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Abstract Predetermination of background error covariance
matrix B is challenging in existing ocean data assimilation
schemes such as the optimal interpolation (OI). An optimal
spectral decomposition (OSD) has been developed to over-
come such difficulty without using the B matrix. The basis
functions are eigenvectors of the horizontal Laplacian op-
erator, pre-calculated on the base of ocean topography, and
independent on any observational data and background
fields. Minimization of analysis error variance is achieved
by optimal selection of the spectral coefficients. Optimal
mode truncation is dependent on the observational data and
observational error variance and determined using the
steep-descending method. Analytical 2D fields of large
and small mesoscale eddies with white Gaussian noises
inside a domain with four rigid and curved boundaries
are used to demonstrate the capability of the OSD method.
The overall error reduction using the OSD is evident in
comparison to the OI scheme. Synoptic monthly gridded
world ocean temperature, salinity, and absolute geostroph-
ic velocity datasets produced with the OSD method and
quality controlled by the NOAA National Centers for
Environmental Information (NCEI) are also presented.

Keywords Ocean data assimilation . Optimal spectral
decomposition(OSD) .Basisfunctions .Lagrangianoperator .

Background error covariancematrix . Observational error
covariancematrix . Optimal interpolation .World ocean
synoptic monthly gridded data

1 Introduction

In ocean data assimilation (or analysis), the coordinates (x, y,
z) are usually represented by the position vector r with grid
points represented by rn, n = 1, 2, …, N, and observational
locations represented by r(m), m = 1, 2, …, M. Here, N is the
total number of the grid points, and M is the total number of
observational points. A single or multiple variables c = (u, v, T,
S,…), no matter two or three dimensional, can be ordered by
grid point and by variable, forming a single vector of length
NPwith N the total number of grid points and P the number of
variables. For multiple variables, non-dimensionalization is
conducted before forming a single vector c (Chu et al. 2015)
with “true”, analysis, and background fields (ct, ca, cb) and
observational data (co) being represented by N and M dimen-
sional vectors,

cTt;a;b ¼ ct;a;b r1ð Þ; ct;a;b r2ð Þ;…; ct;a;b rNð Þ� �
; cTo

¼ co r 1ð Þ
� �

; co r 2ð Þ
� �

;…; co r Mð Þ
� �h i

; ð1Þ

where the superscript ‘T’means transpose. The innovation (or
called the observational increment

d≡ co−Hcbð Þ; ð2Þ

represents the difference between the observational and back-
ground data at the observational points r(m). Here, H = [hmn] is
an M × N linear observation operator matrix converting the
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background field cb (at the grid points, rn) into “first guess ob-
servations” at the observational points r(m) (Fig. 1).

The analysis error (εa) and observational error (εo) are
defined by

εa ¼ ca−ct; εo≡HTco−ct; ð3aÞ

which are evaluated at the grid points. The two errors are
usually independent of each other,

εTo εa
� � ¼ 0; hi≡ 1

N−1

XN
n¼1

½�: ð3bÞ

Minimization of the analysis error variance

E2 ¼ εTa εa
� �

→min ð4Þ

gives the optimal analysis field ca for the “true” field ct.
A common practice in ocean data assimilation (or analysis) is

to use a N ×Mweight matrixW= [wnm] to blend cb (at the grid
points rn) with innovation d (at observational points r(m))
(Evensen 2003; Tang and Kleeman 2004; Chu et al. 2004a;
2015; Galanis et al. 2006; Oke et al. 2008; Han et al. 2013;
Yan et al. 2015)

ca ¼ cb þWd: ð5Þ

Minimization of the analysis error variance with respect to
weights,

∂E2=∂wnm ¼ 0: ð6Þ
determines the weight matrix

W ¼ BHT HBHT þ R
� 	−1

: ð7Þ

Here,B is theN ×N background error covariancematrix;R
is the M × M observational error covariance matrix and is
usually simplified as a product of an observational error var-
iance (e2o ) and an identity matrix I,

R ¼ e2oI: ð8Þ

Substitution of (7) into (5) leads to the optimal interpolation
(OI) equation,

ca ¼ cb þ BHT HBHT þ R
� 	−1

d; ð9Þ

which produces the analysis field ca from the innovation d.
The challenge for the OI method is the determination of the
background error covariance matrix B.

An alternative approach is to use a spectral method with
lateral boundary (Г) information to decompose the variable
anomaly at the grid points [c(rn) − cb(rn)] into (Chu et al.
2015),

ca rnð Þ−cb rnð Þ ¼ sK rnð Þ; sK rnð Þ≡
XK
k¼1

ak ϕk rnð Þ; ð10Þ

where {ϕk} are basis functions; K is the mode truncation. The
eigenvectors of the Laplace operator with the same lateral
boundary condition of (c − cb) can be used as the set of the
basis functions {ϕk} and written in matrix (Chu et al. 2015)

Φ ¼ ϕknf g ¼
ϕ1 r1ð Þ ϕ2 r1ð Þ … ϕK r1ð Þ
ϕ1 r2ð Þ ϕ2 r2ð Þ … ϕK r2ð Þ
… … … …

ϕ1 rNð Þ ϕ2 rNð Þ … ϕK rNð Þ

2
664

3
775: ð11Þ

For a given mode truncation K, minimization of the analy-
sis error variance (4) with respect to the spectral coefficients

∂E2
K

.
∂ak ¼ 0; k ¼ 1; :::;K ð12Þ

gives the spectral ocean data assimilation equation (Chu et al.
2004b, 2015),

ca ¼ cb þ FΦT ΦFΦT
� �−1

ΦHTd; ð13Þ

where F is an N × N (diagonal) observational contribution
matrix

F ¼

f 1 0 0 0 0 0
0 f 2 0 0 0 0
0 0 ⋱ 0 0 0
0 0 0 f n 0 0
0 0 0 0 ⋱ 0
0 0 0 0 0 f N

2
6666664

3
7777775
; f n≡

XM
m¼1

hnm: ð14ÞFig. 1 Illustration of ocean data assimilation with cb located at the grid
points, and co located at the points (asterisk). The ocean data assimilation
is to convert the innovation, d = co − Hcb, from the observational points
to the grid points
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Here, the matricesΦ, F, andH are all given in comparison to
the OI Eq. (9) where the background error covariance matrix B
needs to be determined.

This spectral method has been proven effective for the
ocean data analysis. Chu et al. (2003a, b) named the
spectral method as the optimal spectral decomposition
(OSD). With it, several new ocean phenomena have been
identified from observational data such as a bi-modal
structure of chlorophyll-a with winter/spring (February–
March) and fall (September–October) blooms in the
Black Sea (Chu et al. 2005a), fall–winter recurrence of
current reversal from westward to eastward on the
Texas–Louisiana continental shelf from the current-meter,
near-surface drifting buoy (Chu et al. 2005b), propaga-
tion of long Rossby waves at mid-depths (around
1000 m) in the tropical North Atlantic from the Argo
float data (Chu et al. 2007), and temporal and spatial
variability of the global upper ocean heat content (Chu
2011) from the data of the Global Temperature and
Salinity Profile Program (GTSPP, Sun et al. 2009).

The spectral mode truncation is the key for the suc-
cess of the OSD method. It acts as a spatial low pass
filter for the fields to allow the highest wave numbers
corresponding to the highest spectral eigenvalues without
aliasing due to the information provided from the obser-
vational network.

Questions arise: Can a simple and effective mode trun-
cation method be developed to take into account of model
resolution (i.e., total number of model grid points)? What
are the major differences between OI and OSD? What is
the quality and uncertainty of the OSD method? The pur-
pose of this paper is to answer these questions. The

remainder of the paper is organized as follows.
Section 2 describes error analysis. Section 3 presents the
steep-descending mode truncation method. Section 4
shows idealized “truth” and “observational” fields.
Section 5 compares analysis fields between OSD and
OI. Section 6 introduces three synoptic monthly gridded
world ocean temperature, salinity, and absolute geostroph-
ic velocity datasets produced with the OSD method and
quality controlled by the NOAA National Centers for
Environmental Information (NCEI). Conclusions are giv-
en in Section 7. Appendices A and B briefly describe
several methods to determine the H matrix. Appendix C
shows the determination of basis functions. Appendix D
presents the Vapnik-Chervonenkis dimension for mode
truncation. Appendix E depicts a special B matrix for this
study.

2 Error analysis

Low mode truncation does not represent the reality well,
while high mode truncation may contain too much noise.
Let the truncated spectral representation sK in (10) at the
grid points form an N-dimensional vector,

sTK ¼ sK r1ð Þ; sK r2ð Þ;…; sK rNð Þ½ �: ð15Þ

The M-dimensional innovation vector [see (2)]

dT ¼ d r 1ð Þ
� �

; d r 2ð Þ
� �

; :::; d r Mð Þ
� �h i

at observational points can be transformed into the grid points

Dn≡D rnð Þ ¼

XM
m¼1

hnmd
mð Þ

f n
; f n≡

XM
m¼1

hnm; ð16Þ

where D(rn) represents the observational innovation at the
grid points,

D rnð Þ ¼ co rnð Þ−cb rnð Þ: ð17Þ

From Eq. (3a), observations at grid points are comput-
ed using co(rn) = HTco(rm). The original background
state, cb(rn), keeps in the grid space. The matrix form
of (16) is

FD ¼ HTd; ð18ÞFig. 2 Horizontal non-dimensional domain with four curved rigid
boundaries with each boundary given by Eq. (32)
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where fn denotes contribution of all observational data unto
the grid point rn. The larger the value of fn, the larger the
observational influence on that grid point (rn). D is an N-di-
mensional vector at the grid points,

DT ¼ D1;D2;…;DNð Þ ð19Þ

The analysis error (i.e., analysis ca versus “truth” ct) in the
spectral data assimilation [see (10)] is given by

εa rnð Þ≡ca rnð Þ−ct rnð Þ
¼ ca rnð Þ−cb rnð Þ½ �− co rnð Þ−cb rnð Þ½ � þ co rnð Þ−ct rnð Þ½ �
¼ sK rnð Þ−D rnð Þ þ εo rnð Þ

ð20Þ

Here, (10) and (17) are used. The analysis error is
decomposed into two parts

εa rnð Þ ¼ εK rnð Þ þ εo rnð Þ; ð21Þ

with the truncation error given by

εK rnð Þ ¼ sK rnð Þ−D rnð Þ; ð22aÞ

and the observational error given by

εo rnð Þ ¼ co rnð Þ−ct rnð Þ: ð22bÞ

3 Steep-descending mode truncation

The Vapnik-Chervonenkis dimension (Vapnik 1983; Chu
et al. 2003a, 2015) was used to determine the optimal
mode truncation KOPT. As depicted in Appendix D, it
depends only on the ratio of the total number of obser-
vational points (M) versus spectral truncation (K) and
does not depend on the total number of model grid

Fig. 3 Basis functions fromϕ1 to
ϕ12 for the domain depicted by
Eq. (32)
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points (N). This method neglects observational error and
ignores the model resolution. In fact, the analysis error
variance over the whole domain is given by

E2
a≡ εTa Fεa
� �� � ¼ εTK FεK

� �� �þ 2 εTK Fεo
� �� �

þ εTo Fεo
� �� �

; εTo Fεo
� �� � ¼ M

N
e2o;

ð23Þ

where e2o is the observational error variance [see (8)].
Here, the observational error is assumaed the same at
grid points as at the grid points. This is due to the
simplification of the error covariance matrix R = e2oI.
The Cauchy-Schwarz inequality shows that

E2
a≤ εTK FεK

� �� �þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εTK FεK½ �� �q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

εTo Fεo
� �� �q

þ εTo Fεo
� �� �

¼ E2
K þ 2EK

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M=Neo

p
þ M=Nð Þe2o

ð24Þ

The relative analysis error reduction at the mode-K can be
expressed by the ratio

γK ¼ ln
E2
K−1 þ 2EK−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M=Neo

p þMe2o=N

E2
K þ 2EK

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M=Neo

p þMe2o=N

" #
; K ¼ 2; 3;… ð25Þ

Both EK and EK-1 are large for small K (low-mode trunca-
tion), which may lead to a small value of γK. Both EK and EK-1

are small for large K (high-mode truncation), which also leads
to a small value of γK. An optimal truncation should be be-
tween the low-mode and high-mode truncations with a larger
value (over a threshold) of γK. This procedure is illustrated as
follows. The values (γ2, γ2,…, γKB) are calculated using (25)
from a largeKB (say 250). Themean and standard deviation of
γ can be computed as,

γ̅ ¼ 1

KB−1

X
K¼2

KB

γK ; s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

KB−2

X
K¼2

KB

γK−γ
� �2vuut : ð26Þ

Suppose that the relative error reductions (γ2, γ3, …, γKB)
satisfy the Gaussian distribution. A 100(1 − α) % upper one-
sided confidence bound on γ is given by

γth ¼ γ̅ þ zαs; ð27Þ

which is used as the threshold for the mode truncation. Here, z
is the random variable satisfying the Gaussian distribution
with zeromean and standard deviation of 1. If several γ values
exceed the threshold, the highest mode

KOPT ¼ max
γK ≥γth

Kð Þ ð28Þ

Fig. 4 “Truth” field ct taken as a the analytical function (33) with large-
scale eddy field Lx = 3, Ly = 2, β = π/2, and b the analytical function (34)
with small-scale eddy field Lx = 7, Ly = 5, β = 0

Fig. 5 Randomly selected locations (total: 300) inside the domain as
“observational” points
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is selected for mode truncation. After the mode truncation
KOPT is determined, the spectral coefficients (ak, k = 1, 2,
…, KOPT) can be calculated, and so as the truncation error
variance E2

KOPT
.

3.1 Multi-platform observations

Let observation be conducted byL instrumentswith different e lð Þ
o

deployedatr mlð Þ
l (ml=1,2, ..,ML; l=1,2,…,L).The totalnumber

of observations isM ¼ ∑
L

l¼1
Ml. TheM-dimensional observation-

al vector is represented by

cTo ¼
co r 1ð Þ

1

� �
; co r 2ð Þ

1

� �
; :::; co r M 1ð Þ

1

� �
; co r 1ð Þ

2

� �
; co r 2ð Þ

2

� �
; :::; co r M 2ð Þ

2

� �
; :::;

co r 1ð Þ
L

� �
; co r 2ð Þ

L

� �
; :::; co r MLð Þ

L

� �
2
4

3
5

ð29Þ

The observational error variance is given by

εTo Fεo
� � ¼ M 1 e 1ð Þ

o

� �2
þM 2 e 2ð Þ

o

h i2
þ…þML e Lð Þ

o

h i2
: ð30Þ

The relative error reduction γK for mode truncation (25) is
replaced by

γK ¼ ln

E2
K−1 þ 2EK−1

XL
l¼1

ffiffiffiffiffiffiffiffiffiffiffiffi
Ml=N

p
e lð Þ
o þ

XL
l¼1

Ml e lð Þ
o

� �2
=N

E2
K þ 2EK

XL
l¼1

ffiffiffiffiffiffiffiffiffiffiffiffi
Ml=N

p
e lð Þ
o þ

XL
l¼1

Ml e lð Þ
o

� �2
=N

2
666664

3
777775; K ¼ 2; 3;…

ð31Þ

After the mode truncation is determined, the OSD Eq. (13)
is used to get the analysis field.

Fig. 6 a “Observational” data (co) from Fig. 4a with added white
Gaussian noises of zero mean and various standard deviations: a 0 (i.e.,
no noise), b 0.2, c 0.5, d 1.0, e 1.6, and f 2.0. b “Observational” data (co)

from Fig. 4b with added white Gaussian noises of zero mean and various
standard deviations: a 0 (i.e., no noise), b 0.2, c 0.5, d 1.0, e 1.6, and f 2.0
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4 “Truth,” “background,” and “observational”
fields

Consider an artificial non-dimensional horizontal domain
(−19 < x < 19, −15 < y < 15) with the four curved rigid
boundaries (Fig. 2):

x

10
−0:3cos

y

8

� �
sin

x

10

� �
¼ ξ ¼ −π=2 westð Þ

π=2 eastð Þ
�

y

8
−0:2sin

x

5

� �
1−cos

y

8

� �h i
¼ η ¼ −π=2 southð Þ

π=2 northð Þ
� ð32Þ

The domain is discretized with Δx = Δy = 0.5. The total
number of the grid points inside the domain (N) is 3569.
Figure 3 shows the first 12 basis functions {ϕk}, which are
the eigenvectors of the Laplacian operator with the Dirichlet
boundary condition, i.e., b1 = 0 in (61) of Appendix C.

The first basis function ϕ1(xn) shows a one-gyre structure.
The second and third basis functions ϕ2(xn)and ϕ3(xn)show
the east-west and north-south dual-eddies. The fourth basis
function ϕ4(xn) shows the east-west slanted dipole-pattern
with opposite signs in the northeastern region (positive) and
the southwestern region (negative). The fourth basis function
ϕ4(xn) shows the tripole-pattern with negative values in the
western and eastern regions and positive values in between.
The higher order basis functions have more complicated var-
iability structures.

Two “truth” fields for the non-dimensional domain with 4
rigid and curved boundaries (Fig. 2) contain multiple meso-
scale eddies (treated as “truth”) given by

ct x; yð Þ ¼ 25−y2=40þ 3cos Lxξ x; yð Þ½ �sin Lyη x; yð Þ þ β
� �

ξ ¼ x

10
−0:3cos

y

8

� �
sin

x

10

� �
; η ¼ y

8
−0:2sin

x

5

� �
1−cos

y

8

� �h i
Lx;Ly; β
� 	 ¼ 3; 2;π=2ð Þ

8><
>: ; ð33Þ

Fig. 6 (continued)
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for the large-eddy field (Fig. 4a) and given by

ct x; yð Þ ¼ 25−y2=40þ 3cos Lxξ x; yð Þ½ �cos Lyη x; yð Þ þ β
� �

ξ ¼ x

10
−0:3cos

y

8

� �
sin

x

10

� �
; η ¼ y

8
−0:2sin

x

5

� �
1−cos

y

8

� �h i
Lx;Ly; β
� 	 ¼ 7; 5; 0ð Þ

8><
>: ð34Þ

for the small-eddy field (Fig. 4b). The background field is
given by

cb x; yð Þ ¼ 25−y2=40 ð35Þ

The “observational” points {r(m)} are randomly select-
ed inside the domain (Fig. 5) with the total number (M)
of 300. The “observational” points {r(m)} are kept the
same for all the sensitivity studies. The domain is
discretized by Δx = Δy = 0.5 with total number (N) of
grid points of 3569.

Sixteen sets of “observations” (co) are constructed from
Fig. 4a, b using the analytical values plus white Gaussian
noises (εo) of zero mean and various standard deviations (σ)
from 0 (no noise) to 2.0 with 0.1 increment from 0 to 1.0 and
0.2 increment from 1.0 to 2.0 (total 16 sets), generated by the
MATLAB,

co r mð Þ
� �

¼ ct r mð Þ
� �

þ εo r mð Þ
� �

: ð36Þ

Figure 6a, b show 6 out of the 16 constructed sets withσ= (0,
0.2, 0.5, 10., 1.6, 2.0). BothOSD andOImethods are used to get

Table 1 Dependence of KOPT on
(σ, eo) for the large-eddy field
shown in Fig. 6a with significance
level α = 0.05

eoσ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.2 1.4 1.6 1.8 2.0

0 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

0.1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

0.2 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

0.3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

0.4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 6

0.5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 6 6

0.6 7 7 7 7 7 7 7 7 7 7 7 7 7 6 6 6

0.7 7 7 7 7 7 7 7 7 7 7 7 7 7 6 6 6

0.8 7 7 7 7 7 7 7 7 7 7 7 7 6 6 6 6

0.9 7 7 7 7 7 7 7 7 7 7 7 6 6 6 6 6

1.0 7 7 7 7 7 7 7 7 7 6 6 6 6 6 6 6

1.2 7 7 6 6 6 6 6 6 6 6 6 6 6 6 6 6

1.4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6

1.6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6

1.8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6

2.0 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6

Fig. 7 Dependence ofE2
a and γK onK for the “observational” data for the

small-scale eddy field with σ = 0.8 and eo = 0.2 at two significant levels of
a α = 0.05 (z 0.05 = 1.645) and b α = 0.10 (z 0.10 = 1.291) as the threshold
of mode truncation [see Eq. (27)]. The optimal mode truncation is 58 for
α = 0.05 and 67 for α = 0.10

1150 Ocean Dynamics (2016) 66:1143–1163



the analysis field ca(rn) from these “observations”. The bilinear
interpolation (seeAppendixB) is used for the observation opera-
torH in this study.

5 Comparison between OSD and OI

a. OSD analysis fields

The steep-descending mode truncation KOPT depends
on the user-input parameter eo [see (25)] and observa-

tional noise σ. E2
a and γK are computed from the “obser-

vational” data in Fig. 6a, b. The threshold of mode trun-
cation (27) varies with the significance level α. In this
study, (e0, σ) vary between 0 and 2; α has two levels of
(0.05, 0.10) with z0.05 = 1.645, z0.10 = 1.287 in (27). For
given values of e0 (= 0.2) and σ (= 0.8), the optimal
mode truncation depends on the significance level α with
KOPT = 58 for α = 0.05 (Fig. 7a) and KOPT = 67 for
α = 0.10 (Fig. 7b). Most results shown in this section is
for α = 0.05 since it it a commonly used significance
level.

For the large-eddy field, KOPT is not sensitive to the values
of σ and eo. It is 7 in the upper-left portion and 6 in the lower-
right portion of Table 1. For the small-eddy field, KOPT takes
(58, 67) for the most cases, 178 for the high noise levels
(σ ≥ 1.8) and low eo values (eo ≤ 1.0), and 82 for the low noise
levels (σ ≤ 0.1) and low eo values (eo ≤ 0.3) (Table 2).

The analysis field using the OSD data assimilation
(13) for a particular user-input parameter eo and noise

level σ, cOSDa rn; eo;σð Þ, is represented in Fig. 8a (the
large-eddy field) using “observations” in Fig. 6a (with
various σ), and in Fig. 8b (the small-eddy field) using
“observations” in Fig. 6b (with various σ). Comparison
between Figs. 8a, b and 4a, b demonstrates the capability
of the OSD method with the analysis fields cOSDa

rn;σ; eoð Þ fully reconstructed for all occasions.

b. OI Analysis Fields

With the assumption that the c field is statistically station-
ary and homogeneous, the OI Eq. (9) with the R and B matri-
ces represented by (8) and (65) [see Appendix E] is used to
analyze the “observational” data with three user-defined
paramters: (ra, rb, eo). Here, ra and rb are the decorrelation
scale and zero crossing (rb > ra); eo is the standard deviation
of the observational error. Let these paramters take discrete
values with total number of Pa for ra, Pb for rb, and Pe for
eo. In this study, we set Pa = Pb = Pe = 5. eo has five values
(0.2, 0.5, 1.0, 1.5, 2.0). Considering the horizontal domain
from −15 to 15 in both (x, y) directions, ra takes 5 values (2,
3, 4, 5, 6); (rb - ra) takes 5 values (0.5, 1.0, 1.5, 2.0, 2.5). There
are 125 combinations of (ra, rb, eo) for the test.

The analysis field from the OI data assimilation (9),
cOIa rn;σ; ra; rb; eoð Þ, with four different sets of user-input pa-
rameters (ra, rb- ra, eo): (2, 2.5, 1), (4, 5.5, 1), (6, 8.5, 1), and
(6, 8.5, 2), are presented in Fig. 9a (the large-eddy field) using
“observations” in Fig. 6a, and in Fig. 9b (the small-eddy field)
using “observations” in Fig. 6b. Comparison between
Figs. 9a, b and 4a, b demonstrates strong dependence of the

Table 2 Dependence of KOPT on (σ, eo) for the small-eddy field shown in Fig. 6b with significance level α = 0.05

eoσ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.2 1.4 1.6 1.8 2.0

0 82 82 82 82 67 67 67 67 67 67 58 58 58 58 58 58

0.1 82 82 82 67 67 67 67 67 67 58 58 58 58 58 58 58

0.2 67 67 67 67 67 67 67 67 67 58 58 58 58 58 58 58

0.3 67 67 67 67 67 67 67 67 58 58 58 58 58 58 58 58

0.4 67 67 67 67 67 67 67 58 58 58 58 58 58 58 58 58

0.5 67 67 67 67 67 67 58 58 58 58 58 58 58 58 58 58

0.6 67 67 67 67 67 58 58 58 58 58 58 58 58 58 58 58

0.7 67 67 67 58 58 58 58 58 58 58 58 58 58 58 58 58

0.8 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58

0.9 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58

1.0 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58

1.2 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58

1.4 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58

1.6 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58

1.8 178 178 178 178 178 178 58 58 58 58 58 58 58 58 58 58

2.0 178 178 178 178 178 178 178 178 178 178 178 58 58 58 58 58
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OI output on the selection of the parameters (ra, rb, eo). For the
large-scale eddies (Fig. 9a), the analysis fields ca are very
different from the “truth” field ct for ra = 2, rb = 2.5, eo = 1
for all “observations” (Fig. 6a); the difference between the
reconstructed and “truth” fields decreases as ra and rb

increase; the two fields are quite similar when ra = 6, rb = 8.5
for both e

o
= 1 and 2. Such similarity reduces with increasing

eo. For the small-scale eddies (Fig. 9b), the analysis fields ca
are totally different from the “truth” field ct for ra = 6, rb = 8.5,
eo = 1 and 2 for all “observations” (Fig. 6b), less different as ra

Fig. 8 a The analysis field ca obtained by the spectral data assimilation
[see Eq. (13)] using the steep-descending mode truncation with the
significance level of α = 0.05 from the “observations” shown in Fig. 6a
with six noise (σ) levels (0, 0.2, 0.5, 1.0, 1.6, 2.0) and six values of eo: a
0.2, (i.e., no noise), b 0.5, c 1.0, and d 2.0. b. The analysis field ca

obtained by the spectral data assimilation [see Eq. (13)] using the steep-
descending mode truncation with the significance level of α = 0.05 from
the “observations” shown in Fig. 6a with six noise (σ) levels (0, 0.2, 0.5,
1.0, 1.6, 2.0) and four values of eo: a 0.2, (i.e., no noise), b 0.5, c 1.0, and
d 2.0
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and rb decrease; and are quite similar to ctwhen ra= 2, rb= 2.5,
e
o
= 1.

c. Root mean square error

The analysis field from OSD, cOSDa , depends only on

the observational error variance e2o and its uncertainty is
represented by the root mean square error ROSD,

ROSD σ; eoð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
n¼1

cOSDa rn;σ; eoð Þ−ct rnð Þ� �2
vuut : ð37aÞ

Average over all the values of eo leads to the overall uncertainty

R̅
OSD

σð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

NPe

X
eo

XN
n¼1

cOSDa rn;σ; eoð Þ−ct rnð Þ� �2
vuut : ð37bÞ

Fig. 8 (continued)
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The analysis field using OI (cOIa ) depends on three user-
defined parameters (ra, rb, eo). Its uncertainty due to a particular
parameter is represented by

ROI σ; rað Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

NPbPe

X
rb

X
eo

XN
n¼1

ψOI
a rn;σ; ra; rb; eoð Þ−ψt rnð Þ� �2

vuut ;

ð38aÞ

ROI σ; rbð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

NPaPe

X
ra

X
eo

XN
n¼1

ψOI
a rn;σ; ra; rb; eoð Þ−ψt rnð Þ� �2

vuut ; ð38bÞ

ROI σ; eoð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

NPaPb

X
ra

X
rb

XN
n¼1

ψOI
a rn;σ; ra; rb; eoð Þ−ψt rnð Þ� �2

vuut ; ð38cÞ

which are compared to ROSD σð Þ and ROSD(σ, eo).

Fig. 9 a The analysis field ca obtained by the OI data assimilation [see
Eq. (9)] for “observations” shown in Fig. 6a various noise levels with
various combinations of user-defined parameters (ra, rb,eo,): (2, 2.5, 1),
(4, 5.5, 1), (6, 8.5, 1), and (6, 8.5, 2). b. The analysis field ca obtained by

the OI data assimilation [see Eq. (9)] for “observations” shown in Fig. 6b
various noise levels with various combinations of user-defined
parameters (ra, rb, eo,): (2, 2.5, 1), (4, 5.5, 1), (6, 8.5, 1), and (6, 8.5, 2)
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Figure 10 shows the comparison between ROI(σ, ra) and
ROSD σð Þ for 5 different ra values: (2, 3, 4, 5, 6) and two types
(the large-scale and small-scale) of the “observational” field.
ROI(σ, ra) monotonically increases with σ and is generally
larger than ROSD σð Þ. For the “observations” representing the

large-scale eddy fields (Lx = 2, Ly = 3, see Fig. 6a), ROSD σð Þ
increases slightly from 0.32 for σ = 0 to 0.34 for σ = 2.0.
However, ROI(σ, ra = 2) is always larger than ROSD σð Þ and

increases from 0.37 for σ = 0 to 1.13 for σ = 2.0;
ROI(σ, ra ≥ 3)is smaller than ROSD σð Þ for small σ, equals ROSD

σð Þ at certain σ0, and larger than ROSD σð Þ for σ > σ0. The
value of σ0 increases with ra from 0.4 for ra = 3 to 1.0 for
ra = 6. ROI(σ, ra = 6) increases from 0.13 for σ = 0 to 0.62 for
σ = 2.0. For the “observations” representing the small-scale

eddy field (Lx = 5, Ly = 7, see Fig. 6b), ROSD σð Þ increases
slightly from 0.22 for σ = 0 to 0.27 for σ = 0.4; evidently from

Fig. 9 (continued)
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0.27 for σ = 0.4 to 0.40 for σ = 0.5; and slowly from 0.40 for
σ = 0.5 to 0.71 for σ = 2.0. However, ROI(σ, ra) is much larger
than ROSD σð Þ for any ra. For example, ROI(σ, ra = 2)increases
f r om 0 .43 fo r σ = 0 to 1 .14 fo r σ = 2 .0 ; … ,
ROI(σ, ra = 6)increases from 0.89 for σ = 0 to 1.06 for σ = 2.0.

Figure 11 shows the comparison between ROI(σ, rb) and
ROSD σð Þ for 5 different (rb − ra) values: (0.5, 1.0, 1.5, 2.0,
2.5) and two types (large-scale and small-scale) of the “ob-
servational” fields. ROI(σ, rb) monotonically increases with

σ and is generally larger than ROSD σð Þ. For the “observa-
tions” representing the large-scale eddy fields (Lx = 2,
Ly = 3, see Fig. 6a), ROI(σ, rb − ra) monotonically increases
with σ from around 0.2 for σ = 0 to around 0.78 for σ = 2.0
for all the values of (rb − ra) with σ0 from 0.4 for (rb − ra)-
= 0.5 to 0.6 for (rb − ra) = 2.5. For the “observations”
representing the small-scale eddy fields (Lx = 5, Ly = 7, see
Fig. 6b), ROI(σ, rb − ra) is much larger than ROSD σð Þ for
any (rb − ra) and σ. For example, ROI(σ, rb − ra = 0.5)
increases from 0.53 for σ = 0 to 1.00 for σ = 2.0; …,

ROI(σ, rb − ra = 2.5)increases from 0.58 for σ = 0 to 1.00
for σ = 2.0.

Figure 12 shows the comparison between ROI(σ, eo) and
ROSD(σ, eo) for 5 different eo values: (0.2, 0.5, 1.0, 1.5, 2.0)
and two types (large-scale and small-scale) of the “observation-
al” fields. First,ROI(σ, eo) monotonically increases with σ and is
evidently larger than ROSD(σ, eo) for all σ and eo. Second, de-
pendence of ROSD(σ, eo) on σ is insensitive to the change of eo.
For the “observations” representing the large-scale eddy fields
(Lx = 2, Ly = 3, see Fig. 6a), R

OI(σ, eo) is close toR
OSD(σ, eo) for

σ < 1.2, and much larger than ROSD(σ, eo) for σ > 1.2 with
eo = 0.2 and 0.5; and vice versa with eo = 1.0, 1.5, and 2.0.
ROI(σ, eo = 2.0)increases slightly from 0.98 at σ = 0 to 1.08 at
σ = 2.0 and is almost twice of ROSD(σ, eo) for all σ. For the
“observations” representing the small-scale eddy fields (Lx = 5,
Ly = 7, see Fig. 6b), ROI(σ, eo) is also larger than ROSD(σ, eo).
For example, ROI(σ, eo = 2.0)increases slightly from 1.37 at
σ = 0 to 1.42 at σ = 2.0, which is two to three times of
ROSD(σ, eo = 2.0) for σ < 1.0.

Fig. 10 Comparison between
ROI(σ, ra) and R

OSD σð Þ of the
analysis fields from the same
“observations” with different
noise levels with varying
parameter ra = (2, 3, 4, 5, 6) from
top to bottom with the left panels
using “observations” shown in
Fig. 6a and the right panels using
“observations” in Fig. 6b. The
solid curves represent the OSD
with the significance level of
α = 0.05; and the dotted curves
refer to the OI
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The overall performance between OI and OSD with vari-
ous noise levels (σ) can be estimated by the error ratio,

κ σð Þ ¼ R̅
OSD

σð Þ

R ̂
OI

σð Þ
;

R
OI

σð Þ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

NPaPbPe

X
ra

X
rb

X
eo

XN
n¼1

cOIa rn;σ; ra; rb; eoð Þ−ct rnð Þ� �2
vuut :

ð39Þ

Figure13shows thedependenceofκ(σ) (evidently less than1)
on σ for the two types (large-scale and small-scale eddies) of the
“observational” fields represented by Fig. 6a and b with two dif-
ferent significance levels (α = 0.05, 0.10) for the threshold of
mode truncation in the OSD method (27). At α = 0.05
(Fig. 13a), for the large-scale eddy field, κ(σ) takes 0.71 at
σ = 0; fluctuates with σ; and decreases to 0.57 at σ = 2.0. For the
small-scale eddy field,κ(σ) increasesmonotonicallywithσ from
0.43atσ=0to0.67atσ=2.0.Atα=0.10(Fig.13b), for the large-
scaleeddyfield,κ(σ) takes1.17atσ=0;decreasesmonotonically

with σ to 0.40 at σ = 2.0. For the small-scale eddy field, κ(σ)
increases monotonically with σ from 0.36 at σ = 0 to 0.70 at
σ = 2.0. It means that the OSD performs better for the test case.
Integration of κ(σ) over the whole interval of the noise level [0,
2.0] yields

κ
̂ ¼ 1

2

Z2
0

κ σð Þdσ ¼
α ¼ 0:05 α ¼ 0:1
0:76 0:72 large‐scale eddy
0:51 0:59 small‐scale eddy

8<
: ð40Þ

which means that the overall error for the OSD is 76 %
(51 %) of the OI error for the large-scale (small-scale)
eddy field for α = 0.05. The overall performance of the
OSD method is relatively insensitive to the selection of
the significance level α.

The computational cost of the OSD and OI methods is
comparable in the test cases. In the OSD method, the steep-
descending method for mode truncation requires (a) the com-
putation of a large number Kb in Eq. (26) of eigenvectors and
(b) the construction and solution of the OSD Eq. (13) can be
done once for all. In the OI method, however, the construction
and solution of the OI Eq. (9) must be repeated each time
background/observations changes.

Fig. 11 Comparison between
ROI(σ, rb) and R

OSD σð Þ of the
analysis fields from the same
“observations” with different
noise levels with different
(rb − ra) = (0.5, 1.0, 1.5, 2.0, 2.5)
with the left panels using
“observations” shown in Fig. 6a
and the right panels using
“observations” in Fig. 6b. The
solid curves represent the OSD
with the significance level of
α = 0.05; and the dotted curves
refer to the OI
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6 Synoptic monthly gridded temperature and salinity
fields

The OSD method is used to to produce the synoptic monthly
gridded (SMG) temperature (T) and salinity (S) datasets (Chu
and Fan 2016a; Chu et al. 2016) from the two world ocean
observational (T, S) profile datasets [the NOAA national
Centers for Environmental Information (NCEI)’s World
Ocean Database (WOD) and the Global Temperature and
Salinity Profile Program (GTSPP)]. The synoptic monthly
gridded absolute geostrophic velocity dataset (Chu and Fan
2016b) is also established from the SMG-WOD (T, S) fields
using the P vector method (Chu 1995; Chu and Wang 2003).
These datasets have been quality controlled by the NCEI pro-
fessionals and are openly downloaded for public use at
http://data.nodc.noaa.gov/geoportal/rest/find/document
?searchText=synoptic+monthly+gridded&f=searchPage. The
duration is January 1945 to December 2014 for the synoptic
monthly gridded WOD (T, S) and absolute geostrophic
velocity fields and January 1990 to December 2009 for the
synoptic monthly gridded GTSPP (T, S) fields.

7 Conclusions

Ocean spectral data assimilation has been developed on the base
of the classic theory of the generalized Fourier series expansion
such that any ocean field can be represented by a linear combi-
nation of the products of basis functions (or called modes) and
corresponding spectral coefficients. The basis functions are the
eigenvectors of the Laplace operator, determined only by the
topography with the same lateral boundary condition for the
assimilated variable anomaly. They are pre-calculated and inde-
pendent on any observational data and background fields. The
mode truncationK depends on the observational data and a user
input parameter e2o (i.e., observational error variance); and is
determined via the steep-descending method.

The OSD completely changes the common ocean data as-
similation procedures such as OI, KF, and variational
methods, where the background error covariance matrix B
needs to be pre-determined since the weight matrixW is used.
However, the OSD uses the spectral form to represent the
observational innovation at the grid points [see (17)].
Minimization of the truncation error variance leads to the

Fig. 12 Comparison between
ROI(σ, eo) and ROSD(σ, eo) of the
analysis fields from the same
“observations” with different
noise levels with varying
parameter eo = (0.2, 0.5, 1.0, 1.5,
2.0) from top to bottom with the
left panels using “observations”
shown in Fig. 6a and the right
panels using “observations” in
Fig. 6b. The solid curves
represent the OSD with the
significance level ofα = 0.05; and
the dotted curves refer to the OI
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optimal selection of the spectral coefficients. Thus, the back-
ground error covariance matrix B vanishes in the OSD proce-
dure since the weight matrixW is not used. It is contrast to the
existing OI method, where theBmatrix is often assumed to be
stationary and homogeneous with user-defined parameters.

The capability of the OSDmethod is demonstrated through
its comparison to OI using analytical 2D fields of large and
small mesoscale eddies inside a domain with 4 rigid and
curved boundaries as “truth”, and addition to the “truth” of
white Gaussian noises with zeromean and standard deviations
(σ) varying from 0 (no noise) to 2.0 with 0.1 increment at
randomly selected locations used as “observations.” A simple
covariance function (Bretherton et al. 1976) was used for the
OI procedure with three user-defined parameters (ra, rb, eo)
taking 5 possible values each. The OSD uses the same value
of eo. The performance of OSD and OI is compared by (1)

patterns for each set of 125 combinations of parameters, (2)
root mean square errors for varying parameters, and (3) over-
all root mean square errors. The results show that the overall
error reduction using the OSD is evident, which is 76 %
(51 %) [72 % (59 %)] for significance level α = 0.05
(α = 0.10) of the OI error for the large-scale (small-scale) eddy
field. In context of practical application, synoptic monthly
gridded world ocean temperature, salinity, and absolute geo-
strophic velocity datasets have been produced with the OSD
method and quality controlled by the NOAANational Centers
for Environmental Information (NCEI).

Two issues need to be addressed on the correlation matrix.
First, the comparison between the OSD and OI is at one par-
ticular instant in time. The B matrix used in the OI is based
only on distance. Second, in the covariance matrix-based
methods, when the covariance matrix is fixed once and for
all, it is well-known that the very first data assimilation cycle
is doing well, but subsequent cycles are less effective because
the remaining error has a tendency to be orthogonal to the
directions of the covariance matrix. In the OSD method, the
correction is based on spectral functions (i.e., basis functions)
chosen once-and-for all. More sophisticated, flow-based co-
variance matrix will allow OI to perform much better. Further
verification and validation under real-time ocean conditions
are needed to verify the quality of OSD in time cycles and to
compare between OSD and OI methods.

In the two test cases (large and small eddy fields), it is
clear that the optimal mode truncation KOPT (around 6
for the large eddy field and around 60 for the small eddy
field) are very closed to the number of eigenvectors re-
quired to represent the truth field (Fig. 4). This shows
the capability of the steep-descending mode truncation.
However, the performance of the method for the truth
field is a mixture of large and small scales in different
parts of the domains needs to be further investigated.

Acknowledgments The Office of Naval Research, the Naval
Oceanographic Office, and the Naval Postgraduate School supported this
study.

Appendix A. Determination of H-matrix using all
grid points

IDW interpolation, using all grid points, is one of the most
commonly used techniques for interpolation based on the as-
sumption that the value of hmn in H-matrix are influenced
more by the nearby points and less by the more distant points.
Let

dmn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x mð Þ−xið Þ2 þ y mð Þ−y j

� �2r
ð41Þ

Fig. 13 Dependence of the error ratio κ [see Eq. (39)] on σ using
“observations” in Fig. 6a (represented by dots) and in Fig. 6b
(represented by an asterisk) with two different significance levels: a
α = 0.05, and b α = 0.10
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be the distance between the grid point (xi, yj) and observation-
al point (x(m), y(m)). The influence of the grid point xn on the
observational point x(m) is given by (Spepard 1968)

hmn ¼ dmn
� 	−q

=
XN
n¼1

dmn
� 	−q ð42Þ

where q is an arbitrary positive real number called the power
parameter (typically, q = 2). Another form of hmn is given by
(Franke and Nielson 1991)

hmn ¼
D mð Þ−dmn
� 	

=D mð Þdmn
� �2

XN
n¼1

D mð Þ−dmn
� �

=D mð Þdmn
h i2 ; ð43Þ

where D(m) is the distance from the observational point x(m) to
the most distant grid point. Equation (43) has been found to
give better results than (42). As a result, cb(x

(m), t), is some-
what symmetric about each grid point.

Appendix B. Determination of H-matrix using
neighboring grid points

Consider the position vector x = (x, y) located inside the grid
cell (Fig. 14),

xi ≤ x < xi + 1,yj ≤ y < yj + 1..
Mathematically, the variable cb at r (inside the grid cell) can

be represented approximately by a polynomial,

cb rð Þ ¼
XL
α¼0

XL
β¼0

Aαβ x−xið Þα y−y j
� �β

ð44Þ

where L = 1 refers to the bilinear interpolation, and L = 3 leads
to the bicubic interpolation. For the bilinear interpolation,
Eq. (44) becomes

cb rð Þ ¼ A00 þ A10 x−xið Þ þ A01 y−y j
� �

þ A11 x−xið Þ y−y j
� �

ð45Þ

or in matrix notation,

cb rð Þ ¼ 1 x−xið Þ½ � A00 A01

A10 A11

� 

1

y−y j
� �� 


: ð46Þ

Since cb at four neighboring grid points: cb(xi, yj), c-

b(xi+1, yj), cb(xi+1, yj), cb(xi+1, yj+1) are given, substitution

of the four values into (45) leads to the determination of
the four coefficients A00, A10, A01, A11. Using these co-
efficients, the bilinear interpolation (45) becomes

cb rð Þ ¼
cb xiþ1; y jþ1

� �
xiþ1−xið Þ y jþ1−y j

� � x−xið Þ y−y j
� �

þ
cb xiþ1; y j

� �
xiþ1−xið Þ y jþ1−y j

� � x−xið Þ y jþ1−y
� �

þ
cb xi; y jþ1

� �
xiþ1−xið Þ y jþ1−y j

� � xiþ1−xð Þ y−y j
� �

þ
cb xi; y j

� �
xiþ1−xið Þ y jþ1−y j

� � xiþ1−xð Þ y jþ1−y
� �

ð47Þ

Let the observational point r(m) be located in the grid cell,

xi≤x mð Þ < xiþ1; y j≤y
mð Þ < y jþ1:

Evaluation of cb at the observational point r
(m) using (46)

leads to

cb r mð Þ
� �

¼ p mð Þ
i; j cb xi; yið Þ þ p mð Þ

iþ1; jcb xiþ1; y j

� �
þ p mð Þ

i; jþ1cb xi; y jþ1

� �
þ p mð Þ

iþ1; jþ1cb xiþ1; y jþ1

� �
ð48Þ

where the proportional coefficients {p mð Þ
i; j ; p

mð Þ
iþ1; j; p

mð Þ
i; jþ1; p

mð Þ
iþ1; jþ1 }

are defined by

p mð Þ
i; j ¼

xiþ1−x mð Þ� 	
y jþ1−y mð Þ
� �

xiþ1−xið Þ y jþ1−y j
� � ; p mð Þ

iþ1; j ¼
x mð Þ−xi
� 	

y jþ1−y mð Þ
� �

xiþ1−xið Þ y jþ1−y j
� � ;

p mð Þ
i; jþ1 ¼

xiþ1−x mð Þ� 	
y mð Þ−y j
� �

xiþ1−xið Þ y jþ1−y j
� � p mð Þ

iþ1; jþ1 ¼
x mð Þ−xi
� 	

y mð Þ−y j
� �

xiþ1−xið Þ y jþ1−y j
� � :

ð49Þ

Fig. 14 Interpolation at an observational point r(m) from four
neighboring grid points
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It is noted that the proportionality coefficients {pi , j(m) , pi +
1 , j(m) , pi , j + 1(m) , pi + 1 , j + 1(m)} depend solely on the location
of the observational points (r(m)), and

p mð Þ
i; j þ p mð Þ

iþ1; j þ p mð Þ
i; jþ1 þ p mð Þ

iþ1; jþ1 ¼ 1: ð50Þ

Setting L = 3 in (44) leads to the bicubic spline interpolation,

cb rð Þ ¼ A00 þ A10 x−xið Þ þ A01 y−y j
� �

þ A11 x−xið Þ y−y j
� �

þ A20 x−xið Þ2 þ A02 y−y j
� �2

þ A30 x−xið Þ3

þA21 x−xið Þ2 y−y j
� �

þ A12 x−xið Þ y−y j
� �2

þ A03 y−y j
� �3

ð51Þ

or in matrix notation,

cb rð Þ ¼ 1 x−xið Þ x−xið Þ2 x−xið Þ3
� � A00 A01 A02 A03

A10 A11 A12 0
A20 A21 0 0
A30 0 0 0

2
664

3
775

1
y−y j
� �
y−y j
� �2
y−y j
� �3

2
666664

3
777775

ð52Þ

which is rewritten by

cb rð Þ ¼ 1 x x2 x3
� � 1 −xi x2i −x3i

0 1 −2xi 3x2i
0 0 1 −3xi
0 0 0 1

2
664

3
775

A00 A01 A02 A03

A10 A11 A12 0
A20 A21 0 0
A30 0 0 0

2
664

3
775

1 0 0 0
−y j 1 0 0

y2j −2y j 1 0

−y3j 3y2j 3y j 1

2
6664

3
7775

1
y
y2

y3

2
664

3
775
ð53Þ

Determination of the 10 coefficients (A00, A01, A02, A03,
A10, A11, A12, A20, A21, A30) requires not only the values,

A00 ¼ cb xi; y j
� �

;

A00 þ A10Δx þ A20 Δxð Þ2 þ A30 Δxð Þ3 ¼ cb xiþ1; y j
� �

;

A00 þ A01Δy þ A02 Δyð Þ2 þ A03 Δyð Þ3 ¼ cb xi; y jþ1

� �
;

A00 þ A10Δxþ A01Δyþ A11ΔxΔyþ A20 Δxð Þ2 þ A02 Δyð Þ2
þA30 Δxð Þ3 þ A21 Δxð Þ2Δyþ A12Δx Δyð Þ2 þ A03 Δyð Þ3
¼ cb xiþ1; y jþ1

� �
;

ð54Þ

but also the derivatives at the neighboring grid points

A10 ¼ ∂cb xi; y j
� �

=∂x ¼ cb xiþ1; y j
� �

−cb xi−1; y j
� �h i

=2Δx;

A01 ¼ ∂cb xi; y j

� �
=∂y ¼ cb xi; y jþ1

� �
−cb xi; y j−1

� �h i
=2Δy;

A10 þ 2 Δxð ÞA20 þ 3 Δxð Þ2A30 ¼ ∂cb xiþ1; y j
� �

=∂x

¼ cb xiþ2; y j

� �
−cb xi; y j

� �h i
=2Δx;

A10 þ Δyð ÞA11 þ Δyð Þ2A12 ¼ ∂cb xi; y jþ1

� �
=∂x

¼ cb xiþ1; y jþ1

� �
−cb xi−1; y jþ1

� �h i
=2Δx;

A01 þ Δxð ÞA11 þ Δxð Þ2A21 ¼ ∂cb xiþ1; y j
� �

=∂y

¼ cb xiþ1; y jþ1

� �
−cb xiþ1; y j−1

� �h i
=2Δy;

A01 þ 2 Δyð ÞA01 þ 3 Δyð Þ2A03 ¼ ∂cb xi; y jþ1

� �
=∂y

¼ cb xi; y jþ2

� �
−cb xi; y j

� �h i
=2Δy:

ð55Þ

The solution of the above set of 10 linear algebraic
Eqs. (54) and (55) leads to the determination of the 10 coeffi-
cients (A00, A01, A02, A03, A10, A11, A12, A20, A21, A30). It is
noted that values of cb at the 10 neighboring grid points (xi, yj),
(xi+1, yj), (xi, yj+1), (xi+1, yj+1), (xi-1, yj), (xi, yj-1), (xi+2, yj), (xi-1,
yj+1), (xi+1, yj-1), (xi, yj+2) are used to solve (54) and (55).
Following (53), interpolation of cb at the 10 neighboring grid
points on the observational r(m) = (x(m), y(m)) using the bicubic
interpolation is given by

cb r mð Þ
� �

¼ 1 x mð Þ x mð Þ
� �2

x mð Þ
� �3� 
 1 −xi x2i −x3i

0 1 −2xi 3x2i
0 0 1 −3xi
0 0 0 1

2
664

3
775

A00 A01 A02 A03

A10 A11 A12 0
A20 A21 0 0
A30 0 0 0

2
664

3
775

1 0 0 0
−y j 1 0 0

y2j −2y j 1 0

−y3j 3y2j 3y j 1

2
6664

3
7775

1
y mð Þ

y mð Þ
� �2
y mð Þ
� �3

2
666664

3
777775

ð56Þ

Thus, an equation similar to (48) can be written for evalu-
ating cb at the observational point r(m) with the known 10
coefficients (A00, A01, A02, A03, A10, A11, A12, A20, A21, A30,

cb r mð Þ
� �

¼ p mð Þ
i; j cb xi; y j

� �
þ p mð Þ

iþ1; j cb xiþ1; y j

� �
þ p mð Þ

i; jþ1 cb xi; y jþ1

� �
þp mð Þ

iþ1; jþ1cb xiþ1; y jþ1

� �
þ p mð Þ

i−1; jcb xi−1; y j
� �

þ p mð Þ
i; j−1cb xi; y j−1

� �
þ p mð Þ

i;þ2 jcb xiþ2; y j
� �

þ p mð Þ
i−1; jþ1 cb xi−1; y jþ1

� �
þ p mð Þ

iþ1; j−1 cb xiþ1; y j−1

� �
þ p mð Þ

i; jþ2 cb xi; y jþ2

� � ð57Þ
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where the 10 corresponding coefficients {pi , j(m) , pi + 1 , j(m) ,
pi , j + 1(m) , pi + 1 , j + 1(m), pi − 1 , j(m), pi , j − 1(m), pi , + 2j(m), pi − 1 , j +

1(m), pi + 1 , j − 1(m), pi , j + 2(m)} are analytically determined and
depends solely on the location of the observational points
(r(m)), and

p mð Þ
i; j þ p mð Þ

iþ1; j þ p mð Þ
i; jþ1 þ p mð Þ

iþ1; jþ1 þ p mð Þ
i−1; j þ p mð Þ

i; j−1

þ p mð Þ
i;þ2 j þ p mð Þ

i−1; jþ1 þ p mð Þ
iþ1; j−1 þ p mð Þ

i; jþ2 ð58Þ

Since only 10 neighboring grid points are used to interpo-
late at the observational point r(m) using the bicubic interpo-
lation, the matrix H has only 10 non-zero values in each row.
However, it is too tedious to write it out.

Appendix C. Basis functions

As pointed by Chu et al. (2015), three necessary conditions
should be satisfied in selection of basis functions {ϕk(r)} as
follows: (i) satisfaction of the same homogeneous boundary
condition of the assimilated variable anomaly, (ii)
orthonormality, and (iii) independence on the assimilated var-
iables. The first necessary condition requires the same bound-
ary condition for (c − cb) and the basis functions {ϕk}. The
second necessary condition is given by

∬
Γ
ϕk rð Þϕk 0 rð Þdr ¼ δkk0 ; ð59Þ

where δkk′ is the Kronecker delta,

δkk0 ¼ 0 if k≠k 0

1 if k ¼ k 0

�
: ð60Þ

Due to their independence on the assimilated variable (the
third necessary condition), the basis functions are available
prior to the data assimilation.

The basis functions are the eigenvectors {ϕk} of the
Laplacian operator with the same boundary condition as the
variable anomaly (c − cb),

∇2ϕk ¼ −λkϕk; b1 τð Þe � ∇ϕk þ b2 τð Þϕk½ �
���Γ ¼ 0; k ¼ 1;…;∞: ð61Þ

Here, {λk} are the eigenvalues, e is the unit vector normal
to the boundary; τ denotes a moving point along the boundary,
and [b1(τ) , b2(τ)] are parameters varying with τ. The bound-
ary condition in (61) becomes the Dirichlet boundary condi-
tion when b1 = 0, and the Neumann boundary conditions
when b2 = 0. As pointed by Chu et al. (2015), different vari-
able anomalies have different [b1(τ) , b2(τ)]. For example, the
temperature, salinity, and velocity potential anomalies have
b2 = 0 for the rigid boundary and b1 = 0 for the open boundary.

However, the anomaly has b1 = 0 for the rigid boundary and
b2 = 0 for the open boundary. It is obvious that the eigenvec-
tors {ϕk} are orthonormal and independent of the assimilated
variables.

Appendix D. Vapnik-Chervonenkis dimension
for mode truncation

The Vapnik-Chervonenkis dimension (Vapnik 1983; Chu
et al. 2003a, 2015) is to seek the optimal mode truncation on
the base of the first term of the analysis error (23),

J tr ¼ εTK FεK
� �� � ¼

XN
n¼1

f n Dn−D Kð Þ
n

� �h i2
N−1

ð62Þ

with the cost function

JK ¼ J tr þ μ K;M ;αð Þ;

μ K;M ;αð Þ ¼ J*

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln 2M=Kð Þ þ 1½ �−ln α=Mð Þ

M=K

s
; K ¼ 1; 2;…;∞

ð63Þ

Here, α (≪1) is the significance level. J* is the upper bound
of Jtr. For a given M, Jtr decreases monotonically with K; μ
increases with K if α is given. The optimal mode truncation is
through the minimization of the cost function,

min
K

JKð Þ ¼ JKopt : ð64Þ

This method neglects observational error [only first term of
(23) considered] and ignores the model resolution (represent-
ed by the total number of grid points N). The ratio of obser-
vational points (M) and the spectral truncation (K) is the key to
determine the optimal mode truncation KOPT.

Appendix E. B matrix

The B matrix is often established based on the assumption of
statistical stationarity and homogeneity of the reconstructed
field with a simple covariance function, for example
Bretherton et al. (1976) proposed

B ¼ bij
� �

N�N ; bij ¼ 1−
r2ij
r2b

 !
exp −

r2ij
r2a

 !
; r2ij

¼ ri−r j
�� ��2; rb > ra; ð65Þ

depending on distances only. Here, rij is the distance between
the two grid points ri and raj; ray and rb are the decorrelation
scale and zero crossing. To conduct the OI data assimilation,
the three parameters (eo, ra, rb) need to be defined by user. Chu
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et al. (1997, 2002) compute auto-correlation functions from
historical observational data to fit the Gaussian function and
get de-correlation scales for theBmatrix. Recent studies show
that some variables such as upper ocean current speed do not
satisfy the normal distribution, but the Weibull distribution
(Chu 2008, 2009).
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