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Abstract—A three-point, sixth-order, staggered, combined compact difference (SCCD) scheme
is proposed for numerical models. The SCCD scheme is a generalization of the previously proposed
combined compact difference (CCD) scheme, and has major improved features such as error and
computational (CPU) time reduction especially for odd-order difference equations with odd-number
boundary conditions. For nonperiodic boundaries, an additional sixth- or fifth-order boundary condi-
tion is proposed. The stability of the SCCD scheme is studied using the eigenvalue analysis. © 2000
Elsevier Science Ltd. All rights reserved.
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1. INTRODUCTION

Following the trend toward highly accurate numerical schemes of partial differential equations
(PDE) led by many authors (e.g., Adam [1]; Lele [2]; Carpenter et al. [3,4]; Chu and Fan [5];
Hirsh [6]; Rubin and Khosla [7]; Navon and Riphagen (8], and Chu and Fan [9,10]) proposed
a three-point sixth-order uniform and nonuniform combined compact difference (CCD) schemes
to increase accuracy. This scheme follows earlier work on use of second derivatives in compact

difference (such as [7])
1

> (akfirk + befipk + ckflix) =0, (1)
k=1

which is referred to as the Hermite formula. Here, f is a dependent variable. Lele [2] and
Carpenter et al. [3,4] performed detailed studies of several compact schemes in terms of accuracy
and efficiency, both for first- and second-order derivatives f’ and f”. Moreover, Carpenter et
al. [3] address the issue of stability of boundary stencils from the theoretical point of view.
Many ocean and atmospheric numerical models are designed on staggered grids, this is due
to the fact that the staggered grids give more accurate wave propagation. Applying the CCD
scheme to the staggered grids, we obtain a three-point sixth-order staggered combined compact
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difference (SCCD) scheme with sixth-order or fifth-order accuracy at both interior and boundary
points.

2. SCCD SCHEME

2.1. General Form

Let f (z) be defined on the interval, 0< z < L. We discretize the interval into 0 = ¢ < z; <
+«+ < zy = L for nonperiodic boundaries (Figure 1a) and into 0 < £9 < z; < - < zy < L
for periodic boundaries (Figure 1b) with a grid spacing h = z; — ;1 = L/N, (i =1,2,...,N).
Here, g, z1,...,ZN are unstaggered points.
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(a) Nonperiodic boundaries.
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(b) Periodic boundaries.
Figure 1. Illustration of the SCCD grid structure.
Use staggered grids, 0 = 50 = To < 51 < 1 < *** < TgN < TN = ZsN41 = L for
nonperiodic boundaries (Figure 1a), and 0 = g1 < ;3 < Tg2 < -+ < gy < Ty < L for periodic
boundaries (Figure 1b) with zg; = z; — h/2, i = 1,2, 3,...,N. Here, zs1, Tg2,...,TsN are

staggered grid points. Notice that staggered and unstaggered points are collocated at nonperiodic
boundaries (x50 = 2o and gy +1 = TN ). \

The dependent variable f(z) and its second derivative f”(z) are given at the unstaggered
points. The first derivative f/(z) is given at the staggered points. By application of the Hermite
formula (1) to the staggered grids, we obtain a general form of the SCCD scheme

11 fsi—1 + fsi + onafips + Bufily + Buafi' =n(fi — fi-1), (2)
a21fsi + @22f5iy1 + B fiiy + fi' + Baafily = va1fio1 — (Y21 + Y22) fi + Yoo fit1- (3)
In computing first and second derivatives, systems (2) and (3) will be solved for unknown variables

f and f” as f is given at the regular grids fi_1, fi, and fi;1. The coefficients in (2) and (3) are
determined by the Taylor series expansion.

-
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2.2. Expansion on Staggered Grid Points

2.2.1. General expressions

Expansion of f, f’, and f” into the Taylor series at the staggered grids xg; and elimination of
h? and h* terms leads to (Figure 2a)

1" 120
5= ga7 (b + Fhun) + 355 g5 (7~ Fla) = To7s i = fi-) @

with truncation error —1/(7!)(457/ 2032) (7) h®. Using a similar procedure expansion, we also can
obtain

| o= 5 e+ fim)+ o (T = Fhocs) — o5k (5 L), ®)
- with truncation error —1 /(6')(137/27)f(6)
f: f i-1 f! f i f’
Si~ f, Si f Si+1
- i
h h
[ he h2 ]
Si-1 i-1 Si i Si+1
(a) Staggered grid points
13 99 39
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(b) Standard grid points.
Figure 2. Illustration of the SCCD grid structure at interior.

In some cases, if the third-order derivative is required, a similar formulation will be

" 120 237 3
f = 127h2 (sz—l + fSt+l) + =5 127h ( 1) + == 127h3 (f, f,_l) (6)

Expressions (4)—(6) are valid from zg; to zgy for the periodic boundaries, and from zgy to
Zsn-1 for the nonperiodic boundaries. Thus, each of (4)-(6) contains N algebraic equations for
the periodic boundaries and (N — 2) algebraic equations for the nonperiodic boundaries.

2.2.2. Special expressions for nonperiodic boundaries

Expansion of f, f’, and f” into the Taylor series at grids s, from neighboring points and
elimination of A2 and h* terms lead to (Figure 3)

h 32, 7
Piiind ! - /I — TS
135f"+ 5fS1 ers/s2 gl t f‘ 50hf o+ S5h T Bon’? ™)

for the left boundary with the truncation error as 1/(7!)(2/5)f, (7)h6. Similarly, we have

" 1 32fN_1 L
135f1v+ 25fszv 675fs1v 1t fN fN 50th ST 50th—2 (8)

for the right boundary with the same order of the truncation error.
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Figure 3. Illustration of the SCCD grid structure at the left boundary.

Besides, the sixth-order interpolation near the boundary staggered grid points are

85, 2 1 5,09 .,
for=geggfo— i st 256f°+ 151+ T35 179279 * ggg/1 ©)
and
4455 27 Lo g 3h,  45h2
fsn = 3egz I = 15 /N1 = ggIn-2 — gggfener — S fsn + gz v + 896f 1 (10)

The third-order derivative at the neighboring grid points will be

15 25 80 ” 611
s1= g3 (2 = Jo) + 1555 f0 - mféz 6h + == (11)
15 5 fv  6fn-
fsn = 3 (fN—2—fn)+ Wféwﬂ 9h2 fSN 1t on T Z 3 (12)

2.3. Expansion on Unstaggered Grid Points

Expansion of f, f/, and f” into the Taylor series at the unstaggered grids z; and elimination
of h? and h* terms leads to (Figure 2b) :

144 / / 1" 5 1" "
~Th (FSig1— fai) + fi' = 9 (fili+ ) = 47h,2 (fz = 2fi + fit1) (13)

with truncation error —1/(7!)(1/4)f® (z;) h®. Expression (13) is valid from z; to zn for the
periodic boundaries, and from z; to zy—; for the nonperiodic boundaries. Thus, equation (13)
contains N algebraic equations for the periodic boundaries and (N — 1) algebraic equations for
the nonperiodic boundaries.

2.4. Periodic Boundaries

For periodic boundaries

fo=fn, fnyr1=F1, fso=1Fsn» fsnyr=1Fs1» fo =fn, and fyo=f, (14)

the SCCD scheme (4) and (13) automatically provide the sixth-order accuracy for whole region
(interior and boundary points).

3. ALGORITHM FOR NONPERIODIC BOUNDARIES

Treatment for nonperiodic boundaries is an important task for the high-order schemes. Follow-
ing Carpenter et al. [11], Chu and Fan [9,10] proposed a boundary treatment for the three-point
sixth-order unstaggered CCD schemes. Here, we propose a fifth-order boundary algorithm for
SCCD scheme.
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3.1. Finite Difference Equation (FDE)

Consider a one-dimensional Euler equation

of = of _
artes =d 0<z<L 0<t (15)
with the initial and boundary conditions
fO,2)=g(z), f(t,0)=p(t). (16)
Use of the SCCD scheme (5), (9), and (10) leads to the discretization
AAff"+cf§,.=d, i=0,1,...,N +1, (17)

which contains (N + 2) algebraic equations. :

There are (3N +4) unknown variables in this system: f; (i =0, 1,...,N), f&. (i=0, 1,2,...,
N +1),and f{'(i=0, 1,...,N), however, only (3N + 2) algebraic equations are available in (4),
(7), (8), (13), and (17). We need two more algebraic equations to close the system. The two
additional boundary conditions for the SCCD scheme are (Figure 3)

Bt R phy = 2+ SR = (s~ o)+ o (- fo), (18)
h
i+ 17ng 8-S = 128 o (o= ) = 5 (nea=fw)  (19)

with a fifth-order truncation error, —1/(180) fl(G) h5, for the left and right boundaries, respectively.
The coefficient matrix is a diagonal system with eight bands when nonperiodic (Figure 4) and
with seven bands when periodic (Figure 5). Thus, the memory requirement is 8(3V + 4) when
nonperiodic and 7(3N + 4) when periodic.

from eq.
-~ : N 0 N N
% % C f’o r51 B.C.
C4 05 06 f0 52 (17)
C, ¢ C C C, ¢ c, c f"0 0 (18)
02 C3 C4 05 C6 C7 C8 C1 f’s1 0 (7)
¢ ¢, ¢ C C C C, C f1 S, (17)
¢, C C € C C C, C f"1 0 (13)
c, ¢, C, C C C, C, P 0 @)
G G G € G % C G fz Se (17)
| | Hoamd -l
| . o e e e e [ |« |
€, G G C S G C G f’SN-1 0 (4)
C, C % C % G S G fN-1 S an-4 17)
C, G C % % % G P Net 0 (13)
C, € C G G G G C G rSN 0 (8)
% € G G 6 % G G s S an- (17)
G S C, € G € G % P 0 (19)
C G G Fy EaNj (17)
N s N C

Figure 4. Coefficient matrix of the SCCD scheme for finite difference calculation
with nonperiodic boundaries.
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from eq.
ﬂ c. c C c, C c\ (f N (7.
4 5 6 7 1 72 73 st 0 4)
Cs % % % € C ¢ G 7, 0 (13)
C, G G G % G ¢ f1 S (17)
€, G % © % % G Feo 0 (4)
C, € &y €, .G Ly & G fnz 0 (13)
O 5% S % %Y fz Se (17)
¢, G G € G G ¢ ,ss 0] (4)
I B e e e ke B N R
| B a bt T (O I
Ci iy Oy 28510y f,SN—1 0 (4)
STy N s e Y1 s Pt 0 (13)
G %2 % %05 % % et S an-1 (17)
¢ C, %1% % %G Fon 0 (4)
% % C %Y S Y " 0 (13)
% % ¢ b e s S an (17)
N phmtgeile w7

Figure 5. Coefficient matrix of the SCCD scheme for finite difference calculation
with periodic boundaries.

3.2. Finite Difference Calculation

The SCCD can also be used to calculate the high-order finite difference as the explicit scheme.
There are (2N +3) unknown variables: fg; (¢ =0,1,2,...,N+1)and f{ (¢=0,1,2,...,N) with
only (2N + 1) equations (4), (7), (8), (13), (18), and (19). Two additional boundary conditions
are needed. We propose

21
=B B B (- - f) (= fo)  (20)

for the left boundary and

33
f1’\'1=‘5_ ,’(,_1—ﬁféwu-g;;féN“m(fN—l_fN) (21)

—52% (fn-2—fn)+ # (fN-3 — fN)

for the right boundary with a fifth-order truncation error —109/(16800) f1(7) h5. The finite differ-
ence calculation becomes to solve 2N + 3 equations consisting of (4), (7), (8), (13), (18)-(21) to
get 2N + 3 unknown variables; fg; (¢ =0, 1,...,N +1) and f/ (i = 0,1,...,N). The coeffi-
cient matrix is a pentagonal system for both nonperiodic (Figure 6) and periodic boundaries, see
Figure 7. Thus, the memory requirement is 5(2N + 3).

4. STABILITY ANALYSIS

Gustafsson et al. [12] developed stability analysis technique based on normal modal analysis.
Their work (generally referred to as GKS theory) established conditions the inner and boundary
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from eq.
-~ N O < N
% R % 5 f'o S (20)
c, ¢ ¢, ¢ i s, (18)
O S R 8 B Fsi S3 (7)
c. Srerte e 7 s, (13)
S % o 86 P Ss (4)
| o G T e
| e e e e I I |« |
¢ & ¢ ¢ G Pyt Sone (13)
¢, G S G G Fon S Nt (8)
¢, % G G Py San (19)
% % % G f’N S 2wt (21)

Figure 6. Coefficient matrix of the SCCD scheme for solving finite difference equation
with nonperiodic boundaries.

from eq.
- N N N
G G G ¢, G rf's1 S (4)
e % % G 4 P S, (13)
¢, % % ¢ G f s2 Ss (4)
¢ G ¢ ¢ G LY Sy (13)
¢, G G ¢ G Fes Ss (4)
| N T e =1 .1
| o e e e e I |«
¢ G % S G Font Sans (4)
¢ G % S G e SN2 (13)
Cs ¢ % G ¢ f’SN S Nt (4)
C G ¢, % G Py SN (13)

Figure 7. Coefficient matrix of the SCCD scheme for solving finite difference equation
with periodic boundaries.

schemes must satisfy to ensure stability. Later on, Lele [2] and Carpenter et al. [3] improved the
GKS technique and established a standard yardstick for acceptance of a new compact high-order
scheme.

We take the Euler equation (15) with initial and boundary conditions (16) as an example for
numerical stability analysis on the SCCD scheme using the eigenvalue analysis [2,3]. Define the
error function by

err =f— f )
where f and f are the exact and numerical solutions of the Euler equation (15) with the initial
and boundary conditions (16). The stability of the numerical solution for (15) is the same as for
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the error equation

Oery Oerr
En +caz_ 0, 0<z<L, t=>0 (22)
with the boundary condition
err(t,0) = 0. (23)

The domain is discretized into N equal intervals Az with N+1 grid points z; (i = 0,1, 2,...,N)
and the SCCD scheme is posted at the N + 2 stagged grids (s;, 1 =0, 1,...,N + 1) (Figure 1).
We reorganize (7), (4), and (8) into

A1é' + Bi&" = Cié, (24)
rewrite (18), (13), and (19) into
Agé' + Byé” = Csé, (25)
and rearrange (9), (5), and (10) into
é® = A3él + B3é”, (26)
where
[ e (s0) Az T el (s1)
err (T1) e;‘r (s2)
o Err (2:2) ) el
é= , é = Az,
/
e e i
-e;'r (3N+1) Az gty
[ err (o) [ err (51)
err (21) err (52)
éll = A.’I:z, &% =
-e;-,r (xN) L €rp (SN)
and

Al(N,N), Bl(N+1,N), Cl(N+2,N), Az(N,N+1),
Bg(N+1,N+1), Cg(N+2,N+1), Ag(N,N), B3(N+1,N)

are coefficient matrices. Elimination of Cy and C2 from (24)-(26) leads to
&' =Bs, & = A (27)
where
B=(A; - BiB;'4;)" (Ci = BiB;'C;y),  A=A3B+B3(B;'C; — By'4;B).  (28)

Substitution of (27) into (22) leads to

0é c .

Using the normal modes
é(z,t) = exp(wt)é(x).
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Figure 8. Eigenvalues w;- of equation (30) for various horizontal resolutions.

Equation (29) becomes an eigenvalue problem

—f’éﬁAé = Bg, (30)
where &(z) is an (N + 2)-dimensional vector. The algebraic equation (30) has (IV +2) eigenvalues
w; Az )
wj = Jc , ji=0,1,...,N+1. (31)
If the real pa.r.t of all eigenvalues
Re(wj) <0, j=0,1,...,N +1, (32)

the numerical schemes are stable.

We use the Matlab [13] built-in function ‘eig’ to compute the eigenvalues of (30). Figure 8
shows the eigenvalues {w}} in the complex plane with different resolution N. All Re(w}) are
negative, which indicates the stability of the SCCD scheme.
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5. EXAMPLES
5.1. Boundary Layer Flow Near a Flat Plate

5.1.1. Blasius equation

Laminar flow near a flat plate leads to the Blasius equation
"+ ff"=0, 0<z<10 (33)
with the boundary conditions
fO) =0, f(0)=0, f(10)=1. (34)

This equation does not have the exact solution, but its second derivative f” has the exact value

at the left boundary [14],
#" (0) = 0.469600. (35)

The FDE for (33) is written by
fsi+ fs.fs, =0, i=1,2,...,N. (36)
We use this dynamical system to test the accuracy and CPU time of the SCCD scheme.

5.1.2. SCCD scheme

The SCCD FDE requires "’ on the staggered grids. Thus, we need to interpolate f and f”
into the staggered grids for (33),

A 277
Fs1= =355 + fl 96r 70~ 3hf52 64h2f°+ ah+ 64h2f2’ (37)
fgi=2(fi”+f’”—1)_ﬁ(f5i+l_f5i—l) 1=2,3,...,N—1, (38)

13 231
fsn =—§§f1's'r fN 1+ gshfszv-u-l + 3hfszv 1~ eVt hsz 1+ 64h2fN -2. (39)

Substitution of (5), (6), (9)-(12), (37)—(39) into (36), and together with (4), (7), (8), (13), (18),
and (19) lead to (3N +4) algebraic equations for (3N +4) variables: f; (i =0,1,2,...,N), f§, (i =
0,1,...,N+1),and f/ (:=0,1,...,N).

5.1.3. Second-order scheme

The second-order central staggered scheme is given by

fSi="fi—+2fi_—1'1 i=12,...,N, (40)
,."=f"‘1—i£"+f"+1, i=1,2,...,N -1, (41)
The Blasius equation (33) is discretized by

" " " " >
‘—-h—“—+f,f—+2’:i=o, i=1,2,...,N (42)

and the boundary conditions (34) is changed into

= h— f! -
_ Un=Un—=fn-1)/h) _ (A= (v = In-1)/h) (44)
h/2 h/2

The Blasius equation (33) with the boundary condition (34) becomes a set of nonlinear algebraic
equations (40)-(44) for f;, f!' (i=0,1,2,...,N), and fs, (i =0,1,2,...,N +1).
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5.1.4. Iteration

The iterative method is used to solve the nonlinear algebraic equation (36). For each step of
iteration m, the variables fs, (1 = 0,1,2,...,N + 1) are taken the values of the previous step,
fg.T_ 28 Thus, the two sets of nonlinear algebraic equations become linearized and easy to solve.

The iteration starts from a linear field,

fO =g, i=12..,N,

which provides the first guess values for fg,

fg):i%, i=1,2,...,N. (45)

The solutions of the two linearized systems lead to a set of new values fé-?, which are used for
the next iteration. The iteration stops at the step M as

M) () — f"M-1)(0)| < 107, (46)

5.1.5. SCCD veriﬁcati(_)n

We solve the Blasius equation (33) numerically with both SCCD and second-order schemes
under various horizontal resolutions and record the CPU time (a SGI origin-100 was used). Since
f" of the Blasius equation has the exact value at the left boundary (35), the accuracy evaluation
between SCCD and second-order schemes is pursued using f”(0). The difference between the
numerical and exact values of f/(0) is regarded as the computational error.

Error versus grid cell number diagram (Figure 9a) shows that for the same grid cell number, the
error of the SCCD scheme is more than three orders of magnitude smaller than the second-order
scheme. For example, the errors of the SCCD and the second-order schemes for the cell number 50
are 1.28x10~* and 1.99x10~!, an error reduction by 1555 times using the SCCD scheme. For.
the same accuracy, the SCCD requires much less (1-2 order of magnitudes) resolutions. For
example, the grid cell number should be 10,000 (second-order scheme), or 85 (SCCD) if the error
is 0.3x107". '

10 .
\
\
\
107} 1
10°} .
\
\
X
10' 10° 10° 10*

Grid Cell Number

(a) Error versus grid cell number.

Figure 9. Error and CPU time comparison between SCCD (solid curve) and second-
order (dashed curve) schemes.
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CPU time (s)
3!
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-4 i sl
10°® 107 10
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10

(b) CPU time versus error.
Figure 9. (cont.)

Usually, the CPU time increases with the accuracy. CPU time versus error diagram (Figure 9b)
shows a more rapid increase using SCCD than the second-order scheme, and the existence of a
critical error (5.01 x 10~%), where both SCCD and second-order schemes consume the same CPU
time (near 0.0088 s). For the error less (more) than this critical value, the SCCD scheme consumes

more (less) CPU time.
5.2. 0-Coordinate Ocean Model

5.2.1. o-coordinate

In coastal ocean prediction models (most staggered), the effects of bottom topography must be
taken into account. This can be done by using a terrain-following o-coordinate system, where the
water column is divided into the same number of grid cells independence of depth. Let (z.,y., 2)
denote Cartesian coordinates and (z,y,o) sigma coordinates. In most sigma coordinate ocean
models, the relationship between the two coordinate systems are

2 .
T = T, Y = s, o + H@y)' (47)
where z and o increase vertically upward such that z = 0, ¢ = 1 at the surface and z = —H and
= —1 at the bottom. H = H(z,y) is the bottom topography.

5.2.2. Major problem of o-coordinate

A problem has long been recognized in computing the horizontal pressure gradient in the
o-coordinate system (e.g., [5,15-17]): the horizontal pressure gradient becomes a difference be-
tween two terms, which leads to a large truncation error at a steep topography. How to reduce the
horizontal pressure gradient error is a key issue when using o-coordinate ocean models, especially
of using primitive equation models for coastal regions.

We restrict our attention to two dimensions (z,c) for simplicity. Horizontal gradients in the
~ z- and o-coordinates are related by

oH 1 3p
0z HOo'

= o +(1-0) (48)
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Most ocean models are hydrostatically balanced, i.e.,

Op
5, = P9 (49)

where g is the acceleration due to gravity, p is the density of the fluid. Substitution of (49)
into (48) and use of

B8 _290
0z Hao
yield
Op Gp 1 OH
= 5 2(1 - U)Pg‘%, (50)

which is used for computing the horizontal pressure gradient in the o-coordinate ocean models.
Since horizontal gradients 3‘-9%, gﬁ, and g—'; are evaluated at the staggered points, we have to use

(5), (9), and (10) to interpolate p at the staggered points.

5.2.3. Seamount test case

Chu and Fan [5] used an ordinary seven-point sixth-order difference scheme to reduce the
horizontal pressure gradient error. Since most ocean numerical models use three-point staggered
schemes, it is hard to apply the ordinary sixth-order schemes (more than three points) to ocean
models. For staggered grid ocean models, the SCCD scheme overcomes the grid mismatch. It is
easy to apply SCCD to ocean models.

We use a seamount test case to illustrate the benefit of using SCCD. Suppose a seamount
located inside a periodic f-plane (fo = 10~4s~!) channel with two solid, free-slip boundaries along
constant y. The domain is a periodic channel, 320 km long and 320 km wide. The channel has a
far-field depth 7max and in the center includes an isolated Gaussian-shape seamount (Figure 10)
with a width W and an amplitude 7,,

_ _ 2
(Z,Y) = Tmax — 7s €XP [— (= x0)2v;2(y bo) } ) (51)

where (zo,yo) are the longitude and latitude of the seamount center [5).

00
Y (km) -150  -150 X (km)

Figure 10. Seamount geometry.
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The fluid is exponentially stratified and initially at rest. The initial density field has the form,

pi=p(a) + e () (52)

where 2z is the vertical coordinate, and H, = 1000 m, and

5(z) = 28 — 2exp (Hip) (53)

is a reference density field. Here a constant density, 1000 kgm~—2 , has been subtracted for the
error reduction. For a standard test case [5], the parameters are given by

W =40km, fjmax =5000m, 7, =4500m, p=02kgm™3, Ay =10"m*s"!. (54)

Unforced flow over seamount in the presence of resting, level isopycnals is an ideal test case
for the assessment of pressure gradient errors in simulating stratified flow over topography. The
flow is assumed to be reentrant (periodic) in the along channel coordinate (i.e., z-axis). This
seamount test case has a known solution, i.e., zero velocity, after integrating from rest with no
external forcing (atmospheric or lateral boundary) if there is no computational error. Another
nonzero velocity generated is due to the computational error. We use this seamount case of the
semispectral primitive equation model (SPEM) version 3.9 to test the new difference scheme. The
reader is referred to the original reference [18] and the SPEM 3.9 User’s Manual [19] for detailed
information. In the horizontal directions, the model uses the staggered C-grid, second-order finite
difference discretization except for the horizontal pressure gradient, which the user has choice of
either second-order or fourth-order difference discretization [20]. In the vertical direction, the
model uses a boundary fitted o-coordinate system. The discretization is by spectral collocation
using Chebyshev polynomials. Our model configuration is similar to that of Beckmann and
Haidvogel [21]. The time step and grid size used here are

At =675 s, Az = Ay = 5km.

Peak Error Velocity (m/s)

5 : : :
0 5 10 15 20
Time (days)

(a) Peak error velocity.

Figure 11. Peak error velocity propagation in 20 days for the SCCD, second-order,
fourth-order, sixth-order ordinary, and sixth-order compact schemes (all staggered).
The formulas for the compact schemes compared are listed in the Appendix.
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Relative Peak Error Velocity to SCCD

0 5 10 15 20
Time (days)
(b) Relative peak error velocity to SCCD scheme.

Figure 11. (cont.)

Owing to a very large number of calculations performed, we discuss the results exclusively in
terms of the maximum absolute value the spurious velocity (called peak error velocity) generated
by the pressure gradient errors. Figure 11a shows the time evolution of the peak error velocity
for the first 20 days of integration with six different schemes. The formulas of these schemes
are given in the Appendix. The peak error velocity fluctuates rapidly during the first few days’
integration. After five days of integration, the peak error velocity show the decaying inertial
oscillation superimposed into mean values: 0.4cm/s (ordinary second-order central, three-point), -
0.048 cm/s (ordinary fourth-order with five-point), 0.04cm/s (compact fourth-order with four-
point), 0.01 cm/s (ordinary sixth-order with seven-point), 0.004 cm/s (compact sixth-order with
five-point), and 0.0013cm/s (SCCD with three-point). The steady approach of the peak error
velocities to these values for the six schemes indicates the stability of the computation. Also, we
computed the error ratio between the existing schemes versus the SCCD scheme (Figure 11b).
The errors for the second-order (central), ordinary fourth-order, compact fourth-order, ordinary
sixth-order, and compact sixth-order schemes are roughly 300, 36.6, 30, 8, 3 times of the that of
the three-point sixth-order SCCD scheme. '

6. CONCLUSIONS

(1) From this study, it can be stated that the three-point sixth-order SCCD scheme is a
promising highly accurate method for both derivative computation and FDE solutions.
The advantage of this highly accurate three-point staggered scheme is its potentially wide
application to geophysical computations, especially to atmospheric and oceanic numerical
models.

(2) This scheme requires satisfaction of FDE not only on the interior grid points, but also on
the boundary nodes. v

(3) For periodic boundaries, the SCCD scheme has sixth-order accuracy at all grid points in-
cluding boundary nodes. But for nonperiodic boundaries, an additional fifth-order bound-
ary condition is needed at the boundary nodes to close the system.

(4) The eigenvalue analysis indicates the stability of the SCCD scheme.

(5) Two examples (Blasius equation and semispectral primitive equation ocean model) show
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great reduction of truncation error using the SCCD scheme. For the semispectral ocean
model, the SCCD scheme reduces truncation errors roughly 300, 36.6, 30, 8, 3 times com-
pared to the second-order (central), ordinary fourth-order, compact fourth-order, ordinary
sixth-order, and compact sixth-order schemes.

(6) Most ocean models are hydrostatically balanced and on staggered grids. Such a balance
sets up a lowest limit, (Az, Ay)r, for the grid spacings. If the model resolution is finer
than that limit, nonhydrostatic ocean models should be used. If the hydrostatic balance
is kept unchanged, the grid spacing cannot be artificially small. A logical approach is to
use high-order difference schemes such as the SCCD scheme.

(7) Future studies include applying SCCD scheme to nonuniform, staggered grid systems, as
well as designing even higher-order schemes such as eighth-order SCCD scheme.

APPENDIX
STAGGERED FINITE DIFFERENCE SCHEMES

Al. Second-Order Scheme

The staggered second-order scheme is given by

Op\ _Piry2—Pi-yz 1 (3p B2
oz ), h 24 \023 ),

piis Pi—1/2 ';‘Pi+1/2 +0 (hz) '

A2. Fourth-Order Schemes

Ordinary scheme

The staggered fourth-order ordinary scheme is given by

(_52) _ Pi-3/2 = 2Tpi—1/2 + 2TPi-1/2 — Pit1/2 L3 (851)) B4
4 i

or 24h 640 \ 8z5

9 1
pi = E(Pi—lﬂ + piv1/2) — 1—6(/’1'—3/2 + piyas2) + O (h4) .

Compact scheme

The staggered fourth-order compact scheme is given by

1 |(op Op Op _ Pipy2—Pi-y2 17 (3% 4
24 [(a)i—l-}_zz (am)i+ (6“3 a] h 5,760 \ Oz ,-h

1 1 op op
pi = 5(Pi-1/2 + Piv1/2) + ¢ [(&)i_l - (%)HJ h+0 (h%).

At the left boundary, we use

(@) _ (H11/12)py /2 +(17/24)p3/2+(3/8)ps/2 — (5/24)pr/2+(1/24)po2) 71 (3;5;0) Y
oz ), h 1920 \ 825 ), "’

with

35 35 35 7 5 4
PL=155P1/2 + 3532~ ggPs2 t g5Pr/2 — TagPor2 + o (r%).

The right boundary point has the similar formulation.
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A3. Sixth-Order Schemes

Ordinary scheme

The staggered sixth-order compact scheme is given by

( @) _ ~9i-s/2 +125pi_3/3 — 2,250pi—1/2 + 2, 250Pi+1/2 — 125piy3/2 + Oits/a

Oz 1920h
G ot _82 hS
7,168 \ 0z° /

Compact scheme

The staggered sixth-order compact scheme is given by

5@ (@),

_ 1 —17p;_3/2 — 189p;_1/2 + 189p;11/2 + 17Piy3/2 61 (3719) 6

240 h 358,400 \ 8z7 ],
with
9 9 [[/8p) 8p
pi = ﬁ(/’i—lﬂ + Pit1/2) +33 (Pz—s/z + pitas2) +335 [(ax) . (8.1:) A+0 (h%).
At the left boundary, we use
op) , _ 1,627 21 59 2% 01
g 1,92071/2 T gagP3/2 T 3gPs/2 T 199P7/2 T 1ogPos2
443 31 3,043 [97p\ .,
+ T,02071/2 ~ g60™%/2 * 107,520 ('a? e
231 L6938 1,155 231
p1= 1,02401/2 512/03/2 1, 024P5/2 256107/2

495 77 21
~ T 02472 + 5gP1/2 = 1 TogaPe2t O (h%).

The right boundary point has the similar formulation.
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