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1. INTRODUCTION  

  It is widely recognized that 
uncertainty in atmospheric and oceanic 
models can be traced back to two factors 
(Lorenz 1984a, 1987).  First, in defining the 
state of atmosphere (or ocean), a number of 
errors are involved arising from the finite 
resolution of measurement or from 
discretization in a numerical experiment, as 
a result of which small-scale “subgrid” 
processes are either discarded or 
parameterized. Second, once present, small 
errors of the kind mentioned above trigger a 
complex response leading to their 
subsequent amplification. The model 
predictability versus boundary condition 
error was discussed by Chu (1999) using 
the Lorenz system.  

The model predictability can be 
measured by two parameters:  
instantaneous error (IE) and predictability 
time (PT). The IE and PT are used for 
models with and without given initial 
condition errors, respectively.   

The IE measure is widely used for 
model evaluation. The predictability is 
regarded as the model error growth due to 
the initial condition error. This implies that 
the initial condition error should be given. 
The evaluation process becomes to study 
the stability of the dynamical system with a 
given initial condition error and to determine 
either the leading (largest) Lyapunov 
exponent (e.g., Lorenz 1969) or the 
amplification factors calculated from the 
leading singular vectors (e.g., Farrell and 
Ioannou 1996 a, b).  It is well known that the 
stability analysis using the Lyapunov 
exponents and the singular vectors is not 
unique (Has'minskii, 1980). Probabilistic 
stability analysis becomes available in 
practical application (Ehrendorfer 1994 a, b; 
Nicolis 1992). The statistical properties of 
the prediction error are described through 
the probability density function (PDF) 
satisfying the Liouville equation or the 
Fokker-Plank equation.  Solving this 

equation, we may calculate the mean and 
variance of errors.  Nicolis (1992) explored 
the probabilistic properties of error-growth 
dynamics  in the atmosphere using a simple 
low-order model (displaying a single positive 
Lyapunov exponent) giving rise to chaotic 
behavior. A large number of numerical 
experiments were performed to assess the 
relative importance of average and random 
elements in error growth.  
  In this study, we first develop a 
theoretical framework for predictability 
evaluation using the PT measure, and then 
to illustrate its usefulness using the one-
dimensional probabilistic error growth model 
proposed by Nicolis (1992).  
 

2. PREDICTABILITY ERROR  
2.1.   Dynamical System with 
Stochastic Forcing 

Let x(t) = [x(1)(t), x(2)(t), …, x(n)(t)] be the  
full set of variables characterizing the 
dynamics of the atmosphere (or ocean) in a 
certain level of  description. We embed the 
evolution of x(t) in a phase space spanned 
by the whole set of variables [x(1)(t), x(2)(t), 
…, x(n)(t)]. Let deterministic law be given by  

                   ),( t
dt
d xfx =                                                          

where f is a functional. With a stochastic 
forcing q, Eq.(1) becomes a stochastic 
differential equation  
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dt
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Atmospheric (or ocean) prediction is to find 
the solution of (2) with an initial condition  
                                  (2)                                 

where  x  is an initial particle  position in 
the phase space.  For simplicity, we assume 
in this paper that the stochastic forcing g is a 
white noise with zero mean                                                         
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where  the  bracket < >  is defined as 
ensemble mean over realizations generated 
by the stochastic forcing q(t), and δ is the 
Delta function. 
 

2.2. Prediction Model and Error 
Variance 

Let y(t) = [y(1)(t), y(2)(t), …, y(n)(t)]  be  
the  prediction of x(t) using a  prediction  
model   
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d yhy =                              (5)                                                                   
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        (11)                                 with an initial condition  
                .                             (6)                 00 yy =)t( 2 ∂∂∂                                             3.2. PT Measure 
         Difference between reality (x) and 
prediction (y) at any time t (>t0 )   
                         yxz −=  
is defined as the  prediction error vector and  
this difference at t0    
                         000 yxz −=  
is defined as the initial error vector.  If the 
components [x(1)(t), x(2)(t), …, x(n)(t)] are not 
equally important in terms of prediction, the 
uncertainty of model prediction can be 
measured by the error variance                   

        Var(z)=〈z’Az〉                             (7)                                                                            

                                         

which represents an ellipsoid Sε(t) in the n-
dimensional phase space (Fig. 1), which is 
called the predictability ellipsoid. At any 
instance t, a valid model prediction is 
represented by a time period (t – t0) that the 
stochastic trajectory z is still in the ellipsoid 

(t). We may define (t – tεS 0) as the valid 
prediction period. Obviously, this parameter 
is a random variable since the trajectory z is 
stochastic. The joint probability density 
function of  (t – t0) and z0 satisfies the 
backward Fokker-Planck equation (Section 
3.6 in Gardiner 1983) 

with an n×n  diagonal weight matrix  

   . (8)                                  
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where A1 , A2 , … An  are  non-negative real 
numbers, which represent  relative 
importance of  the corresponding 
components. Here, the superscript prime 
indicates the transpose of the prediction 
error vector z.   
3. TWO TYPES OF MODEL 
PREDICTABILITY MEASURES  

3.1. IE Measure  
Use of the IE measure is usually 

associated with the investigation of model 
error growth with a given initial error ζ0 

  |z0|=ζ0                                            
(9)                                                                  
For example, Nicolis (1992) defined the 
ensemble mean IE  
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which is the boundary condition of (13). The 
probability for the prediction error vector at  t 
= ∞  is zero,  

     0)),(,( 000 =−∈ tttStP εz

to evaluate the predictability of  the Lorenz 
attractor (1984). Here, Γ denotes the phase-
space region belonging to the attractor; ζ = | 
z |; the factor (½) accounts for the symmetry 
between x and y; and µ(Γ) is the volume of 
the attractor.  Since the dynamical system 
(1) contains stochastic forcing, the ensemble 
mean IE is a random variable with a 
probability function P̂ (ζ,,t ),  which satisfies 
the Fokker-Planck equation (Nicolis 1992) 

        Without knowing the initial error ζ0, we 
cannot use the IE measure to evaluate the 
model predictability. At that case, we may 
first define a scalar parameter, ε, called the  
tolerance prediction error.  The prediction is 
meaningful only if the error variance satisfies 
the following inequality 
                     Var(z)≤ε2                          (12)                                    
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        Suppose the prediction error vector z 
moving in the phase space (i.e., the 
prediction errors are not constant), and 
suppose the tolerance prediction error ε to 
be sufficiently small. The probability for z0 in 
the ellipsoid Sε (t) is zero (Fig. 1),  
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and the temporal integration of P(t0, z0, t – 
t0) from t0 to ∞ should be one, 
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0, z0, t – t0)  is the probability of the 
valid prediction period (t – t0) with the initial 
error vector z0 at t0, its  first moment      

                                                 

the procedure is much simpler. We multiply 
the backward Fokker-Planck equation  (13) 
by (t – t0) and  (t – t0)2 respectively, integrate 
both equations with respect to t from t0 to ∞, 
and obtain the PT equation        

                              

                                          

(16)  denotes the ensemble mean of the 
valid prediction period, or called PT. Its 
second moment 
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(17)  indicates the variation of  the valid 
prediction period, or called VPT. The 
uncertainty of initial condition errors is easily 
taken into account through additional 
averaging of (16) and (17) over an ensemble 
of initial perturbations.  
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4. A SELF-CONSISTENT PROBABILISTIC 
ERROR  GROWTH  MODEL   

 

 
Figure 1.   Phase space trajectories of model 
prediction y (solid curve) and reality x 
(dashed curve).  The  positions of reality and 
prediction trajectories at time instance are 
denoted by “*” and  “o ”, respectively.  
 
       3.3. PT and VPT Equations for an 
Autonomous System  
         Usually, two steps are used for 
computing PT and VPT: (1) to obtain P(t0, 
z0, t – t0)   through solving the backward 
Fokker-Planck equation (13), and (2) to 
compute PT and VPT using (16) and (17).  
For an autonomous dynamical system,  
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and the VPT equation 
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Both (18) and (19) are linear. Usually, they 
have analytical solutions.       
 

 
    To illustrate similarity and dissimilarity 
between PT and IE measures, we use the 
one-dimensional probabilistic error growth 
model (Nicolis 1992) 

  ξξσξ )()( 2 tvg
dt
d +−= , ∞<≤ ξ0  (20)                                 

which is the projection of a self-consistent 
stochastic error growth model [from the 
Lorenz attractor (Lorenz 1984)] into the 
unstable eigenvector ξ corresponding to the 
positive Lyapunov exponent σ.  

)( tt ′−δ)t((t)  ,0)( 2qvvtv =′= .     (21)                                 
The parameters in the error growth model 
(20) are chosen by Nicolis (1992) as 
                      

.             (22)                                 2.0   , 3.0  ,64.0 2 === qgσ
 

5. EVALUATION OF MODEL 
PREDICTABILITY WITH UNKNOWN 
INITIAL CONDITION ERROR  
 
5.1.  PT and VPT Equations 

       Due to limited sampling, the initial 
condition errors and its PDF are usually 
uncertain. Without knowing  and )0,(ˆ ξP
ξ |t=0, the IE measure is hardly used in 

predictability evaluation. However, the PT 
measure is easily used.  
      For the probabilistic error growth model 
(20), the PDF for the random variable (t – 
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t0), [i.e., P(t0, ξ0, t – t0)]  satisfies the 
backward Fokker-Planck equation,     
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and  the ellipsoid (12) becomes an interval, 
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The PT and VPT equations (18) and (19) 
become ordinary differential equations 
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 Figures 2 and 3 show the contour 
plots of ),,( 01 εξξτ noise  and ),,( 02 εξξτ noise  

versus 0 noise  for four different values 

of ε (0.01, 0.1, 1, and 2).   Both τ1 and τ2 are 
almost independent on the random noise 

noiseξ  (contours are almost paralleling to the 

horizontal axis) when the initial error ( 0ξ ) is 
larger, and are almost independent on the 
tolerance error ε when ε ≤ 0.1.    
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When the initial condition error reaches the 
tolerance level, ξ0 = ε, the model capability 
of prediction is lost no matter how good the 
model is, and τ1 and τ2 become zero,   
  ,01 =τ 02 =τ  for ξ0=ε. (30)                                 
When the initial condition error is below the 
noise level, ξnoise, the model capability of 
prediction does not depend on the initial 
condition, and τ1 and τ2  do not depend on 
ξ0,  
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 for ξ0=ξnoise              

(31)                                 
5.2.  Dependence of PT and VPT on 

),,( 0 εξξ noise                   
 Solving the second-order differential 
equations (28) and (29) with the boundary 
conditions (30) and (31), we obtain an 
analytic solutions for τ1   
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and for τ2    

                                                              (33) 
where  

εξξ /00 = ,      εξξ /noisenoise =     
are the initial condition error and noise level 
scaled by the tolerance error ε.  

 
Figures 2. Contour plots of ),,( 01 εξξτ noise  

versus ),( 0 noiseξξ  for four different values of 

ε (0.01, 0.1, 1, and 2) using Nicolis model with 
stochastic forcing. 

 4



 
Figures 3. Contour plots of ),,( 02 εξξτ noise  

versus ),( 0 noiseξξ  for four different values of 
ε (0.01, 0.1, 1, and 2) using Nicolis model with 
stochastic forcing. 
  
6. CONCLUSIONS 

(1) There are two model 
predictability measures: instantaneous error 
and predictability time. The instantaneous 
error measure is used for models with a 
given initial condition error. The predictability 
time measure is used for models with 
uncertain initial condition error.   

(2) We developed a theoretical 
framework to determine the predictability 
time (τ1) and its variability (τ2) for nonlinear 
stochastic dynamical system. The initial 
condition error (z0) and the valid prediction 
period (t – t0) are treated as random 
variables. The joint probability density 
function, P(t0, z0, t – t0), satisfies the 
backward Fokker-Planck equation when the 
random variable (t – t0) is assumed 
homogeneous. This equation has two 
independent variables  (t, z0) and given 
initial and boundary conditions (well-posed).  
After solving the backward Fokker-Planck 
equation, it is easy to obtain τ1 and τ2 since 
they are the ensemble mean and variance of  
(t – t0), respectively.  

(3) For an autonomous dynamical 
system, we derived time-independent 
second-order linear differential equations for 
τ1 and τ2 with given boundary conditions. 

This is a well-posed problem and the 
solutions are easily to be obtained.  
             (4) For the one-dimensional 
probabilistic error growth model (Nicolis 
1992), the second-order ordinary differential 
equations of τ1 and τ2   have analytical 
solutions, which show the following features 
of τ1 and τ2: (a) decreasing with increasing 
initial condition error  (or with increasing 
random noise), (b) increasing with the 
increasing tolerance error ε, (c) almost 
independent on ε with small tolerance error 
(ε ≤ 0.1).   
            (5) The stochastic forcing, acting as 
a multiplicative white noise, reduces the 
Lyapunov exponent (increase predictability 
time)  and stabilizes dynamical system (i.e.,  
Nicolis’ one-dimensional probabilistic error 
growth model). On the other hand, the 
random noise  decreases the predictability 
time and destabilizes the dynamical system. 
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