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Abstract Prediction of atmospheric 
phenomena needs three components: a 
theoretical (or numerical) model based on 
the natural laws (physical, chemical, or 
biological), a sampling set of the reality, and 
a tolerance level. Comparison between the 
predicted and sampled values leads to the 
estimation of model error. In the error phase 
space, the prediction error is treated as a 
point; and the tolerance level (a prediction 
parameter) determines a tolerance-ellipsoid. 
The prediction continues until the error first 
exceeding the tolerance level (i.e., the error 
point first crossing the tolerance-ellipsoid), 
which is the first-passage time. Well-
established theoretical framework such as 
backward Fokker-Planck equation can be 
used to estimate the first-passage time – an 
up time limit for any model prediction. A 
population dynamical system is used as an 
example to illustrate the concept and 
methodology and the dependence of the 
first-passage time   on the model and 
prediction parameters.   

  
1. Introduction  

Global numerical weather prediction (NWP) 
started from the use of multi-level, primitive-
equation model. For dry adiabatic atmosphere, 
the  equations for momentum, thermodynamics, 
continuity, and the hydrostatic relation in σ -
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coordinate system (Phillips, 1959, 1970) are 
given by  

 

   *lnD f RT p
Dt

= − × − ∇Φ − ∇ +
V k V F ,    (1) 

 
p

DT RT
Dt c

σ σ
σ σ

∂ = − − ∇ ∂ 
V

� �
i ,               (2) 

  *lnD p
Dt

σ
σ

∂
= −∇ −

∂
V

�
i ,                      (3) 

       .RT
σ σ

∂Φ
= −

∂
                                (4) 

where the vertical coordinate is defined as 
*/p pσ =  where *p  denotes the surface pressure 

and p the pressure within the atmosphere. V is 
the horizontal wind vector with eastward and 
northward components of u and v, respectively; 
T is the absolute temperature; Φ is the 
geopotential height; f is the Coriolis parameter; k 
is the vertical unit vector; ∇ is the horizontal 
gradient operator, σ�  is the total time derivative 
of σ , cp is the specific heat at constant pressure 
for dry air; and D/Dt is total time derivative.  
 Robert (1966) noted that the two scalars u and 
v are not well suited to representation in terms of 
scalar spectral expansions. Robert suggested that 
the variables,  
  

        cos ,   cos ,U u V vφ φ= =                 (5) 
  
would be more appropriate in the global spectral 
formulation. Here, φ  is latitude. Use of the 
Helmholtz theorem, the velocity components are 
represented by a stream function (ψ ) and a 
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velocity potential ( χ ),  
  

          cos 1 ,U
a a
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where (a, ,λ φ )  are earth radius, longitude, and 
latitude.  
 The dependent variables are decomposed into 
spectral form with the basis functions of 

( , ) (sin ) ,m m im
l lY P e λφ λ φ=  where (sin )m

lP φ  is an 
associated Legendre polynomial of the first kind 
normalized to unity. Let the spectral amplitudes 
for the velocity potential, temperature, and 
surface pressure (logarithm) be represented by a 
vector x, which depends on time only. The 
spectral model is to predict the weather through 
solving the following ordinary differential 
equation for x (Bourke, 1974),    

                   ( , )d t
dt

=
x f x ,                                 (8) 

where f is a functional representing the spectral 
amplitude tendencies.  

When the mode number tends to infinity, the 
dynamical system (8) is the same as the original 
equations (1)-(4). Practically, the spectral model 
is truncated at a certain wave number J.  

Uncertainty in spectral models (such as mode 
truncation, subgrid-scale paramterization, etc.) 
leads to the addition of stochastic forcing. For 
simplicity, a stochastic forcing (f’) is assumed to 
be white multiplicative or additive noise, and (8) 
becomes  

                
ˆ ˆ ˆ( , ) '( , )d t t

dt
= +

x f x f x ,                   

                 ˆ ˆ'( , ) ( , ) ( )t t t=f x k x g ,                     (9) 
where ( , )tk x  and )(tg  are the forcing 
covariance matrix { ijk } (dimension of JJ) and 
the vector delta-correlated  process (dimension 
of J), respectively. 
 Let ( )tx  be the reference solution which 
satisfies (8) with the reference initial condition,  

                             0 0( )t =x x .   
Individual prediction using the spectral model is 
to integrate the differential equation (9) from the 
initial condition, 

                        0 0ˆ ˆ( )t =x x . 
The model error z is determined as                    
                   z(t)= ˆ( ) ( )t t−x x ,                       (10)   
Two vectors x(t) and x̂ (t) are considered as 
reference and prediction points in the J-
dimensional phase space.   
     A question arises: How long is the model (9) 
valid since being integrated from its initial state? 
This has great practical significance. In this 
paper, probabilistic stability analysis is proposed 
to investigate the model valid period.  This 
method is on the base of the first-passage time 
(FPT) for model prediction.   
 
      2. First-Passage Time 
 

In NWP, two model error limits should be 
priori defined. First, the forecast error cannot be 
less than a minimum scale δ , which depends on 
the intrinsic noises existing in the model. 
Second, the forecast error cannot be more than a 
maximum scale (tolerance level)ε . The 
prediction is valid if the reference point x(t) is 
situated inside the ellipsoid ( Sε , called tolerance 
ellipsoid) with center at the prediction point x̂ (t) 
and size ε . When x(t) coincides with x̂ (t), the 
model has perfect prediction. The prediction is 
invalid if the reference point x(t) touches the 
boundary of the tolerance ellipsoid at the first 
time from the initial state that is first passage 
time (FPT) for prediction (Fig. 1).  FPT is a 
random variable when the model has stochastic 
forcing or initial condition has random error. Its 
statistics such as the probability density function, 
mean and variance can represent how long the 
model can predict. The FPT,   τ =  t – t0, depends 
on the initial model error, 0 0( )t≡z z , tolerance 
level ε , and model parameters. The longer the 
FPT,   the more stable of the economic model is 
Chu et. al., 2002a,b).   
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Figure 1.   Phase space trajectories of model prediction x̂  
(solid curve) and reality x (dashed curve) and error 
ellipsoid Sε(t) centered at x̂ .  The positions of reality and 
prediction trajectories at time instance are denoted by “*” 
and  “o ”, respectively).  A valid prediction is represented 
by a time period (t – t0) at which the error first goes out of 
the ellipsoid Sε(t).   
 
       3. Backward Fokker-Planck Equation 
      

The conditional probability density function 
(PDF) of FPT with a given initial 
error, 0 0[( ) | ]P t t− z , satisfies the backward 
Fokker-Planck equation  (Pontryagin et al. 1962;  
Gardiner, 1985;  Chu et al. 2002)   
         

2
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                                                                    (11) 
                                                         
where the coefficients kij are the components of  
the forcing covariance matrix ( , )tκ x  and   

0 0 0
1 2( , ,... )Jz z z  are the components of the initial 

error z0.  Integration of PDF over t leads to,  

    
0

00[( ) | ] 1
t

P t t dt
∞

− =∫ z .                       (12) 

The k-th FPT moment (k = 1, 2, …) is  calculated  
by,        

( )
0

-1
0 00 0( ) [( ) | ] - ,    1,...,k

k
t

k P t t t t dt kτ
∞

= − = ∞∫z z .                  

                                                                    (13)   

If the initial error z0 reaches the tolerance level, 
the model loses prediction capability initially   
(i.e., FPT is zero)      
       00[( ) | ]P t t− z =0,       at    J(z0)=ε2,       (14a) 

which is the absorbing type boundary condition. 
Here J(z0) denotes the norm of z0. If the initial 
error reaches the noise level the boundary 
condition becomes (Gardiner, 1985)   

    0 0
( )
0

[( ) | ] 0j

P t t
z

∂ −
=

∂
z ,     at      J(z0)= 2δ ,   (14b)                    

which is  the   reflecting  boundary conditions. 
Here, ξ  is the noise level. Usually,  

                            δ ε� . 
Mean, variance, skewness, and kurtosis of the 
FPT are calculated from the first four moments,                    

                            1 τ τ= ,                      (15a)          

                            2 2
2 1δτ τ τ= − ,             (15b) 

               3 3
3 2 1 13 2δτ τ τ τ τ= − + ,            (15c) 

       4 2 4
4 3 1 2 1 14 6 3δτ τ τ τ τ τ τ= − + − ,         (15d) 

where the bracket  denotes the ensemble average 
over realizations generated by stochastic forcing.  

4. Lorenz System – A Simple Spectral Model 

The Lorenz (1984) system is taken as an 
example to demonstrate the usefulness of the 
FPT approach. The Lorenz system is the simplest 
possible model capable of representing an 
unmodified or modified Hadley circulation, 
determining its stability, and, if it is unstable, 
representing a stationary or migratory 
disturbance. The model consists of the three 
ordinary nondimensional differential equations  
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dx x x ax aF
dt
dx x x bx x x G
dt
dx bx x x x x
dt

= − − − +

= − − +

= + −

                      (16) 

where t is the time scaled by five days; x1   
represents the intensity of the symmetric globe-
encircling westerly wind, and also the poleward 
temperature gradient, which is assumed to be in 
permanent equilibrium with the wind; x2 and x3 
are the cosine and sine phases, respectively, of a 
chain of superposed large-scale eddies, which 
transport heat at a rate proportional to the square 
of their amplitude, and transport no angular 
momentum at all. The terms, aF and G, represent 
symmetric and asymmetric thermal forcing. The 
terms, x1x2 and x1x3, describe amplification of 
eddies through interaction with the westerly 
currents. The displacement of eddies by the 
westerly wind is parameterized using the terms –
bx1x3 and bx1x2 . The parameter a is the damping 
coefficient.  

The traditional stability analysis on the Lorenz 
model (16) leads to three Lyapunov exponents. 
Among them, only one is positive. Projection of 
the three-dimensional forecast error vector onto 
the unstable manifold leads to a self-consistent 
model (Nicolis 1992) 

           

0t t 0( ) ( ) ,  d g t
dt
ξ σ ξ ξ ν ξ ξ ξ== − + = , [ )∞∈ ,0ξ ,                                      

                                                        (17)  
where ξ  is non-dimensional amplitude of error, 
g is a non-negative, generally time-independent 
nonlinear parameter whose properties depend on 
the underlying attractor. Eq.(17) is written in Ito 
form. The tangent approximation of error growth 
leads to g = 0. The eigenvector ξ  is associated 
with the positive Lyapunov exponent (σ). The 
term ξν )(t  is a specially chosen stochastic 
forcing with zero mean and pulse-type variance   
                             
      0)( =tν , 2( ) ( ) ( ),t t q t tν ν ′ ′= ∆ −           (18) 

where the bracket  is defined as ensemble mean 
over realizations generated by the stochastic 
forcing,  ∆ is the Delta function, and  2q  is the 
intensity of  attractor fluctuations modeled as 
multiplicative noise forcing. 
 Combination of free model parameters 

2,  and  g qσ affects the model prediction skill.  
Nicolis (1992) used the following values  
     2.0q     0.3,g     ,64.0 2 ===σ .            (19) 
In reality the dynamical characteristics of the 
atmosphere vary considerably between different 
synoptic situations. Model forecast skill depends 
on various factors such as season, location, and 
boundary conditions. Evidence shows variability 
of forecast skill in operational models such as the 
European Center for Medium-Range Weather 
Forecasts (ECMWF) model.    Therefore, the 
parameters 2,  and  g qσ  should be time and 
attractor dependent.   This problem is not 
addressed here. However, in contrasting to 
Nicolis (1992) we assume  
 0.2 ≤ σ ≤0.64,  g = 0.3,   0.01 ≤ q2 ≤0.6,      (20) 
in this study. Since the Nicolis model is 
analytical, the parameter  should be small and           
                     5

1 / 10z ε δ≡ =   
is assumed. This should be satisfactory for the 
quality analysis of the prediction skill.  
 Use of the self-consistent model (17) has 
several explicit advantages.  First, it allows 
analytical study on linear and nonlinear 
perspectives of forecast error. Second, the 
methodology developed by Nicolis (1992) can be 
generalized to more realistic atmospheric 
models. Third, model contains several dynamical 
regimes of forecast error behavior.  Obviously, 
their analytical study may be useful for the 
interpretation of   results obtained by large 
atmospheric models. 
 
5. Mean and Variance of FPT 

How long is the model (17) valid once being 
integrated from the initial state? Or what are the 
mean and variance of FPT of (17)? To answer 
these questions, we should first find the 
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equations depicting the mean and variance of 
FPT for (17).  Applying the theory described in 
Sections 2 and 3 to the model (17), the backward 
Fokker-Planck equation becomes,     

 [ ]
2

2 2

0 20 0 0

1 0
2

P P Pg q
t

σξ ξ
ξ ξ

∂ ∂ ∂
− − − =

∂ ∂ ∂
,            (21) 

with the initial error (ξ0)  bounded by, 

                0noiseξ ξ ε≤ ≤ . 

We multiply Eq.(21)  by (t – t0) and  (t – t0)2 ,   
then integrate  with respect to t from t0 to ∞, and 
obtain the first two moments of FPT equation 

       
22 2

12 0 1
0 0 2

0 0

( ) 1
2

qd dg
d d

ξτ τσξ ξ
ξ ξ

− + = − ,         (22) 

     
22 2

2 202
10 0 2

0 0

( ) 2
2

qd dg
d d

ξτ τσξ ξ τ
ξ ξ

− + = − ,        (23) 

with the boundary conditions, 

         ,01 =τ  02 =τ ,     for ξ0 = ε                  (24) 

   ,0
0

1 =
ξ
τ

d
d  0

0

2 =
ξ
τ

d
d , for ξ0 = ξnoise.         (25)              

     Analytical solutions of (22) and (23) with the 
boundary conditions (24) and (25) are  

 

0

1 0
2 21 22 2

2 22
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q q
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q q q
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                                                                   (26) 

and    

0
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q q q
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ξ ξ
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ε ετ
− −

=

 
− 

  
∫ ∫

                                                                  (27) 

where  

         εξξ /00 = ,       εξξ /noisenoise =     

are non-dimensional initial condition error and 
noise level scaled by the tolerance level ε, 
respectively.  For given tolerance and noise 
levels (or user input), the mean and variance of 
FPT can be calculated using (26) and (27).  

6. Dependence of τ1 and τ2 on ),,( 0 εξξ noise                   

To investigate the sensitivity of τ1 and τ2 to 

0, ,noiseξ ξ  and ,  the same values are used for the 
parameters in the stochastic dynamical system 
(17) as in Nicolis (1992) 

              σ = 0.64, g = 0.3, q2 = 0.2.           (28) 

Figures 2 and 3 show the contour plots of 
),,( 01 εξξτ noise  and ),,( 02 εξξτ noise  versus 

),( 0 noiseξξ  for four different values of ε (0.01, 
0.1, 1, and 2).  Following features can be 
obtained: (a) For given values of 0( , )noiseξ ξ  [i.e., 
the same location in the contour plots], both τ1 
and τ2 increase with the tolerance level ε. (b) For 
a given value of tolerance level ε, both τ1 and τ2 
are almost independent on the noise level noiseξ  
(contours are almost paralleling to the horizontal 
axis) when the initial error ( 0ξ ) is much larger 
than the noise level ( noiseξ ). This indicates that 
the effect of the noise level ( noiseξ ) on τ1 and τ2 
becomes evident only when the initial error ( 0ξ ) 
is close to the noise level ( noiseξ ).  (c) For given 
values of  (ε,  noiseξ ), both τ1 and τ2 decrease 
with increasing initial error .0ξ   

     Figures 4 and 5 show the curve plots of 
),,( 01 εξξτ noise  and ),,( 02 εξξτ noise  versus 0ξ  for 

four different values of tolerance level, ε (0.01, 
0.1, 1, and 2) and four different values of random 
noise noiseξ  (0.1, 0.2, 0.4, and 0.6).  Following 
features are obtained: (a) τ1 and τ2 decrease with 
increasing 0ξ , which implies that the higher the 
initial error, the lower the predictability (or  FPT) 
is; (b) τ1 and τ2 decrease with increasing noise 
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level noiseξ , which implies that the higher the 
noise level, the lower the predictability (or FPT) 
is; and (c) τ1 and τ2 increase with the increasing 
ε, which implies that the higher the tolerance 
level, the longer the FPT is. Note that the results 
presented in this subsection is for a given value 
of stochastic forcing (q2 = 0.2) only. 

 

Figures 2. Contour plots of ),,( 01 εξξτ noise  versus 

),( 0 noiseξξ  for four different values of ε (0.01, 0.1, 1, and 

2) using Nicolis model with stochastic forcing q2 = 0.2.  
The contour plot covers the half domain due to 

.0 noiseξ ξ≥  

 
Figures 3. Contour plots of ),,( 02 εξξτ noise  versus 

),( 0 noiseξξ  for four different values of ε (0.01, 0.1, 1, and 

2) using Nicolis model with stochastic forcing q2 = 0.2. 
The contour plot covers the half domain due to 

.0 noiseξ ξ≥  

 
Figures 4.  Dependence of ),,( 01 εξξτ noise  on the initial 

condition error 0ξ  for four different values of ε (0.01, 

0.1, 1, and 2) and four different values of random noise 

noiseξ  (0.1, 0.2, 0.4, and 0.6) using Nicolis model with 
stochastic forcing q2 = 0.2.   
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Figures 5.  Dependence of ),,( 02 εξξτ noise  on the initial 

condition error 0ξ  for four different values of ε (0.01, 

0.1, 1, and 2) and four different values of random noise 

noiseξ  (0.1, 0.2, 0.4, and 0.6) using Nicolis model with 
stochastic forcing q2 = 0.2.   
 

6. Dependence of τ1 and τ2 on Stochastic 
Forcing (q2) 

To investigate the sensitivity of τ1 and τ2 to the 
strength of the stochastic forcing,  q2, we use the 
same values for the parameters (σ = 0.64, g = 
0.3) in (30) as in Nicolis [1992] except q2, which 
takes values of 0.1, 0.2, and 0.4.   
    Figures 6 and 7 show the curve plots of 

2
1 0( , , )noise qτ ξ ξ  and 2

2 0( , , )noise qτ ξ ξ  versus 0ξ  
for two tolerance levels (ε = 0.1, 1), two noise 
levels ( noiseξ = 0.1, 0.6), and three different 
values of q2 (0.1, 0.2, and 0.4) representing 
weak, normal, and strong stochastic forcing.  
Two regimes are found: (a) τ1 and τ2 decrease 
with increasing q2 for large noise level ( noiseξ = 
0.6), (b) τ1 and τ2 increase with increasing q2 for 
small noise level ( noiseξ = 0.1), and (c) both 
relationships (increase and decrease of τ1 and τ2 
with increasing q2) are independent of ε.   

 

 
Figures 6.  Dependence of 2

1 0( , , )noise qτ ξ ξ  on the initial 

condition error 0ξ  for three different values of the 

stochastic forcing q2 (0.1, 0.2, and 0.4) using Nicolis 
model with two different values of ε (0.1, and 1) and two 
different values of noise level noiseξ  (0.1, and 0.6). 

 

 

Figures 7.  Dependence of 2
2 0( , , )noise qτ ξ ξ  on the 

initial condition error 0ξ  for three different values of the 

stochastic forcing  q2 (0.1, 0.2, and 0.4) using Nicolis 
model with two different values of ε (0.1,  and 1) and two 
different values of noise level noiseξ  (0.1,  and 0.6). 
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   This indicates the existence of stabilizing and 
destabilizing regimes of the dynamical system 
depending on stochastic forcing. For a small 
noise level, the stochastic forcing stabilizes the 
dynamical system and increase the mean FPT.    
For a large noise level, the stochastic forcing 
destabilizes the dynamical system and decreases 
the mean FPT.     

   The two regimes can be identified analytically 
for small tolerance level   ( 0→ε ). The initial 
error 0ξ  should also be small ( 0ξ ε). The 
solutions (26) becomes 

1 00
 ( , , )Lim noiseε
τ ξ ξ ε

→
=

2

2 22 1 1
2

22
0 0

1 1 1ln 1
/ 2 2

q q
noise

q
q q

σ σ

ξ
σ ξ σ ξ

  − −          

   − −  − −   
 .                                                                   (29)       

The Lyapunov exponent is identified as (σ - 
q2/2) for dynamical system (17) [Hasmin’skii 
1980].    

     For a small noise level ( noiseξ  1), the second 
term in the bracket of the righthand  of (29) 

 R= 2

2 22 1 1
2

2
0

1 1
2

q q
noise

q
q

σ σ

ξ
σ ξ

  − −          

− −
−

,            (30) 

is  negligible. The solution (29) becomes 

Lim
0→ε

1 0 2
0

1 1( , , ) ln
/ 2noise q

τ ξ ξ ε
σ ξ

 
=  −  

,     (31) 

which shows that the stochastic forcing (q ≠ 0),  
reduces the Lyapunov exponent  (σ - q2/2),  
stabilizes the dynamical system (17),  and in turn 
increases the mean FPT. On the other hand, the 
initial error 0ξ reduces the mean FPT. 

    For a large noise level noiseξ , the second term 
in the bracket of the righthand of (29) is not 
negligible. For a positive Lyapunov exponent, 

22 qσ − >0, this term is always negative [see 
(30)]. The absolute value of R increases with 
increasing q2 (remember that noiseξ <1, 0ξ < 1). 

Thus, the term (R) destabilizes the one-
dimensional stochastic dynamical system (17), 
and reduces the mean FPT.    
7. Conclusions 

(1) FPT (a single scalar) represents the model 
predictability skill.  It depends not only on the 
instantaneous error growth, but also on the noise 
level, the tolerance level, and the initial error. A 
theoretical framework was developed in this 
study to determine the mean (τ1) and variability 
(τ2) of   valid prediction period for nonlinear 
stochastic dynamical system. The probability 
density function of the valid prediction period 
satisfies the backward Fokker-Planck equation. 
After this equation, it is easy to obtain the 
ensemble mean and variance of the valid 
prediction period.  

(2) Uncertainty in atmospheric models are 
caused by measurement errors (initial and/or 
boundary condition errors), model discretization, 
and uncertain model parameters. This motivates 
to the inclusion of stochastic forcing in ocean 
(atmospheric) models. The backward Fokker-
Planck equation can be used for evaluation of 
ocean (or atmospheric) model predictability 
through calculating the mean FPT.   
 

(3) For the Nicolis (1992) model, the second-
order ordinary differential equations of τ1 and τ2   
have analytical solutions, which clearly show the 
following features: (a) decrease of τ1 and τ2 with 
increasing initial condition error  (or with 
increasing random noise), (b) increase of τ1 and 
τ2 with increasing tolerance level ε.  

 

(4) Both stabilizing and destabilizing regimes are 
found in the Nicolis model   depending on 
stochastic forcing. For a small noise level, the 
stochastic forcing stabilizes the dynamical 
system and increases the mean VPP.  For a large 
noise level, the stochastic forcing destabilizes the 
dynamical system and decreases the mean VPP.      
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