial error distribution, P̂ (ξ,0).   

For example, Nicolis [1992] investigated the 
predictability of the stochastic dynamical 
system (5). With a given initial error 
distribution                                                     

dτ dτ 
 ,01 =τ 02 =τ forξ0=ε.                           (30)                          

1

0

0,
dξ

= 2

0

0
dξ

= forξ0=ξnoise.                    (31)            

   ˆ( ,0) ( )P ξ δ ξ= ,                                       (25)                                                                 

     
0

21
2

1 20 2

2 2( , , ) exp( )q
noise

gy
q q

σ

ξ

ετ ξ ξ ε
−

= ∫ y                      

2 22

2

2exp( )
y

q

noise

gx x dx dy
q

σ

ξ

ε− 
−

  
∫                    (32) 

she integrated the Fokker-Planck equation 
(23) to obtain the time evolution of ˆ( , )P tξ .  
With a given initial error    
   ξ |t=0=1.6×10-2                                    (26)                    

,
              

   
0

21
2

2 20 2

4 2( , ) exp( )q
noise

gy y
q q

σ

ξ

ετ ξ ξ ε
−

= ∫            

2 22

1 2

2( ) exp( )
y

q

noise

gx x x
q

σ

ξ

ετ
− 

− 
  
∫ dx dy             (33) 

she integrated the nonlinear equation (24) 
numerically to obtain the time evolution of  
ensemble mean error ξ t. The model 
predictability can be easily evaluated from 
temporal variability of (ξ, t) and P̂ ξ t.   

 4.3.  Equations for Mean and 
Variance of VPP 

with  the initial error (ξ0)  bounded by, 
                                                  

0noiseξ ξ ε≤ ≤ . 
Furthermore, equations (18) and (19) 
become ordinary differential equations 
                        

22 2
12 0 1

20 0
0 0

( )
2
qd dg

d d
ξτ τσξ ξ

ξ ξ
− + 1= −               (28)                                 

with the boundary conditions, 

 
 4.4.  Analytical Solutions 
 Analytical solutions of (28) and (29) 
with the boundary conditions (30) and (31) 
are  

and  

where  
                 0 0 /ξ ξ ε= ,    /noisenoiseξ ξ ε=     
are  non-dimensional initial condition error 
and noise level scaled by the tolerance level 
ε, respectively.  For given tolerance and 
noise levels (or user input), the mean and 
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variance of VPP can be calculated using 
(32) and (33).  
 4.5. Dependence of τ1 and τ2 on 

),,( 0 εξξ noise                   
           To investigate the sensitivity of τ1 and 
τ2 to 0, noiseξ ξ ,  and ε, we use the same 
values for the parameters in the stochastic 
dynamical system (5) as in Nicolis [1992] 
  σ=0.64, g=0.3, q2=0.2.        (34)                                                          01 noise

Figures 2 and 3 show the contour plots of 
),,( 01 εξξτ noise  and ),,( 02 εξξτ noise  versus 

),( 0 noiseξξ  for four different values of ε 
(0.01, 0.1, 1, and 2).  Following features can 
be obtained: (a) For given values of 

0( , noiseξ ξ )  [i.e., the same location in the 

contour plots], both τ1 and τ2 increase with 
the tolerance level ε. (b) For a given value of 
tolerance level ε, both τ1 and τ2 are almost 
independent on the noise level noiseξ  
(contours are almost paralleling to the 
horizontal axis) when the initial error ( 0ξ ) is 

much larger than the noise level ( noiseξ ). 
This indicates that the effect of the noise 
level ( noiseξ ) on τ1 and τ2 becomes evident 

only when the initial error ( 0ξ ) is close to 

the noise level ( noiseξ ).  (c) For given values 

of  (ε,  noiseξ ), both τ1 and τ2 decrease with 

increasing initial error .0ξ   

 

Figures 2. Contour plots of 1 0
( , , )

noise
τ ξ ξ ε  

versus 
0

( , )
noise

ξ ξ  for four different values of ε 
(0.01, 0.1, 1, and 2) using Nicolis model with 
stochastic forcing q2 = 0.2.  The contour plot 
covers the half domain due to .

0 noise
ξ ξ≥  

 
Figures 4 and 5 show the curve plots of 

),,( εξξτ  and ),,( 02 εξξτ noise  versus 

0ξ  for four different values of tolerance 

level, ε (0.01, 0.1, 1, and 2) and four 
different values of random noise noiseξ  (0.1, 
0.2, 0.4, and 0.6).  Following features are 
obtained: (a) τ1 and τ2 decrease with 
increasing 0ξ , which implies that the higher 
the initial error, the lower the predictability 
(or VPP) is; (b) τ1 and τ2 decrease with 
increasing noise level noiseξ , which implies 
that the higher the noise level, the lower the 
predictability (or VPP) is; and (c) τ1 and τ2 
increase with the increasing ε, which implies 
that the higher the tolerance level, the longer 
the VPP is. It is noticed that the results 
presented in this subsection is for a given 
value of stochastic forcing (q2  = 0.2) only. 
 

 
Figures 3. Contour plots of 2 0

( , , )
noise

τ ξ ξ ε  

versus 
0

( , )
noise

ξ ξ  for four different values of ε 
(0.01, 0.1, 1, and 2) using Nicolis model with 
stochastic forcing q2 = 0.2. The contour plot 
covers the half domain due to .

0 noise
ξ ξ≥  
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  4.6. Dependence of τ1 and τ2 on 
Stochastic Forcing (q2) 
           To investigate the sensitivity of τ1 and 
τ2 to the strength of the stochastic forcing,  
 q2, we use the same values for the 
parameters (σ = 0.64, g = 0.3) in (34) as in 
Nicolis [1992] except q2, which takes values 
of 0.1, 0.2, and 0.4.   
 Figures 6 and 7 show the curve 
plots of 2

1 0( , , )noise qτ ξ ξ  and 
2

2 0( , , )noise qτ ξ ξ  versus 0ξ  for two 

tolerance levels (ε = 0.1, 1), two noise levels 
( noiseξ = 0.1, 0.6), and three different values 
of q2 (0.1, 0.2, and 0.4) representing weak, 
normal, and strong stochastic forcing.  Two 
regimes are found: (a) τ1 and τ2 decrease 
with increasing q2 for large noise level 
( noiseξ = 0.6), (b) τ1 and τ2 increase with 

increasing q2 for small noise level ( noiseξ = 
0.1), and (c) both relationships (increase 
and decrease of τ1 and τ2 with increasing q2) 
are independent on ε.  This indicates the 
existence of stabilizing and destabilizing 
regimes of the dynamical system depending 
on stochastic forcing. For a small (large) 
noise level, the stochastic forcing stabilizes 
(destabilizes) the dynamical system and 
extends (shortens) the mean VPP.     
 

 
Figures 4.  Dependence of 1 0

( , , )
noise

τ ξ ξ ε  on 

the initial condition error 
0

ξ  for four different 
values of ε (0.01, 0.1, 1, and 2) and four 

different values of random noise noiseξ  (0.1, 
0.2, 0.4, and 0.6) using Nicolis model with 
stochastic forcing q2 = 0.2.   
 
 
 The two regimes can be identified 
analytically for small tolerance level   
( 0→ε ). The initial error 0ξ  should also be 

small ( 0ξ ε). The solutions (32) becomes 

Lim
0→ε

1 0 2

1( , , )
/ 2noise q

τ ξ ξ ε
σ

=
−

    

2

2 22 1 1
2

2
0 0

1 1ln 1
2

q q
noise

q
q

σ σ

ξ
ξ σ ξ

 − −        





   − −   −   
  (35)         

The Lyapunov exponent is identified as (σ - 
q2/2) for dynamical system (22) [Hasmin’skii 
1980].   For a small noise level ( noiseξ  1), 
the second term in the bracket of the 
righthand  of (35) 

R= 2

2 22 1 1
2

2
0

1 1
2

q q
noise

q
q

σ σ

ξ
σ ξ

 − −           
−

−               (36)                           −

is  negligible. The solution (35) becomes 
                                  

0
Lim
ε → 1 0 2

0

1( , , ) ln
/ 2noise q

τ ξ ξ ε
σ

1
ξ


= −  


     (37)                                 

which shows that the stochastic forcing (q ≠ 
0),  reduces the Lyapunov exponent  (σ - 
q2/2),  stabilizes the dynamical system (22),  
and in turn increases the mean VPP. On the 
other hand, the initial error 0ξ reduces the 
mean VPP. 
 For a large noise level noiseξ , the 
second term in the bracket of the righthand 
of (35) is not negligible. For a positive 
Lyapunov exponent, 2 >0, this term is 
always negative [see (36)]. The absolute 
value of R increases with increasing q

2qσ −

2 
(remember that noiseξ <1, 0ξ < 1). Thus, the 
term (R) destabilizes the one-dimensional 
stochastic dynamical system (22), and 
reduces the mean VPP.   
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Figures 5.  Dependence of 2 0

( , , )
noise

τ ξ ξ ε  on 

the initial condition error 
0

ξ  for four different 
values of ε (0.01, 0.1, 1, and 2) and four 
different values of random noise noiseξ  (0.1, 
0.2, 0.4, and 0.6) using Nicolis model with 
stochastic forcing q2 = 0.2.   
 

 
Figures 6.  Dependence of 2

1 0( , , )noise qτ ξ ξ  

on the initial condition error 
0

ξ  for three 
different values of the stochastic forcing q2 
(0.1, 0.2, and 0.4) using Nicolis model with  
Two different values of ε (0.1, and 1) and two 
different values of noise level noiseξ  (0.1, and 
0.6). 
 
 

 
Figures 7.  Dependence of 2

2 0( , , )noise qτ ξ ξ  

on the initial condition error 0ξ  for three 
different values of the stochastic forcing  q2 
(0.1, 0.2, and 0.4) using Nicolis model with  
Two different values of ε (0.1,  and 1) and two 
different values of noise level noiseξ  (0.1,  and 
0.6). 
 
6. Conclusions 

(1) The model valid prediction 
period (t – t0) depends not only on the 
instantaneous error growth, but also on the 
noise level, the tolerance level, and the 
initial error. A theoretical framework was 
developed in this study to determine the 
mean (τ1) and variability (τ2) of   model valid 
prediction period for nonlinear stochastic 
dynamical system. The joint probability 
density function of the valid prediction period 
and initial error satisfies the backward 
Fokker-Planck equation when the valid 
prediction period is assumed homogeneous. 
After solving the backward Fokker-Planck 
equation, it is easy to obtain the ensemble 
mean and variance of the model valid 
prediction period.  

(2) Uncertainty in ocean (or 
atmospheric) models are caused by 
measurement errors (initial and/or boundary 
condition errors), model discretization, and 
uncertain model parameters. This leads to 
the inclusion of stochastic forcing in ocean 
(atmospheric) models. The backward 
Fokker-Planck equation can be used for 
evaluation of ocean (or atmospheric) model 
predictability through calculating the mean 
model valid prediction period.   
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 (3) For an autonomous dynamical 
system, time-independent second-order 
linear differential equations are derived for  
τ1 and τ2 with given boundary conditions. 
This is a well-posed problem and the 
solutions are easily obtained.  
             (4) For the Nicolis [1992] model, the 
second-order ordinary differential equations 
of τ1 and τ2   have analytical solutions, which 
clearly show the following features: (a) 
decrease of τ1 and τ2 with increasing initial 
condition error  (or with increasing random 
noise), (b) increase of τ1 and τ2 with 
increasing tolerance level ε. 
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