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Abstract. The Lagrangian prediction skill (model ability
to reproduce Lagrangian drifter trajectories) of the now-
cast/forecast system developed for the Gulf of Mexico at the
University of Colorado at Boulder is examined through com-
parison with real drifter observations. Model prediction error
(MPE), singular values (SVs) and irreversible-skill time (IT)
are used as quantitative measures of the examination. Di-
vergent (poloidal) and nondivergent (toroidal) components of
the circulation attractor at 50 m depth are analyzed and com-
pared with the Lagrangian drifter buoy data using the empir-
ical orthogonal function (EOF) decomposition and the mea-
sures, respectively. Irregular (probably, chaotic) dynamics of
the circulation attractor reproduced by the nowcast/forecast
system is analyzed through Lyapunov dimension, global en-
tropies, toroidal and poloidal kinetic energies. The results al-
low assuming exponential growth of prediction error on the
attractor. On the other hand, theq–th moment of MPE grows
by the power law with exponent of 3q/4. The probability
density function (PDF) of MPE has a symmetrical but non-
Gaussian shape for both the short and long prediction times
and for spatial scales ranging from 20 km to 300 km. The
phenomenological model of MPE based on a diffusion-like
equation is developed. The PDF of IT is non-symmetric with
a long tail stretched towards large ITs. The power decay of
the tail was faster than 2 for long prediction times.

1 Introduction

During the World Ocean Circulation Experiment (WOCE),
the ocean velocity observation has been significantly ad-
vanced with extensive spatial and temporal coverage us-
ing near-surface Lagrangian drifters, RAFOS floats, and
Autonomous Lagrangian Circulation Explorers (ALACEs).
Trajectories of these quasi-Lagrangian drifters reflect the
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whole spectrum of ocean motions, including meso- and
submesoscale eddies, various waves, inertial and semi-
diurnal motions, and provide invaluable resources to estimate
the nowcast/forecast skill of high-resolution regional ocean
models in terms of model ability to simulate from synoptic
to submesoscale eddy movements.

However, direct comparison between model and quasi-
Lagrangian/Lagrangian observations is difficult since nei-
ther the dynamics of numerical models nor the model input
(bathymetry, external forcing and subscale parameteriztions)
are identical to the reality. It needs to be determined if the
model-data difference comes from deficiency in modeling
ocean physics, from some unessential imperfection, or from
unrepresentative data (Davis et al., 1996). It is clear that the
high-resolution ocean model and the Lagrangian drifter data
should be compared only in the statistical sense.

The commonly used methods for model-data comparison
are listed as follows. The first approach estimates the mean
pseudo-Eulerian circulation pattern and/or Eulerian statistics
from Lagrangian trajectories (e.g. Figueroa and Olson, 1994;
Davis et al., 1996; Acero-Schertzer et al., 1997; Stutzer and
Krauss, 1998; Garraffo et al., 2001b). The second approach
is to compute the Lagrangian statistics for the real drifters
and the modeled synthetic particles and then to compare
these statistics by way of statistical tests (e.g. Garraffo et al.,
2001a; McClean et al., 2002). The third approach focuses
on comparison of attractors reproduced by a model and de-
tected from the Lagrangian data (Chu et al., 2002a). The
EOF technique is the mathematical tool of this approach.
The fourth approach which will be applied here, is to esti-
mate Lagrangian prediciton skill through statistics of non-
asymptotic indicators (measures), such as the model predic-
tion error, the finite scale Lyapunov exponent (Lacorata et
al., 2001), the singular vectors (Lorenz, 1965), stable and
unstable manifolds (Wiggins, 1992; Kuznetsov et al., 2002),
the irreversible-skill time (Ivanov et al., 1994; Chu et al.,
2002c) and others. Early the terms “time of predictabil-
ity” and “valid prediction period” were used instead of “the
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irreversible-skill time”, hereinafter IT, (Chu et al., 2002a,b).
In our opinion the new name “IT”, better corresponds to the
physical nature of a model prediction skill.

The primary goals of the present paper are:

(i) to understand what quantitative measures may be ef-
fectively applied for the analysis of model ability to
predict the real drifter dynamics. Such an ability was
called “Lagrangian model predictability” by Mariano et
al. (2002). Three local (non-asymptotic) measures: the
MPE, SVs and IT will be applied,

(ii) to study Lagrangian predictability of a high-resolution
regional model through non-asymptotic criteria. We
will examine the Gulf of Mexico model with 1/12◦

horizontal resolution (Kantha et al., 1999; Kantha and
Clayson, 2000),

(iii) to find the fundamental statistics of model pediciton
skill and parameterize an evolution law for the mean
prediction error. That in general allow to detect when
model Lagrangian predictability breaks down.

All these problems are in focus of the modern predictabil-
ity studies of the practical oceanography and meteorology
(Robinson et al., 1999; Palmer, 2000). The knowledge of La-
grangian predictability of high-resolution models is very im-
portant for the numerous oceanographic and ecological ap-
plications because tracer dispersion and pollutant spread are
most easily expressed in terms of Lagrangian velocity corre-
lations.

The knowledge of a statistical law governing the average
growth of prediction errors, which initially have a given or
even the zero value, would allow us to predict the expected
model skill and extending over a given period of time in the
future.

Note that the high-resolution oceanographic modeling is
supported by the argument that the models of high-resolution
reproduce the mesoscale eddy dynamics more correctly ver-
sus those of eddy-permitting resolution (Smith et al., 1992).
Statistics of 3-D mesoscale eddies dynamics reproduced
by the high-resolution models with horizontal resolution of
5–10 km can be assessed only through Lagrangian drifter ob-
servations.

The outline of this paper is listed as follows. Section 2
discusses the measures of Lagrangian predictability, such as
the MPE, SVs and IT. An original approach developed in
the present paper for computations of the singular values and
singular vectors is adressed in Appendix A.

The spatio-temporal structure of the model attractor is ana-
lyzed through Moffat-Zeldovich decomposition (MZD), em-
pirical orthogonal functions and global entropy. This is dis-
cussed in Sect. 3.

Using MZD two subspaces generated by the divergent
(poloidal) and nondivergent (toroidal) EOFs, respectively,
are introduced. Knowledge of EOF decomposition for the
circulation allows estimating Lyapunov dimension of the cir-
culation attractor. Section 4 contains the results of such an
analysis.

Statistics of the model prediction error and the IT are dis-
cussed in Sect. 5. We demonstrate that the process of dis-
placement with time of the real drifters and modeled particles
is described by non-Gaussian statistics for both small and
large times. The growth of MPE holds the power law. This is
a signature of long-term correlations between the prediction
and reality. A simple empirical model is proposed for de-
scription of MPE growth. We pointed out that linear-tangent
models of MPE evolution are not sufficient for the analysis
of MPE in the Gulf of Mexico circulation model.

Section 6 develops and illustrates a new approach for the
reconstruction of circulation from rare Lagrangian observa-
tions. The last section is a summary and discussion.

2 Measures of Lagrangian predictability

2.1 Local Lagrangian predictability

We may speculate three possible scenarios of Lagrangian
predictability. First, the model reproduces the pattern of
the real circulation attractor including its small-scale details
and predicts a drifter behavior for long times (the global La-
grangian predictability). Second, in general the circulation
attractor is correctly reproduced but not all the small-scale
details of the circulation topology are resolved. Here, the
predictability of the drifter dynamics exists only for the short
and intermediate time intervals (the local Lagrangian pre-
dictability). Third, the predicted attractor pattern differs from
the observed one even in large scale details and in principle
the model can approximate drifter trajectories only within
very short time intervals (the partial Lagrangian predictabil-
ity). Identification of the scenario of model Lagrangian pre-
dictability is an important task in model verification.

In the present study we a priori assume that the modeled
and observed attractors are similar, i.e. at least their Lya-
punov dimensions coincide. However, we can doubt that
a model correctly reproduces all attractor details including
vertical motions. Thus, the second scenario of Lagrangian
predictability is expected to appear in our computations.

Briefly, it can be argued in the following way. Like as
in a two-dimensional compressible flow the advection of
floats that are not neutrally buoyant, gives rise to clustering
(Falkovich et al., 2001). The floats tend to dispose along
an ocean front or to reach a convergence zone. The float
clustering evolution strongly depends on the structure of ver-
tical velocity which is not in general reproduced accurately
by numerical ocean models. Therefore a drift and spread of
a cluster composed from the real floats differ considerably
from those of a cluster of the synthetic particles even if the
non-divergent velocity is modeled quite accurately.

Thus, we shouldn’t expect the long-term Lagrangian pre-
dictability for a high-resolution ocean model because the real
drifters and synthetic particles have different asymptotic be-
havior.
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2.2 Model prediction error

LetP quasi-Lagrangian floats drogued at the vertical horizon
z display the spatio-temporal variability of circulation in an
area of interest. The model may reproduce trajectories of
synthetic floats (particles) to be compared to the real drifters.

Let the position and velocity of some drifter and synthetic
particle used in the comparison be represented by

Z(t) = {X(t), Y (t), U(t), V (t)}t , (1)

and

Zpart(t) =
{
Xpart(t), Y part(t), Upart(t), V part(t)

}t
, (2)

respectively, the superscript ‘t ′ denotes the transpose. Then,
the model prediction error be represented by a 4-dimensional
vector

δZ(t) = {δX(t), δY (t), δU(t), δV (t)}t , (3)

with

δX(t) = X(t) − Xpart(t), δY (t) = Y (t) − Y part(t),

δU(t) = U(t) − Upart(t), δV (t) = V (t) − V part(t) .

Because the positioning drifter buoys by navigation sys-
tems is quite accurate with error less than 200 m, we take
that differences in initial positions of the drifter and particle
equal to zero att0. That is not true for difference between
their velocities. ThusδZ(t0)={0, 0, δU0, δV0}

t .
Since the MPE is a-priori stochastic, the Lagrangian pre-

dictability is effectively determined using the multi-variable
PDF,P (δX, δY, δU, δV, t) and the statistical moments

L̃q =
〈
|δZ|

q
〉

, q = 1, . . . , Q . (4)

The MPE

J =
〈∣∣∣∣δZtAδZ

∣∣∣∣
4

〉
, (5)

|| . . . ||4 is the 4-dimensional Eucledian norm,A is the weight
matrix, determines a prediction time scaleτ from the condi-
tion that

J (τ) ≤ ε2 , (6)

as a time interval within which this RMS error is less than
the accepted prediction accuracyε (the tolerance).

In general the use of Eqs. (4) and (6) sometimes induces
problems in physical interpretation of the MPE growth since
different dynamical regimes of the error may correspond to
the same power decay law for̃Lq (Rangarajan and Ding,
2000). In other words, it is difficult (or even impossible)
to distinguish different physical mechanisms inducing the
anomalous dynamical regimes throughLq in practical ap-
plications.

2.3 Irreversible-skill time

The IT (τirrev) has been proposed for measuring the
prediction-skill without the Gaussian distribution assumption
for MPE (Ivanov et al., 1994; Ivanov and Margolina, 1999)
on the base of the first-passage time (Gardiner, 1985). This
prediction time scale is determined as the time period when
J exceedsε2 for the first time. The returning prediction-skill
that is referred toJ is smaller thanε2 after IT is excluded.

In comparing with the MPE, two different statistics for
IT can be defined with the initial errorδZ0 and toler-
ance levelε: (a) PDF (probability density function) of IT,
W(τ, δZ0, ε), and (b) PSP (probability of successful pre-
dictions), (F(t0, δZ0, ε, t−t0)), which is the probability that
τirrev is larger than the given time period (t−t0).

The PSP satisfies the so-called Pontryagin-Kolmogorov
equation (Chu et al., 2002a, b, c). The statistics are con-
nected by

F(t0, δZ0, ε, t − t0) = 1 −

t−t0∫
0

W(τ, δZ0, ε) dτ . (7)

PSP is useful to verify the prediction-skill in practical ap-
plications (Ivanov et al., 1994; Ivanov and Margolina, 1999)
because it is more computational feasible than the PDF of IT.

Additionally, the statistical moments of IT also estimate
the practical model prediction skill. They are easily calcu-
lated by

τk(δZ0, ε) = k

∞∫
t0

F(t0, δZ0, ε, t − t0)(t − t0)
k−1dt . (8)

The mean and variance of IT are calculated as

〈τirrev〉 = τ1 , (9)〈
τ2

irrev

〉
= 2τ2 − τ2

1 . (10)

The use of IT allows analytical estimating the prediciton skill
through the statistical moments which are a measure of any
deviations of PDF from the Gaussian shape (Ivanov et al.,
1994; Chu et al., 2002a, b, c). Besides, robust algorithms
for the estiamtion of PDF and PSP from numerical modeling
are developed by Ivanov et al. (1999) and Chu et al. (2002a,
2003c) even when the prediciton skill is controlled by several
variables of model input.

2.4 Singular vector approach

This approach, commonly used to estimate large atmospheric
model prediction-skill, is valid only for small MPEs (Palmer,
2000). The MPE dynamics is the linearization with respect
to the reference trajectoryZref described by the following
tangent-linear model (Lorenz, 1965; Lacarra and Talagrand,
1988 and others) within the reference period(T −t0).

d

dt
δZ(t) = J 1 [Zref(t)] δZ ,

δZ(t0) = O [Zref(t0)] t ⊂ [t0, T ] , (11)



50 P. C. Chu et al.: Lagrangian predictability of high-resolution regional models

where

(J 1)ij =
∂Hi(Zref)

∂xj

is the Jacoby matrix;H is the dynamical operator of a pre-
diction model.

The formal solution of tangent-linear Eq. (11) is given by

δZ(t) = G(t, t0)δZ(t0) ,

whereG(t, t0) is the transition operator.
The eigenvalues and eigenfunctions of the operator

L = GtG ,

are called the singular values and vectors (“the optimal per-
turbations”), respectively. The directions, along which the
growth of δZ(t0) to δZ(t) is most fast, are identified by the
singular vectors. This growth leads to the maximization of
the amplification factor

F =
(G · δZ, G · δZ)

(δZ, δZ)
=

(L · δZ, δZ)

(δZ, δZ)
. (12)

Geometrically the equation

(L · δZ, δZ) = 1 , (13)

defines a hyper-ellipsoid (ellipsoid of prediction uncertainty)
with the smallest axis maximizing the amplification factorF .
This axis is associated with the largest singular value. The
fastest growing perturbations are the singular vectors corre-
sponding to the largest singular values. Knowledge of the
leading singular vectors allows computating the amplifica-
tion factor ande-folding predictability time (Palmer, 2000).

The singular vectors and values have not been yet ap-
plied as a measure of Lagrangian model predictability, be-
fore. Thus, two problems will be in focus of the present
study. First, we would like to develop a simple approach
to compute the singular values and vectors. Second, we need
to estimate the reference period from the real oceanographic
observations.

2.5 Ensemble realizations

It was pointed out in numerous studies (for further discus-
sions see Palmer, 2000) that error growth may, in fact, be
highly dependent on the local properties along the attractor.
Thus our goal is to determine “the global” mean prediction
skill (where “global” average is to be understood as a mean
over the circulation attractor). Another reason to average
along the attractor is because in oceanographic practice the
numbers of drifters and comparative events when the drifter
and particle positions are compared, are not large. For exam-
ple, only 55 drifters moved in the Gulf of Mexico within the
time period under investigation. Therefore, we need to con-
struct an ensemble for statistical significant estimations from
such poor observations.

Ideally, the averaging may be constructed in the following
way. Utilizing observations fromP Lagrangian drifters we

firstly reconstruct the spatial structure of circulation in the
area of interest and compare it with computed by a model in
a prediction metric. For simplicity let us take the traditional
RMS error written as〈〈

δZ2(t, Zref(t0))
〉〉

theor
=∫

δZ2(t)f1(δZ, Zref(t0), t) dδZ , (14)

wheref1 is the PDF for a model prediction error over the
area of interest. We specially stressed in Eq. (14) that the
model prediction skill in general must depend on initial po-
sitionZref(t0) along the attractor trajectory.

The mean error is determined through averaging Eq. (14)
over the attractor trajectory〈
δZ2(t)

〉
theor

= (15)∫ 〈〈
δZ2 [t,Zref(t0)]

〉〉
theor

B [Zref(t0)] f2 [Zref(t0)] dZref

wheref2 describes the distribution of comparative events
along the attractor,B is the weight accounting the hetero-
geneous feature of the attractor.

In practice Eq. (14) is transformed to〈〈
δZ2(t)

〉〉
=

1

P

P∑
p=1

δZ2
p

[
t, Z

p

ref(t0)
]

(16)

It was pointed out in Vapnik (1983) and Chu et al. (2003a, b)
that comparative events may be selected so that for the em-
pirical average

〈〈
δZ2(t)

〉〉
with the probability larger thanχ ,

homogeneously (without excurses) tends to the theoretical
one ifP→∞, i.e.

Prob

{
sup

∣∣∣∣ 〈〈δZ2 [t,Zref(t0)]
〉〉

theor

−

〈〈
δZ2(t)

〉〉 ∣∣∣∣ > χ

}
→ 0 (17)

This explains why in practice impact of the spatial hetero-
geneity on the estimations of model prediction skill may be
strongly reduced even for quite heterogeneous drifter cover-
ing an area of interest.

The most dangerous procedure is the averaging over an
attractor trajectory. In the present study we will apply the
following procedure〈
δZ2(t)

〉
=

∫
f2(Zref)

〈〈
δZ2 [t,Zref(t0)]

〉〉
dZref (18)

whereB = 1.
Operator (18) represents a two-step averaging process: (a)

over each pair of drifter-particle and (b) along the attractor
trajectory. In the present study,f2 is assumed to be the con-
tinuous uniform distribution function, i.e. the model predic-
tion skill is stationary or at least very slowly variable within
the reference period.

This is a quite strong hypothesis and may not be relaxed
here, because the number of drifter buoys equals only to 55.
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3 Structure of model attractor

3.1 Model circulation

To show the verification of the Lagrangian predictability as
an example the Gulf of Mexico real time nowcast/forecast
system is taken. This system (Kantha et al., 1999; Schaudt
et al., 2001; see also Kantha and Clayson, 2000) is based
on the University of Colorado version of the Princeton
Ocean Model (POM) with 1/12◦ horizontal resolution and
24σ−levels. The water inflow through the Yukatan Channel
has been prescribed, the outflow through the Strait of Florida
evolved with the model physics. The model reaches quasi
steady regimes after 10 year integration. High-resolution
bathymetry (Fig. 1a), the real-time altimetric sea surface
height (SSH) anomalies derived from NASA/CNES TOPEX
and ESA ERS-1/2 altimeters, and composite MCSST data
derived from NOAA AVHRR assimilated into the model in
a continuous data assimilation mode are used to produce
a nowcast and a four-week forecast. Kantha and Clayson
(2000) found that forecast retains considerable skill to about
1–2 weeks, beyond which the forecast begins to deviate from
reality.

Since the Lagrangian drifters are drogued at 50 m depth,
the modeled horizontal velocity field at the same depth is
used for the model-data comparison in 1998, throughout this
paper. The model successfully reproduces the typical circu-
lation patterns (the Loop Current and eddy shedding) in the
Gulf of Mexico (Fig. 1b, c). The anti-cyclonic eddies are reg-
ularly pinched off from the Loop Current, which enters the
eastern Gulf of Mexico through the Yucatan Channel and ex-
its through the Strait of Florida. The Loop Current meanders
and eddies (most distinguished mesoscale features) are pre-
dicted with radii less than 100 km and velocities larger than
100 cm/s.

3.2 Toroidal and poloidal EOF decomposition

The model circulation at 50 m depth was analyzed as a 2-
D divergent flow. Helmholtz (Morse and Feshbach, 1953)
or Moffat-Zeldovich (Moffat, 1978; Zeldovich et al., 1985)
decomposition may be applied in this case. Our study uses
the MZD to construct appropriate EOFs for the analysis of
the spatio-temporal structure of the model attractor at 50 m
depth. Other oceanographic applications of MZD can be
found in Eremeev et al. (1992), Lipphardt et al. (2000) and
Chu et al. (2003a, b) selected as examples.

Let us briefly explain the MZD. It represents 3-D velocity
{u⊥, w} at any vertical horizoñz=const as

u⊥ = u(T )
+ u(P ) , (19)

u(T )
= ∇ × (k9) , u(P )

= ∇ × ∇ × (k8) , (20)

w = −∇ · ∇8 , (21)

where k is the unit vector perpendicular to the surface
z̃=const; u⊥=(u, v) and w are the horizontal and vertical
velocity components, respectively;∇=(∇x, ∇y) is the gra-
dient operator. The9 (toroidal) and8 (poloidal) potentials
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Fig. 1. High-resolution bathymetry utilized by the model(a) and
circulation patterns in the Gulf of Mexico for two different dynam-
ical regimes in 1998 on(b) Julian Day 260, and(c) Julian Day 320.
The bold line in (a) is 50 m isobath. Transition from one regime to
another is characterized by energy cascade from low- to high-order
EOFs.
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generate the toroidal(u(T )) and poloidal(u(P )) velocities,
respectively.

Knowledge of the potentials9 and8 allows computing
EOFs separately for each of these potentials:9n(x, y, z̃),
n=1, . . . , N (toroidal modes) and8m(x, y, z̃), m=1, . . . , M

(poloidal modes).
The following scheme was chosen for practical compu-

tations of the EOFs. LetT −t0 be the reference period
during which the model-data comparison takes place. In
our case this time period can be chosen as not larger than
1 year. Then, the horizontal velocityu⊥=

(
u(T ), u(P )

)
and the potentials(9, 8) were represented as combina-
tions of stationary within the reference period currents
(SPCs)ū⊥=

(
ū(T ), ū(P )

)
, 9̄, 8̄ and pulsation components

u′
⊥=

(
u′(T )

, u′(P )
)

, 9 ′,8′:

9(x, y, z̃, t) = 9̄(x, y, z̃) + 9 ′(x, y, z̃, t),

u
(P )
⊥

= ū(P )
+ u′(P ), (22)

8(x, y, z̃, t) = 8̄(x, y, z̃) + 8′(x, y, z̃, t),

u
(T )
⊥

= ū(T )
+ u′(T ). (23)

Two sets of EOFs which are the eigenfunctions of a
large 18 200×18 200 matrix, were computed for9 ′ and8′

through the algorithm of Penenko and Protasov (1978). To
compute EOFs we used the same grid as in the hydro-
dynamic model and circulation velocity through each two
days of model calculations. Numerical experiments demon-
strated that for the reference period larger than 8 months the
computed EOFs were practically not sensitive to increasing
length of this period.

The spatial inhomogeneity and temporal intermittency of
the circulation attractor are analyzed through the spatial
structure of EOFs and behavior of mode amplitudesAn

andBm calculated by the inner productsAn=(9 ′
· 9n) and

Bm=(8′
· 8m), respectively.

3.3 Spatial structure of model attractor

3.3.1 Stationary part

Both the toroidal (̄u(T )) (Fig. 2a) and poloidal (̄u(P ))
(Fig. 2b) SPCs have simple large-scale topology. The
toroidal circulation explicitly dominates over the poloidal
one. This indicates the quasi-geostrophic nature of SPC pat-
terns. A measure of toroidal circulation impact is the com-
pressibility factor (Schumacher and Eckartdt, 2002)

σ =

〈〈
(∇ · u⊥)2

〉〉〈〈
(∇u⊥)2

〉〉 , (24)

i.e. the ratio of the mean square divergence versus the mean
square velocity gradient. Here, the double brackets, also as in
Eq. (14), denote averaging over an area of interest. The com-
pressibility factor of the model SPC is about 0.05. However,
the poloidal SPC (̄u(P )) (Fig. 2b) clearly shows the existence
of the convergence and divergence zones in the circulation
patterns.
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Fig. 2. Structures of the toroidal(a) and poloidal(b) SPCs.

3.3.2 Pulsation component of circulation

The spatial structures of the non-stationary part are
represented by various toroidal (n=1, . . . , N ) and
poloidal (m=1, . . . ,M) velocity modes (snapshots)
{u

(T )
n =∇×[k9n]} and{u

(P )
m =∇ · k8m}. The most striking

features of{u(T )
n } are (a) the multi-eddy structures with

smaller eddy scales for high-order modes, (b) the Loop
Current occurring only in the first toroidal modeu(T )

1 but
not in other modes and (c) small-scale eddies contributing in
the low-order modes as well. For example, the first toroidal
velocity modeu

(T )
1 represents a combination of the Loop

Current and multi-eddy structures (Fig. 3a). The second
toroidal velocity modeu(T )

2 (Fig. 3b) shows the existence
of multi-eddy structures such as dipoles. The most striking
feature of {u(P )

m } is that the convergence and divergence
zones at the mesoscales in the deep basin are represented
only by the poloidal velocity modes with order higher than
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Fig. 3. Low-order toroidal [n=1(a), n=2(b)] and poloidal [m=1(c), m=2(d)] EOFs.

two. The first (u(P )
1 ) (Fig. 3c) and the second (u

(P )
2 ) (Fig. 3d)

poloidal velocity modes display the large-scale motions as
well as the upwelling and downwelling in the coastal zone
of the Gulf of Mexico.

The fractions of energy for each type of EOFs grow rapidly
with the increase of the mode numbers (N, M) (Fig. 4a, b).
Here, more than 90% of the toroidal and 99% of the poloidal
kinetic energy lie in the first ten toroidal and two poloidal
modes, respectively. The first toroidal mode contains more
than 45% of the total energy of toroidal motions.

3.4 Temporal structure of model attractor

Temporal variations of the first ten toroidal mode amplitudes
{A1(t), . . . A10(t)} (Fig. 5) show various degrees of com-
plexity, which increases in the higher-order modes. Fairly
large excursions from the mean are also noted. The temporal
variability scale of the second (Fig. 5b) and third (Fig. 5c)

modes exceeds the temporal variability scale for the first
mode (Fig. 5a). Amplitudes of the sixth (Fig. 5f), ninth
(Fig. 5i), and tenth (Fig. 5j) modes demonstrate irregular
behaviors. Temporal variations of the first two poloidal-
mode amplitudes{B1(t), B2(t)} show the similar complexity
(Figs. 5k and 5l).

The pulsations of mean toroidal
〈〈
E′

tor

〉〉
and poloidal〈〈

E′

pol

〉〉
energies also demonstrate complex irregular (abrupt)

behavior (Fig. 6a, b). The
〈〈
E′

tor

〉〉
varies between 240 and

600 cm2/s2 with energy peeks occurring at Julian Days-150,
-210, -300, and -340 of 1998 (Fig. 6a).The relative variations

of
〈〈

E′

pol

〉〉
are much stronger, between 10 and 80 cm2/s2,

with explicit energy peeks at Julian Day-230, -245 and -360
of 1998 (Fig. 6b). The behavior of

〈〈
E′

tor

〉〉
is de-locked with

the variations of
〈〈

E′

pol

〉〉
.
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Fig. 4. The fractions of toroidal(a) and poloidal(b) energies. Ar-
rows indicate the fraction of energy corresponding to 1, 10 and 20
EOF decomposition.

The complexity in the circulation attractor behavior can be
also analyzed using the four non-dimensional ratios:

η1=
〈〈Epol〉〉
〈〈Etor〉〉

, η2=

〈〈
E′

pol

〉〉
〈〈E′

tor〉〉
, η3=

〈〈
Ētor

〉〉
〈〈Etor〉〉

, η4=

〈〈
Ēpol

〉〉
〈〈Epol〉〉

, and the

global entropy (Aubry et al., 1991). Here, the mean
total 〈〈E〉〉, toroidal 〈〈Etor〉〉 and poloidal

〈〈
Epol

〉〉
ki-

netic energies are computed as〈〈E〉〉 = 〈〈Etor〉〉 +
〈〈
Epol

〉〉
,

〈〈Etor〉〉 =
〈〈
Ētor

〉〉
+

〈〈
E′

tor

〉〉
and

〈〈
Epol

〉〉
=

〈〈
Ēpol

〉〉
+

〈〈
E′

pol

〉〉
,

respectively.
The ratiosη1 andη2 vary between 2% and 12% (Fig. 7a)

and between 2% and 21% (Fig. 7b), respectively. The be-
havior of both the ratios are locked. That indicates the same
forcing mechanism for the Gulf of Mexico circulation at the
large and meso-scales.

The ratiosη3 andη4 fluctuate from 42% to 73% (Fig. 7c)
and from 3% to 27% (Fig. 7d), respectively. We see that the
pulsations of the poloidal component contribute very strong
into the total poloidal circulation. That stresses our conclu-
sion about impossibility of the global Lagrangian predictabil-
ity for high-resolution regional models.
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Two global entropies, toroidal (Stor) and poloidal (Spol)
can be calculated for the toroidal and poloidal movements,
respectively, as

Stor = −

N∑
n=1

pn logpn/ logN , pn = A2
n/

N∑
n=1

A2
n , (25)

Spol = −

M∑
m=1

p∗
m logp∗

m/ logM , p∗
m = B2

m/

M∑
m=1

B2
m . (26)

The entropyStor orSpol is 0 (total order) if and only if the first
EOF mode dominates. If the energy is distributed among the
modes equally (total disorder), the entropy takes its maxi-
mum value, namely 1. Thus, the global entropies are a mea-
sure of degree of order or disorder in behavior of a model
attractor.

The global toroidal and poloidal entropies with mode trun-
cation,N=M=16, andN=M=50, are illustrated in Fig. 8.
Both these entropies display intermittent characteristics by
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Fig. 8. Temporal behavior of the toroidal(a, b) and poloidal(c, d)
entropies computed for 16 (a, c) and 50 (b, d) EOFs.

successive redistribution of energy initially concentrated in a
few first low-order modes (Stor=0.2 on Julian Day-260), be-
tween other low- and high-order EOFs. Such intermittency
is more evident in the poloidal field (Fig. 8c, d) than in the
toroidal one (Fig. 8a, b). As a result displayed in Fig. 9a–d is
the existence of irregular (probably, stochastic) pathways of
divergence and convergence zones.

4 Lyapunov dimension of model attractor

The global prediction feature of the model attractor can be
identified through different ergodic measures, such as Lya-
punov dimension (DLyap), Kolmogorov-Sinai entropy and
others (Zaslavsky, 2002). Exact determination of them for
a high-resolution oceanographic model is a very hard task.
However, coarse estimations ofDLyap are possible through
the approach originally developed by Syrovich (1989).

The minimum mode truncation number required for accu-
rate representing the circulation as measured by the energy
norm is treated as the intrinsic dimensionDint of phase space
generated by the basis{9n(x, y)} and{8m(x, y)}. This di-
mension is identified as the number of modes requested so
that the captured energy is at least 90% of the total one and
so that no neglected mode, on average, contains more than
1% of the energy lying in the most energy mode (Syrovich,
1989).

It was obtained in numerous studies, here we cite only Sy-
rovich (1989) and Aubry et al. (1991), that the intrinsic and
Lyapunov dimensions are connected through the following
empirical relation[
DLyap

]
= Dint

− 1, (27)

where
[
DLyap

]
is the integer part ofDLyap.
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Fig. 9. Model reproduced poloidal circulation in 1998 on Julian Day 200(a), Julian Day 235(b), Julian Day 300(c), and Julian Day 360(d).

Since the circulation is decomposed into the toroidal
and poloidal parts, two different intrinsic dimensions and
naturally two Lyapunov dimensions should be introduced

as
(
Dint

tor, D
Lyap
tor

)
and

(
Dint

pol, D
Lyap
pol

)
for the toroidal and

poloidal velocity components, respectively. The analysis of
fractions of toroidal and poloidal energies (see Fig. 4a, b) re-
sults in

Dint
tor ∼ 16; Dint

pol ∼ 2 ; (28)

15 ≤ D
Lyap
tor ≤ 16 1≤ D

Lyap
pol ≤ 2 (29)

Thus, both the estimations forD
Lyap
tor andD

Lyap
pol uniquely in-

dicate the irregularity of behavior of the model attractor. That
can lead to the exponential growth of the initial error on the
attractor.

5 Statictics of the Lagrangian predictability

The present section analyzes the predictability in general
with uncertainty in the evolution law (the governing equa-
tions) and partially in initial conditions. Several physical
factors can limit the model prediction in the Gulf of Mex-
ico. First, the water inflow through the Yukatan Channel
and the outflow through the Strait of Florida are described
only approximately. The prediction error induced by inac-
curacy in open boundary conditions can considerably reduce
the model prediction time (Chu, 1999; Jiang and Malanotte-
Rizzoli, 1999). Second, other sources of prediction errors
are unresolved motions which are either parameterized in the
model or neglected. Comparison between the drifter trajecto-
ries and modeled synthetic particle trajectories (Toner at al.,
2001) demonstrates that after filtrating the effect of 30–hour
tides, individual drifter trajectories are reproduced by the
model with reasonable accuracy within 10 days. The present
study utilizes the same drifter observations and numerical
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Fig. 10. Spaghetti of 55 drifting buoys used in the analysis.

model. However, in comparing with Toner et al. (2001) and
Kuznetsov et al. (2002) the primary focus of our study is on
statistical laws of the model prediction error growth.

5.1 Drifter observations

Fifty five satellite-tracked sonobuoys, manufactured by the
Applied Technology Associates and deployed by the Hori-
zon Marine, have provided the Lagrangian data used for
the study. A nylon drogue at 50 m depth is tethered to the
buoy hull that is 0.64 m in the water and 0.33 m in the air.
Louisiana State University’s Coastal Studies Institute/Earth
Scan Laboratory tracked the buoys for the Horizon Marine.
The drifter trajectories used in the present study are given in
Fig. 10. The particle trajectories are obtained through time-
integration of the modeled horizontal velocity field at 50 m
depth with the bi-cubic spline interpolation in space and the
second-order interpolation in time.

5.2 Model prediction error

The differences of position(δX, δY ) and velocity(δU, δV )

for any drifter-synthetic particle pair are stochastic. The en-
semble average of the velocity difference over the trajecto-
ries (〈δU 〉 , 〈δV 〉) shows weak model bias. For example,

the bias〈δU 〉 has a minimum value of –2.5 cm/s on Julian
Day-4 in 1998 and a maximum value of 5 cm/s on Julian
Day-18 in 1998 (Fig. 11a). However, the absolute RMS er-
rors of velocity components (over the trajectories) are not

small. For example,
〈
δU2

〉1/2
fluctuates between 34.5 cm/s

and 44.4 cm/s, and
〈
δV 2

〉1/2
fluctuates between 31.7 cm/s and

38.0 cm/s (Fig. 11b). The variances of prediction error for
both the drifter velocity components become practically con-
stant after 4 days from the start of particle movement. In gen-
eral large stationary variances of MPE indicate that the error
evolutes nonlinearly (Nicolis, 1992; Chu et al., 2002a).

Let us discuss how the position model error characterizing
differences between the drifter and particle positions evolves.
We will determine its statistics by the first ten moments

Lq(t) =

〈∣∣∣δZ̃∣∣∣q〉
q = 1, . . . , 10, (30)

whereδZ̃={δX, δY }
t .

It was pointed out by Chu et al. (2002a) that Eq. (30) holds
a power law forq=1 andq=2. Here, we check the existence
of a more universal power law forq=1, . . . , 10

Lq(t) ∼ tγq (31)

and specify the power exponentγq .



58 P. C. Chu et al.: Lagrangian predictability of high-resolution regional models

−3

−2

−1

0

1

2

3

4

5

6

4 8 12 16 20

〈 δ
U

〉, 
〈 δ

V
〉 (

cm
/s

)

t (days)

(a)

30

32

34

36

38

40

42

44

46

4 8 12 16 20
〈 δ

U
2 〉½

 ,〈
 δ

V
2 〉½

 (
cm

/s
)

t (days)

(b)

Fig. 11. Mean(a) and variance(b) of difference between buoy and particle velocities.

L q
 (d

eg
re

es
)q  

t  (days) 

 

Fig. 12. The first ten moments of MPE. The solid lines represent
the power laws which approximate computation results displayed
by dots, crossings, triangles and squares.

If γq = µq/2 , (32)

the PDF of MPE has a self-similar form. MPE described by
relation (31) with (32) is a Gaussian (non-Gaussian) process
if µ=1 (µ6=1) (del Castillo-Negrete, 1998). Any deviation
from relation (32) suggests that the MPE is an intermittent
process.

 

Fig. 13. The scaling exponentγq as measured within the range
12 h<t<20 days. Dashed line is the 3q/4 law. Solid line is the
best fit. Difference between the 3q/4 law and the best fit observed
for the moments numbered higher than 4 is explained by reducing
accuracy of computational results from finite sampling time effects.

Our computations display a power dependence ofLq(t) on
the timet (12 h<t<20 days) fromq=1 toq=10 (Fig. 12):

Lq(t) ∼ tµq/2 (33)

with

µ ≈ 1.49± 0.03,
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Fig. 14. PδX=P̄1(δX, 0, t) (the black
triangles) andPδY =P̄1(0, δY, t) (the
white dots) through 3 h(a), 6 h (b),
12 h (c), 24 h (d), 48 h (e) and 96 h(f).
The solid lines are Gaussian approxi-
mations.

 

Fig. 15. PδU=P̄2(δU, 0, t) (the black
triangles) andPδV =P̄2(0, δV , t) (the
white dots) through 3 h(a), 6 h (b),
12 h (c), 24 h (d), 48 h (e) and 96 h(f).
The solid lines are Gaussian approxi-
mations.

To assess the possible impact of finite sample size effects
on estimatingµ, we apply a simple test that was proposed
earlier by Tennekes and Wijngaard (1972). The maximum
error for estimatingµ is about 0.02–0.03 for the high-order
moments. For the first four momentsLq (q=1, . . . , 4) the
scaling exponent is very close to 3q/4 (Fig. 13).

The power growth of MPE is interpreted in terms of
the normal and anomalous diffusion (del Castillo-Negrete,
1998). The cases ofµ=1 andµ>1 may be called as “the
normal diffusion” and “the super-diffusion” regimes of MPE
growth, respectively.

5.3 PDF of MPE

To understand how the statistics ofδZ̃ departures from Gaus-
sian distribution, the following shorted PDFs are applied:
P̄1(δX, δY, t) and P̄2(δU, δV, t). The appropriate cross-
sections of these PDFs are plotted in Figs. 14 and 15 display-
ing their explicit symmetry and isotropy.̄P1(δX, δY, t) has
a non-Gaussian shape for various times from 3 h to 10 days.
The departures from Gaussian behavior and the presence of
tails stretched in large MPE, are both evident in these fig-
ures. At times longer than 10 days this function tends to a
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Fig. 16. Cluster spread along the trajectory(a) of H17543 drifter. Positions 1, 2, 3, 4, 5, 6 of cluster center (a) and corresponding to them
positions of the cluster(b), (c), (d), (e), (f), (g) are given through every 8 h. Initially the cluster is round with the radius equaled to 1/12◦ (b).
The solid lines are the cluster boundaries predicted by the singular vector approach. The black dots are particles.

Gaussian shape because of correlations for a pair of buoy-
particle decay. The shape of̄P2(δU, δV, t) practically does
not change with time (Fig. 15).

Using the analogy between the pair-particle dispersion and
the drifter-synthetic particle divergence, it is reasonable to
assume that̄P1(δX, δY, t) holds the following diffusion-like
equation (Boffeta and Celani, 2000):

∂PδR

∂t
=

∂

∂R

(
Keff(R, t)

∂PδR

∂R

)
, (34)

where δR=
√

δX2 + δY 2, Keff(R, t) ∼ R3/4 is the
Richardson-Obukhov type effective diffusion coefficient.

The solution of Eq. (34) is written as (Klafer et al., 1987)

PδR
∼= t−9/2 exp

(
−C · R2/3/t

)
, (35)

here,C is constant.
Relation (35) correctly describes the evolution of the

shorted PDF of MPE for the small and intermediate times.
This indicates that the statistics of the Lagrangain prediction
error in the case of the second kind of predictability (Lorenz,
1984) can be described by diffusion-like equations. Note that
the model error is scaled within the time intervals from 12 h
to 20 days. These time scales correspond to the spatial scales
varying from 20 km to 300 km.

5.4 Linear tangent model

To examine applicability of linear tangent models for the
analysis of Lagrangian predictability of high-resolution re-
gional models we study the dispersion of small-size particle
clusters with the initial round shape and the radius equaled to
1/12◦ along the drifter trajectories[Zref(t)=Z(t)] and com-
pare computation results with predictions from the singular
vector approach.

If a linear tangent model is valid within the reference pe-
riod (T −t0), the cluster rapidly gets an ellipsoidal shape con-
served within this period. In opposite case, the cluster is
quickly deformed to a pancake-like shape. The evolution of
the cluster shape can be studied in two ways: through direct
modeling and by the singular vector analysis. This allows
estimating the reference period for the real circulation model
from the real oceanographic observations.

The results discussed above say that the Lagrangian model
skill is non-Gaussian even for small times. Thus, we can not
expect large reference periods. However, their exact estima-
tions are of considerable interest for the practical predictabil-
ity.

In general we found that linear tangent models can be ap-
plied to approximate the MPE growth within very short time
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Fig. 17. Cluster spread along the trajectory(a) of H17547 drifter. Positions 1, 2, 3, 4, 5, 6 of cluster center (a) and corresponding to them
positions of the cluster(b), (c), (d), (e), (f), (g) are given through every 15 h. Initially the cluster is round with the radius equaled to 1/12◦ (b).
The solid lines are the cluster boundaries predicted by the singular vector approach. The black dots are particles.

intervals limited by several days. As an example, two drifter
(H17543 and H17547) trajectories are selected to show this
(Figs. 16 and 17). The reference periods for H17543 and
H17547 drifters were estimated as 8 and 30 h, respectively.
The mean reference period〈(T −t0)〉 was equaled to 21 h,
i.e. after this time a linear tangent model breaks down. Thus,
21 h is the practical limit to apply a linear tangent model of
MPE in the Gulf of Mexico.

The analysis of evolution of all clusters used to estimate
the reference period also demonstrate that although a clus-
ter is quickly deformed to a pancake-like shape, the cluster
center moves along the drifter trajectory during considerably
larger time than the reference period, i.e. the local model drift
was a quite small.

Because the mean reference period should be limited only
by 21 h, we will not apply linear tangent models for the anal-
ysis of Lagrangian predictability any more.

5.5 IT statistics

The PSP (see Eq. 7) with zero initial errors,F(t, ε), is calcu-
lated from the drifter and particle trajectories with the toler-
ance level ranging from 0.05◦ to 1.25◦. F(t, ε) for four dif-

ferent tolerance levels (0.25◦, 0.5◦, 0.75◦, and 1.25◦) clearly
shows non-Gaussian distribution (Fig. 18). The long tails
stretched into large ITs demonstrate the existence of the long-
term correlations between the drifters and synthetic particles.
We see that individual Lagrangian trajectories can be pre-
dicted within 20–25 day period even if the mean Lagrangian
prediction time does not exceed 4–5 days. Individual predic-
tions with abnormal large prediction periods were called the
extremely successful predictions (ESP) (Chu et al., 2002a).

The PSP tails (Fig. 18) have the power behavior
for the long IT period with the power exponents as
(2.17±0.07, 1.98±0.09, 2.08±0.10, 1.77±0.25) for ε as
(0.25◦

; 0.5◦, 0.75◦, 1.25◦), respectively. That identifies the
power exponent as larger than 2.

If the power exponent is larger than 2, the mean and vari-
ance of IT exist (Fig. 19). Both these values are scaled as

〈τirrev〉 ∼ εα,
〈
τ2

irrev

〉
∼ εβ (36)

with α≈1.21±0.11 andβ≈2.17±0.15.
That indicates non-Gaussian feature of the Lagrange pre-

diction skill. It was pointed out by Popov (1970) thatα=1
andβ=2 for a Gaussian statistics.
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Fig. 18. PSP of IT calculated for different levels of toleranceε.
Solid and dashed lines are the PSP and the proposed theoretical
power laws to approximate it for large times.

The mean irreversible time can also be easily computed
from model (34), (35) and through Popov’s (1970) method.
The theoretical estimation ofα is 4/3. We see that the best fit
of the power exponent estimated as 1.21±0.11 agrees with
the theoretical value very well.

6 Reconstruction of model attractor

It was demonstrated above that mean Lagrangian prediction
skill of high-resolution oceanographic models is not very
high, up to 4–5 days, and models predict the real drifter tra-
jectories only within short and intermediate time periods. A
key question is: may the spatial structure of such a model
attractor be reconstructed from the rare drifter observations?

An approach developed in Eremeev et al. (1992) and Chu
et al. (2003a, b) allows reconstructing velocity field from
sparse and noisy observations. Accordingly to them a ve-
locity field is projected ontoN dimension phase space gen-
erated by some basis functions. Then, these projections (the
reconstruction coefficients) are estimated fromP observa-
tions. In general the reconstruction procedure requests that
P>(1.5−2)N .

We will apply this approach for estimating the Gulf of
Mexico model attractor structure from 15 drifter buoys if
EOFs computed from model circulation are taken as the basis
functions.

Although the EOF decomposition has rapid convergence
by the energetic norm, the accurate approximation of spatial
structure of circulation needs more than few EOFs. The ac-
curacy of the EOF truncation is represented by the relative
RMS errors of the toroidal and poloidal potentials

χtor(t, N) =
∣∣∣∣9 ′

∣∣∣∣−1 ∣∣∣∣9 ′
− 9 ′

N

∣∣∣∣ (37)

χpol(t, M) =
∣∣∣∣8′

∣∣∣∣−1 ∣∣∣∣8′
− 8′

M

∣∣∣∣ (38)
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Fig. 19. The mean IT (white dots) and its variance (black triangles)
as functions of the toleranceε.

where the Euclidian norm|| || summarizes over all

points of the model computation grid,9 ′

N=

N∑
n=1

An9n and

8′

M=

M∑
m=1

Bm8n are the pulsations of potentials approxi-

mated byN toroidal andM poloidal modes, respectively.
Figures 20 and 21 show the temporally varyingχtor(t, N)

andχpol(t, M) with six different mode truncations (1, 3, 6,
10, 30, 50), respectively. For accurate representation of9 ′

and8′, large number of mode truncation is needed. For ex-
ample, for the RMS error of the toroidal potential(χtor) to be
less than 1%, 50 toroidal modes are needed.

Because we utilized only 15 buoys traced the Gulf of Mex-
ico circulation, not more than 10–12 reconstruction coeffi-
cients can be estimated from these observations. To satisfy
this requirement the reconstruction was provided on 186 Ju-
lian Day of model calculations because at this time we can
neglect the poloidal current and approximate the toroidal po-
tential through 10 toroidal modes with the accuracy of 2.5%.
The second reason of such a choice is that the reconstruction
error caused by heterogeneity of drifter covering of the area
of interest was considerably reduced. For further discussions
see Chu et al. (2003a, b).

To reconstruct a circulation pattern we need to estimate
mode amplitudesA1, . . . , A10 from Lagrangian data, i.e.
from knowledge of drifter velocity(U, V ) such that∣∣∣∣U − ∇y

(
9̄ + 9 ′

)∣∣∣∣2
P

+
∣∣∣∣V + ∇x

(
9̄ + 9 ′

)∣∣∣∣2
P

→ min (39)

where the summation in the Euclidian norm is over all drifter
positions. The reconstruction coefficientsA1, . . . , A10 were
computed by the Singular Value Decomposition method
(Engl, et al., 1996).

Figure 22 shows the model circulation at 186 Julian Day,
velocities calculated from the drifter observations for the
same time, the reconstructed currents and residual circula-
tion, i.e. difference between the model and reconstructed cur-
rents. It is noted from comparison of Figs. 22a and 22c
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Fig. 20. RMS errors(χtor) of approximation of the toroidal circu-
lation through 1(a), 3 (b), 6 (c), 10 (d), 30 (e) and 50(f) toroidal
EOFs.

that the spatial structure of circulation is consistent in dif-
ferent scales (the Loop Current and eddies) between the re-
constructed and model fields. The residual velocity, i.e. the
reconstruction error, is quite high in the central part of the
Gulf of Mexico (Fig. 22d). The mean relative RMS error
between the model and reconstructed fields is about 28%.

7 Conclusions

(1) Lagrangian predictability of the high-resolution Gulf of
Mexico nowcast/forecast system developed at the University
of Colorado at Boulder, was examined using 55 Lagrangian
drifters. The MPE of drifter positions and velocities was es-
timated through RMS errors and irreversible-skill time. The
approach based on the linear tangent model was found un-
satisfactory because in mean the reference period can not be
taken longer than 1 day. Obviously that such short reference
periods are of no interest for the practical applications.

(2) The model attractor at 50 m depth was analyzed
through EOF decompositions developed for toroidal (non-
divergent) and poloidal (divergent) components of circula-
tion. Lyapunov dimensions estimated by the phenomenolog-
ical method of Syrovich (1989) held the following inequali-
ties

15 ≤ D
Lyap
tor ≤ 16 1≤ D

Lyap
pol ≤ 2

That evidences an irregular behavior of energetic and spec-
tral characteristics of the circulation and probably, exponen-
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Fig. 21. RMS errors(χpol) for the poloidal circulation approxi-
mated through 1(a), 3 (b), 6 (c), 10 (d), 30 (e) and 50(f) poloidal
EOFs.

tial growth of prediction error caused by uncertainty in initial
conditions utilized by the model.

(3) We pointed out that three scenarios are possible in a
model-drifter comparison.

(i) The long-term (global) predictability is referred when
the model reproduces the circulation attractor (the ro-
bust regime) in small-scale details and predicts the real
drifter trajectory within large time intervals.

(ii) In the short and intermediate predictability regime the
model correctly simulates the circulation attractor but
not all small-scale circulation details. The drifter trajec-
tories can also be predicted only locally.

(iii) The model approximates the drifter trajectories only
within short time periods (the partial predictability).
Our estimations selected the second scenario as one re-
alized for the Gulf of Mexico model.

(4) Statistics of MPE is nonGaussian for short, intermedi-
ate and long times.The MPE grows by the power law with
exponent equaled to 3/2 in the range 12 h<t< 20 days, that
corresponds to spatial scales between 20 km and 300 km. Ac-
cordingly to terminology of the theory of anomalous diffu-
sion (Klafer et al., 1987) we called this dynamical regime as
“the super-diffusion” growth of prediction error. Obviously
that such a growth indicates the fast displacement in a pair of
buoy-particle in areas where the fixed points like as saddles
may be identified in the topology structure of modeling cir-
culation. In our opinion the power law of model prediction
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Fig. 22. Model circulation on 186 Julian Day(a), velocities calculated from the drifters for the same time(b), the reconstructed circulation
(c) and the residual circulation(d).

error obtained for a high-resolution model in the specific ge-
ographic region may be found for other models and marine
areas. As examples, the model prediction error grows along
a power law for POP model of the North Atlantic (Ivanov et
al., 2003).

Theq−th moment of MPE is scaled with power exponent
of 3q/4. That in general says about the self-similar feature of
model prediction skill. The PDF of MPE holds the diffusion-
like Eq. (34). Universality of the parameterization of Eq. (34)
to describe the growth of prediction error for other high res-
olution numerical models and for other geographic regions
will be examined in a separate paper.

(5) The PSP clearly shows a long tail stretched into large
ITs. This tail is a signature of long-term correlations between
the drifter and particle trajectories in separate individual pairs
of drifter-particle. Individual Lagrangian trajectories can be
predicted within a 20–25 day period even if the mean La-
grangian prediction time does not exceed 4–5 days. The

best fit of the power exponent estimated as 1.21±0.11 agrees
very well with the theoretical value of 1.33 obtained from the
diffusion-like MPE model.

(6) The obtained results has the following practical capa-
bility. First, statistics of the mean prediciton errors can be
utilized to develop numerical scheme for Lagrangian data as-
similation. That will be done in a separate paper.

Second, in general we can distinguish between different
approaches in study of ocean: Eulerian (in terms of veloc-
ity fields) and Lagrangian (in terms of trajectories of fluid
particles). Even through these two points of view are in prin-
ciple equivalent, the relationship between predictabilities as
seen in the realm of two approches, is still an open problem
and there is no evidence of a fixed correspondence between
Eulerian and Lagrangian chaotic behaviours.

It was pointed out in Eremeev et al. (1992) that if
the Lagrangian correlation scaleTL determined from the
Lagrangian data exists and drifting buoy movements are
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described as pure stochastic, a model in mean may not pre-
dict Lagrangian trajectories for time intervals(τpred) longer
than this scale, i.e.τpred<TL. In contrast, if drifter move-
ments are chaotic (Lagrangian chaos) we may select models
allowing to predict longer thatTL (Kravtsov, 1989). A prac-
tical procedure of similar selection was developed by Pires et
al. (1996).

Appendix A Computation of the singular values

Let us introduce the matrixQ=L−1 and differentiate
Eq. (13) with respect tot :

−

(
Q−1 dQ

dt
Q−1 δZ, δZ

)
+

(
Q−1 dδZ

dt
, δZ

)
+

(
Q−1δZ,

dδZ

dt

)
= 0 (A1)

Using Eq. (11) Eq. (A.1) is rewritten as(
Q−1

[
dQ

dt
− J 1Q − QJ t

1

]
Q−1δZ, δZ

)
= 0 (A2)

or
dQ

dt
= J 1Q + QJ t

1 (A3)

with obvious initial conditions

Q(t0) = Q0 (A4)

where,Q0 is a non-zero matrix measuring uncertainty of
model initial conditions.

So, for the given reference periodT −t0, the diagonal ele-
ments of the matrixQ determine the size of ellipsoid of pre-
diction uncertainty. Non-diagonal matrix elements identify a
position of this ellipsoid in space. Obviously, the geometrical
center of the ellipsoid moves along the reference trajectory
Zref. The eigenvalues and eigenfunctions of the matrixQ

are easily recalculated in the traditional singular values and
vectors by way of simple algebraic manipulations.
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