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ABSTRACT

A variational method is used to estimate wave-affected parameters in a two-equation turbulence model

with assimilation of temperature data into an ocean boundary layer model. Enhancement of turbulent kinetic

energy dissipation due to breaking waves is considered. The Mellor–Yamada level 2.5 turbulence closure

scheme (MY2.5) with the two uncertain wave-affected parameters (wave energy factor a and Charnock

coefficient b) is selected as the two-equation turbulence model for this study. Two types of experiments are

conducted. First, within an identical synthetic experiment framework, the upper-layer temperature ‘‘observations’’

in summer generated by a ‘‘truth’’ model are assimilated into a biased simulationmodel to investigate if (a, b) can

be successfully estimated using the variational method. Second, real temperature profiles from Ocean Weather

Station Papa are assimilated into the biased simulation model to obtain the optimal wave-affected param-

eters. With the optimally estimated parameters, the upper-layer temperature can be well predicted. Fur-

thermore, the horizontal distribution of the wave-affected parameters employed in a high-order turbulence

closure scheme can be estimated optimally by using the four-dimensional variational method that assimilates

the upper-layer available temperature data into an ocean general circulation model.

1. Introduction

Observations (Kitaigorodskii and Lumley 1983; Thorpe

1984; Anis and Moum 1992; Terray et al. 1996; Drennan

et al. 1996; Babanin 2006; Kantha et al. 2010) show that

the dissipation of turbulent kinetic energy (TKE) is

enhanced greatly near the sea surface by surface gravity

waves under nonbreaking (including nonbreaking wave

turbulence and Langmuir turbulence) and breaking

waves. The breaking-wave-induced mixing has been

broadly implemented into ocean circulation and mixing

models (e.g., Mellor and Blumberg 2004). On the basis

of the observational evidence of the surface wave

breaking (Osborn et al. 1992; Agrawal et al. 1992),

Terray et al. (1996) suggested a three-layer structure:

The first layer (from the surface) is a wave-enhanced

layer with the depth on the same order as the significant

wave height, and the energy dissipation rate pro-

portional to z23 (z denotes the vertical distance from the

sea surface), which is twice faster than the classical wall-

layer dissipation. The second layer is the transition layer

below the breaking zone (depth about 6z0; z0 is the

surface roughness length) (Craig andBanner 1994), with

the energy dissipation rate proportional to z22. The

third layer is the classic wall layer with the energy dis-

sipation rate proportional to depth z21.

To model the wave-breaking-enhanced turbulence

near the sea surface layer, Craig and Banner (1994) and

Craig (1996) imposed a surface diffusion boundary con-

dition on the turbulent kinetic energy equation (CB

boundary condition) in the Mellor–Yamada (MY) tur-

bulence closure model (1982). Burchard (2001b) simu-

lated a wave-enhanced layer under breaking surface

waves with a two-equation turbulence model including
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the CB boundary condition. Mellor and Blumberg

(2004) developed a wave-enhanced parameterization

scheme with the CB boundary condition to overcome

a weakness of the MY turbulence closure model that

produces a shallower surface boundary layer and higher

surface temperature during summertime warming in

comparison to the observations (Martin 1985). Zhang

et al. (2011a,b) identified the effect of breaking surface

waves on upper-ocean boundary layer deepening in the

Yellow Sea in summer utilizing the Princeton Ocean

Model generalized coordinate system (POMgcs; Ezer

and Mellor 2004). A well-mixed temperature surface

layer in the Yellow Sea can be reconstructed success-

fully when the breaking-wave-enhanced turbulent mix-

ing is considered.

In addition to the wave breaking, other wave-related

processes are also important in modulating the upper

mixed layer, such as the nonbreaking wave (Babanin

and Haus 2009) and the Langmuir turbulence (Belcher

et al. 2012). Some studies indicate that the effect of wave

breaking on the upper-level turbulence is significant

within the depth comparable to the wave height (Terray

et al. 1996). However, for a deeper mixed layer, the

impact of wave breakingwould be small and the effect of

Langmuir circulation and nonbreaking wave becomes

important (Babanin 2006).

Uncertain wave-affected parameters exist in model-

ing wave-induced turbulence (nonbreaking or breaking

waves), such as the critical value of the wave Reynolds

number Recr in nonbreaking waves and the wave energy

factor a and the Charnock coefficient b in breaking

waves. These parameters are usually determined em-

pirically or adjusted artificially. Studies have shown

successful parameter estimation with a dynamical model

using variational optimal control techniques (Derber

1987; Le Dimet and Talagrand 1986). For example, Yu

andO’Brien (1991, 1992) used the variational method to

assimilate meteorological and oceanographic observa-

tions into a one-dimensional oceanic Ekman layer

model, to estimate the drag coefficient and the oceanic

eddy viscosity profile and to investigate the effect of

initial condition on the variational parameter estima-

tion. Zhang et al. (2003) showed the capability of four-

dimensional variational data assimilation (4D-VAR) in

estimating uncertain parameters in numerical models.

Peng and Xie (2006) developed a tangent linear model

and an adjoint model of three-dimensional POM to

construct a 4D-VAR algorithm for coastal ocean pre-

diction. Effective error correction was found in initial

conditions and wind stress in the storm surge simulation

(Peng et al. 2007), and the drag coefficient was estimated

in the storm surge prediction using the adjoint model of

the three-dimensional POM (Peng et al. 2013). Peng and

Xie (2006) also pointed out that it is still an open issue as

to whether it is meaningful to linearize the turbulence

closure scheme in an atmospheric or oceanic model due

to the high nonlinearity and discontinuity of the vertical

turbulence. The nonphysical noise might be produced,

and thus lead to numerical instability during the process

of linearizing the turbulence closure scheme. They ap-

plied a simple but efficient way of avoiding the noise

problem through neglecting the variation of the vertical

diffusion coefficients in the linearization of the vertical

turbulence scheme.

Despite earlier studies on the parameter estimation

and model verification (e.g., Chu et al. 2001), the adjoint

model of the turbulence closure scheme has not yet been

thoroughly investigated with either nonwave breaking

or wave breaking. Determination of wave-affected pa-

rameters in the turbulent mixing due to breaking waves

using the variation method is selected as the major ob-

jective of this study. First, the upper-layer temperature

‘‘observations’’ are produced by a ‘‘perfect’’ model.

Second, a biased assimilation is conducted to identify

the capability of the variational method to optimally

estimate the wave-affected parameters in the MY2.5

turbulence closure scheme. Third, the real temperature

profiles at Ocean Weather Station Papa (OWS Papa)

are assimilated into the ocean model to obtain the op-

timal wave-affected parameters.

2. Ocean boundary layer model

a. Mean equations and second-moment closure

Let (x, y) be the horizontal coordinates, z the vertical

coordinate, and t the time. Following D’Alessio et al.

(1998), equations governing the mean flow, tempera-

ture, and salinity in a horizontally homogeneous ocean

boundary layer are given by
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where u, y are the velocity components in the x, y di-

rections, respectively;T is the potential temperature; S is

the salinity; f is the Coriolis parameter; and KM and KH

are the vertical mixing coefficients for momentum and

tracers, respectively.

MARCH 2015 ZHANG ET AL . 529



TheMY2.5 turbulence closure scheme, widely used in

ocean models such as POM and the Regional Ocean

Modeling System (ROMS), is a two-equation turbu-

lence model,
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where q2 is the turbulent kinetic energy times 2; l is the

turbulent macroscale; Kq is the vertical mixing co-

efficient for turbulence; and r and r0 are the density and

reference density, respectively,

W5 11E2(l/kL)
2, L215 (h2 z)211 (H1 z)21 ,

where k (50.41) is the von Kármán constant, H is

the water depth, h is the free-surface elevation, and

E1, E2, and B1 are empirical constants. The turbulent

energy and macroscale equations are closed by

KM 5 lqSM, KH 5 lqSH , Kq 5 lqSq , (4)

where SM and SH are the stability functions.

b. Wave-affected parameters

Wave-affected parameters are included in the surface

boundary conditions of the two-equation turbulence

model. The first one is the CB boundary condition for q2

(Craig and Banner 1994),

Kq

›q2

›z
5 2au3t , z5 0, (5)

where ut is the water-side friction velocity and a is

‘‘wave energy factor.’’ The second one is for the turbu-

lent macroscale l (Terray et al. 1996, 1999),

l5max(kzw, lz) , (6)

where lz is the ‘‘conventional’’ empirical length scale,

which is calculated prognostically by the MY2.5 turbu-

lence closure scheme; and zw is the wave-related surface

roughness length, which denotes the relevant scale of

turbulence.

In the absence of surface waves, both a and zw at the

surface are set as zero in the MY2.5 turbulent closure

scheme (Blumberg and Mellor 1987). However, when

the effect of surface waves is considered, both a and zw
appear as constants or vary with the states of surface

waves. Craig and Banner (1994) set a as 100 for wave

ages embracing very young wind seas to fully de-

veloped situations. Terray et al. (1996) indicates that

a 5 150 is an adapted value under breaking waves.

Kraus and Turner (1967), Denman and Miyake (1973),

and Gaspar (1988) also choose different values of a in

their studies.

Terray et al. (1996), Burchard (2001a), and Umlauf

and Burchard (2003) suggest that zw is the same order

as the significant wave height (Hs). Further, Mellor and

Blumberg (2004) summarized the work of Donelan

(1990), Smith et al. (1992), and Janssen (2001), and

obtained

zw 5 (b3 105)
u2t
g
, (7)

where g is the gravitational acceleration, and b is the

Charnock parameter (Chu and Cheng 2007), which

varies from b 5 2 (Stacey 1999) and b 5 0.32 (Jones

and Monismith 2008) to b 5 0.56 (Carniel et al. 2009)

to obtain the best performance in each numerical

simulation. Mellor and Blumberg (2004) suggested

that b;O(1) is deemed correct under breaking waves.

Stacey (1999) also indicated that b ; O(10) is too big

a value to describe the surface boundary condition for

the turbulent kinetic energy. It should be noted that b

does not have to be so large if the other wave-induced

mixing process is included in the models (Zhang et al.

2012).

c. Boundary conditions

The surface boundary conditions for q2 and l are given

by Eqs. (5) and (6). The bottom boundary conditions of

q2 and l are given by

q25B2/3
1 u2tb, and (8)

l5 kz0 , (9)

respectively, where B1 5 16.6 (Blumberg and Mellor

1987) and utb is the friction velocity associated with the

bottom frictional stress. The surface and bottom

boundary conditions of the mean flow and tracers are

represented by
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whereQ is the surface net heat flux;Cp is the specific heat;

Sobs is the observation of the sea surface salinity; twx and

twy are the x and y components of the wind stress, re-

spectively; u10 is the wind velocity at 10m; ux and uy are x

and y components of u10, respectively; tbx and tby are the x

and y components of the bottom frictional stress, re-

spectively; ub is the bottom velocity; ubx and uby are the x

and y components of ub, respectively; Cw and Cd are drag

coefficients of the wind stress and the bottom stress, re-

spectively; and z0 is the bottom roughness parameter, taken

as 0.01m.

3. Variational approach

a. The variational theory within the least squares
framework

The purpose of the variational analysis is to seek the

optimal control variables by minimizing a well-defined

cost function, in which a dynamical model including all

the control variables is regarded as the strong constraints

of the cost function. Within the least squares framework,

a general form of the cost function can be defined as

J(p)5
1

2

ðT
0
hW(CX2Xobs), (CX2Xobs)i , (12)

where p is the vector of the control variables, X is the

solution of the dynamical model

dX

dt
5F(X) ,

and F is the differential operator. The symbol h i rep-
resents the inner product in the Euclidean space. Term

W is the weight matrix. Term Xobs is the observation,

andC is the projection operator from themodel space to

the observational space. Let

J(popt)5min(p) .

The optimal control variable popt is obtained from

$J(popt)5 0

with respect to all control variables. Here, $ is the gra-

dient operator. The process for the variational analysis

can be outlined as follows:

(i) Define a concrete cost function that reflects the

misfit between the control variables and the avail-

able observations.

(ii) Calculate the value of the cost function J(p)

through integrating the dynamical model with

a fixed time step.

(iii) Calculate the gradients of the cost function with

respect to all control variables, $J(p).
(iv) Minimize the cost function through a minimization

algorithm according to the value of J(p) and$J(p).
(v) Estimate the optimal control variables popt accord-

ing to the convergence criterion of the process of

the minimization.

For executing the above-described process of the vari-

ational analysis (i)–(v), $J(p) should be obtained in
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advance, and in general, it is calculated by the adjoint

model of the linearized dynamical model. To the first

order the Taylor expansion of J(p) is given by

J(p)5 J(p0)1 dJ(p) , (13)

where dJ(p) is the variation of J(p).On the one hand,

dJ(p) is given by the definition of the variation:

dJ(p)5

ðT
0
h$XJ(p0), dXi . (14)

On the other hand, dJ(p) can also be written according

to Eq. (12),
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With the symmetry of the inner product as well as

a constant W matrix, Eq. (15) can be rewritten as
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Let ›C/›X 5 A(X), thus Eq. (16) can be given as

dJ(p)5

ðT
0
hW(CX2Xobs),A(X)dXi , (17)

where A(X) is the tangent linear operator. Equation

(17) can be transposed according to the definition of the

adjoint operator,

dJ(p)5

ðT
0
hWA*(X)(CX2Xobs), dXi , (18)

whereA*(X) is the adjoint operator ofA(X). Compared

with Eq. (14), $XJ(p0) can be described by

$XJ(p0)5WA*(X)(CX2Xobs) . (19)

b. The adjoint model

According to Eq. (19), the gradient of the cost func-

tion with respect to the control variables can be

calculated using the adjoint model. The difference

CX2Xobs is regarded as an external forcing of the

adjoint model.

The general form of the adjoint model can be found in

appendix A. The discretized adjoint model that com-

putes the gradient of the cost function can be developed

directly from the discretized dynamical model including

Eqs. (1)–(11). In practical application, the source code

of the adjoint model is constructed by combining the

Tangent and Adjoint Model Compiler (TAMC) de-

veloped by Giering and Kaminski (1998) and a hand-

coding correction. First, the adjoint code is generated by

TAMC to avoid human errors and negligence, which are

extremely easy to happen during the direct coding.

Second, hand-coding correction is conducted to correct

the AMC-generated code and to control the adjoint

code structure. The errors in the adjoint code, which are

induced from some irregular expressions of the forward

numerical model, such as the partial array assignment

and iterative use of intermediate arrays, are corrected

through the hand coding. Finally, through the hand-

coding correction, values of many intermediate results

in the adjoint model are recorded into memory instead

of recomputed to shorten the run time of the adjoint

model, and some local variables and arrays are trans-

ferred to global attribute to improve the run efficiency of

the adjoint model.

Once the cost function and its gradient are obtained

from the dynamical model and its associated adjoint

model, the minimization process is implemented to

minimize the cost function through iterating the values

of the control variables (Tn, Tn21, a, and b) with the

limited-memory Broyden–Fletcher–Glodfarb–Shanno

(BFGS) quasi-Newton minimization algorithm (Liu

and Nocedal 1989). During the minimization process,

the maximum of a is set to 1000, and the maximum of b

is set to 10 according to Mellor and Blumberg (2004)

and Stacey (1999). The minima of the two wave-

affected parameters are set to zero to keep realistic

physical conditions. The minimization process is re-

peated until the convergence criterion of the gradient is

reached. At that time, the optimal values of the control

variables are obtained.

c. Cost function

In this study, the cost function is defined by

J(Tn,Tn21,a,b)5
1

2
(Tn 2Tn

b )
TB21

1 (Tn 2Tn
b )1

1

2
(Tn212Tn21
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TR21[Tj,i(a,b)2Tobs] , (20)
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where the first two terms on the right side represent the

background error terms that measure the misfit between

the model’s initial field and the background field. Terms

Tn and Tn21 are the initial temperature values at the nth

and (n 2 1)th time steps, respectively, which will be

estimated optimally via the variational method. Terms

Tn
b and Tn21

b are the background temperature values at

the nth and (n2 1)th time steps, respectively, which can

be derived from the model run. Both temperatures at

the two consecutive time steps are considered as the

control variables due to the utilization of the leapfrog

time differencing scheme with the Asselin–Robert time

filter (Robert 1966). Otherwise, initial shocks of the

model states are likely to be produced during the vari-

ational estimation because of the inconsistence of the

initial values at the two time steps. Terms B1 and B2 are

the error covariance for Tn and Tn21, respectively; for

simplicity, both B1 and B2 use diagonal matrices, whose

values of the diagonal components are set to 1024 in this

study. The third term denotes the observation of the

temperature at certain time intervals within the assimi-

lation window, where Tj,i and Tobs are the simulated and

observed temperature at location i and time level j, re-

spectively. TermsN andM are the number of grid points

over the ocean and the number of time levels of obser-

vations, respectively. Term R is the error covariance for

the observations, which also uses the same diagonal

matrix as that of B1.

Wave-affected parameters a and b are expressed

implicitly in Eq. (20), which are regarded as the in-

dependent variables of Tj,i. Therefore, the value of the

cost function can be obtained when the model integrates

for n time steps with the known initial values ofTn,Tn21,

a, and b. The cost function has the following form if the

wave-affected parameters a and b have background

values (ab, bb, respectively):
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2
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whereKa andKb are coefficients controlling the best fits

for data. In this study, we use the first form of the cost

function [Eq. (20)] for avoiding the complexity of the

cost function.

4. Synthetic experiments

a. Truth model simulation

Table 1 lists all the assimilation experiments and

model simulations within an identical synthetic experi-

ment framework. The truth model consists of Eqs. (1)–

(3) with a 5 200 and b 5 2. All six equations from Eqs.

(1)–(3) are discretized using the same implicit method as

POM. The maximum depth is set to 250m, with 60 ver-

tical levels. The first 20 vertical levels are 0.0, 0.5, 1.0, 1.5,

2.0, 4.0, 6.0, 8.0, 10.0, 12.0, 14.0, 16.0, 18.0, 20.0, 22.0, 24.0,

26.0, 28.0, 30.0, and 35.0m. The time step is 1h. The

model initial state is from 1 January 1961, including

temperature and salinity, derived from the real observa-

tion at OWS Papa. The model is forced by the observa-

tional 10-minmomentum and heat fluxes acquired online

from (http://www.pmel.noaa.gov/OCS/Papa).

Starting from the initial conditions (1 January 1961),

the truthmodel is run for 6 yr to generate a time series of

TABLE 1. All assimilation experiments and simulations within the identical synthetic experiment framework.

Name Description

Control

variables

Assimilation

windows

Assimilation

period

Assimilation

depth

Truth model simulation a 5 200 — — — —

b 52

Biased simulation a 5 100 — — — —

b 51

PE Parameter estimation Tn, Tn21, a, b 1 day 1 day 30m

PE_SST Parameter estimation Tn, Tn21, a, b 1 day 1 day Sea surface

PE_b_TI Parameter estimation with the perfect

initial fields derived from the truth

model simulation

b 1 day 1 day 30m

PE_b_BI Parameter estimation with the biased

initial fields derived from the biased

simulation

b 1 day 1 day 30m
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the truth with the first 5 yr as the spinup period. The time

of the observations ofT is from 1 to 30 August 1966. The

observations of T are produced through sampling the

truth states at 1-h observational frequencies. The ob-

servation locations of T are consistent with those of the

model vertical grids.

b. Biased simulation

The biased simulation uses the same truth model, but

with different parameter settings. Therefore, the dif-

ference between the biased simulation and the truth

model leads to the effect of the incorrect parameter

settings. Figure 1 shows the simulated daily temperature

at OWS Papa in 1966. The sea surface temperature

(SST) from the biased simulationwith (a,b)5 (100, 1) is

higher than that by the truth model simulation with

(a, b) 5 (200, 2), and the maximum difference of the

SST between the two simulations occurs in summer,

namely, from the 200th day to the 240th day (solid line vs

dashed line in Fig. 1a). An obvious difference of the

temperature at 10-m depth in the two simulations also

remains (Fig. 1b). The wave-affected parameters are

half smaller in the biased simulation than in the truth

model simulation, which suggests that the turbulent ki-

netic energy is too weak to mix the surface and sub-

surface water well in the biased simulation. After the

240th day (fall and winter), the temperature decreases

gradually due to the convective mixing induced by the

surface cooling. The temperatures at the surface and 10-m

depth in the biased simulation remain higher than the

counterpart in the truth model simulation due to the

insufficient wave-enhanced mixing in the biased simula-

tion. Below 20m, the effect of the wave-affected pa-

rameters on the temperature is not evident in summer

(solid line vs dashed line in Figs. 1c and 1d), which in-

dicates that the turbulent kinetic energy generated by the

breaking surface gravity waves is dissipated only near the

sea surface and does not penetrate into the deeperwaters.

Themaximumdifference in temperature at 30m from the

two simulations occurs in the fall (after the 250th day)

with the temperature higher in the biased simulation than

in the truth model simulation. Although the wave-

affected parameters do not directly affect the tempera-

ture in the deeper layers in summer, it can affect the

temperature indirectly by the SST due to the subsequent

convective cooling in autumn andwinter. Thus, the wave-

affected parameters directly impact the temperature near

the sea surface in summer, and indirectly impact the

temperature in the deeper layers in autumn and winter.

We intend to investigate if the wave-affected param-

eters in a two-equation turbulence model can be esti-

mated effectively through assimilating the temperature

data into an ocean boundary layer model with the var-

iationalmethod. In addition, wewant to understand how

well the model state estimation/forecast can be improved

through the estimated wave-affected parameters. In the

next subsection, a series of synthetic experiments are

carried out to address the issues.

c. Correctness test of the gradient

The code of the adjoint model is produced directly

through the TAMC (of course, a hand-coding correction

FIG. 1. Daily temperature in 1966 at (a) 0, (b) 10, (c) 20, and (d) 30m at OWS Papawith the truth model simulation

(solid curve) and the biased simulation (dashed curve).
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is necessary after that). According to the Taylor ex-

pression, one has

lim
«/0

u(«)5 lim
«/0

J[x0 2 «$J(x0)]2 J(x0)

2«h$J(x0),$J(x0)i
’ 1, (22)

where x0 is any control variable and the symbol h i rep-
resents the inner product. Figure 2 shows the correctness

test of the gradient of the cost function with respect to

a and b using Eq. (22). With respect to a, u(«) converges
to 1 as « decreases from 1023 to 1028, and decreases from

1 to 0.38 as « decreases from 1028 to 10210, which in-

dicates the dominance of the computational errors in

u(«).With respect tob,u(«) converges to 1 as « decreases
from 1026. Therefore, the adjoint coding is valid.

d. Parameter estimation

Figure 3 shows the time series of a and b during the

parameter estimation (PE) described in Table 1, where

both the assimilation window and assimilation period

are set to 24h and the assimilation depth is set to 30m.

Therefore, the processes (ii)–(vii) described by appen-

dix C are executed 30 times to obtain time series of a and

b from 1 to 30 August 1966. Figure 3b shows that b

converges to its truth value (dashed line) after 9 days,

while a converges to its truth value (dashed line in

Fig. 3a) after about 15 days. Results show the wave-

affected parameters in the high-order turbulent model

can be estimated successfully using the upper-layer

temperature observations through the variational con-

trol technique. For each cycle of the parameter estima-

tion in the 30 days, the process of the minimization is

iterated until the convergence criterion of the gradient is

satisfied. Figure 4 shows the dependence of the cost

function and the norm of the gradient on the number of

iterations on 2 August 1966. The value of the cost

function decreases rapidly from 4.3 to 0.8 within the first

five iterations, and it keeps the low value (0.8) steadily

after the fifth iteration (Fig. 4a). However, the norm of

the gradient oscillates dramatically to search the optimal

declining direction of the gradients. The norm of the gra-

dient becomes stable after the 130th iteration (Fig. 4b).

The minimization process stops after 180 iterations, in-

dicating the local minima of the wave-affected parameters

for that day.

Figure 5 depicts the temporal variations of the nat-

ural logarithm of the cost function at OWS Papa from

FIG. 2. The correctness test of the gradient with respect to (a) a and (b) b.

FIG. 3. Time series of the estimated wave-effected parameters

(a) a and (b) b for PE from 1 to 30 Aug 1966 (solid curve), where

both the assimilation window and the assimilation period are 1 day

and the depth of the assimilation is 30m. Here, the dashes curves

show the truth (a, b) values.
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1 to 30 August 1966. The cost function (red line) de-

creases dramatically in the first 5 days and then decreases

gently in the following 25 days. Both the background

term (blue line in Fig. 5) and the observation term (black

line in Fig. 5) of the cost function have a similar pattern

with the total cost function. The two terms almost

converge to the same value after the 10th day, in-

dicating the estimated initial temperature fields reach

a balance between the background temperature and

the observation.

The temporally varying wave-effected parameters

(a, b) estimated from their different initial values on 1

August 1966 (Fig. 6) converge to their truth values

within one month through the parameter optimization

with the variational approach. It clearly shows that the

variational assimilation approach is feasible for the

wave-affected parameter optimization with different

initial parameter values.

To evaluate the effect of the noise in the temperature

observation on the wave-affected parameter estimation,

FIG. 4. Dependence of (a) the cost function and (b) the norm of the

gradient on the number of iterations on 2 Aug 1966.

FIG. 5. Temporal variations of the natural logarithm of the cost

function at OWS Papa from 1 to 30 Aug 1966. Here, the red, blue,

and black curves are the total, background, and observation terms

of the cost function.

FIG. 6. Time series of the estimated wave-effected parameters (a) a and (b) b for different initial parameter

values from 1 to 30 Aug 1966, where both the assimilation window and the assimilation period are 1 day and the

depth of the assimilation is 30m. Black, blue, green, yellow, red, pink, purple, orange, and gray solid lines in (a) and

the corresponding dashed lines in (b) show values of (a, b)5 (0, 0), (100, 2), (100, 3), (200, 1), (200, 3), (300, 1),

(300, 2), (300, 3), and (400, 4) respectively.
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based on the PE experiment, the white noises with dif-

ferent standard deviation are added to the temperature

observation. Table 2 shows the dependence of the op-

timally estimated (a, b) on the error standard deviation

of the temperature observation. The relative error of

optimally estimated a decreases from 96.9% to 60%,

and the relative error of the optimally estimated b de-

creases from 99.1% to 94.3% as the error standard de-

viation in the temperature observation increases from

0.001 to 0.05K. It implies that the effect of observational

noise on the estimation is more severe on a than on b,

which means that it is more difficult to pick up the

positive signal when the noise dominates the cost func-

tion and the corresponding gradients during the pa-

rameter estimation of a. When the standard deviation of

the temperature observation increases to 0.5K, both

relative errors of the optimally estimated a and b are

below 50%, which indicates that the level of the noise is

not acceptable for assimilation purposes.

To determine if the wave-affected parameters can be

estimated correctly using only the SST data, the second

assimilation experiment, PE_SST, is conducted, in

which only the SST observations are assimilated into the

biased simulation model. Neither a (Fig. 7a) nor b

(Fig. 7b) reaches their truth values (dashed curve) due to

the poor constraint of the observation. When only the

SST observations are assimilated, the subsurface tem-

perature cannot be estimated accurately. Under this

condition, the two parameters will be adjusted to the

optimal values to fit the inaccurate temperature values

to the greatest extent within a fixed time window, rather

than converge to truth values. Therefore, the subsurface

temperature observations are essential for estimating a

and b reasonably well.

The dependence of the optimally estimated a (Fig. 8a)

and b (Fig. 8b) on the assimilation window and assimi-

lation period is investigated using different values from

1 to 30 August 1966 (Fig. 8). When the assimilation

window and the assimilation period are 48 and 72 h,

respectively, both parameters converge to their re-

spective truth values (see black and blue lines in Figs. 8a

and 8b). However, when the assimilation window and

the assimilation period reach 96 and 120 h, respectively,

neither a nor b converges to their truth values within

one month, which can be seen from the red and pink

lines in Figs. 8a and 8b. It clearly shows that the pa-

rameter updating with the observation can improve the

state estimation of the next cycle, and that the improved

state estimation further enhances the quality of param-

eter estimation for the next cycle of parameter correc-

tion.When the assimilation window and the assimilation

period are set to 120h, the state-parameter optimization

is performed only in six cycles within one month. Al-

though the cost function decreases gradually, which can

be seen from the dashed curve in Fig. 9, the control

variables (the initial temperature T and the two pa-

rameters a, b) are not estimated reasonably well. In

contrast, when the assimilation window and the assimi-

lation period are set to 24h, just as in the PE experiment,

the state-parameter optimization can be performed in 30

cycles within one month, and the cost function can reach

quasi equilibrium after 10 days (solid curve in Fig. 9).

TABLE 2. Dependence of the optimally estimated (a, b) on the standard deviation of temperature observation.

Std dev of temperature

observation

Estimated

value of a

Estimated

value of b

Relative error

of a (%)

Relative error

of b (%)

1023 206.125 1.982 96.9 99.1

1022 167.343 2.098 83.6 95.1

0.05 120.033 2.114 60.0 94.3

0.1 100.096 1.889 50.0 94.5

0.5 100.068 0.866 50.0 43.3

FIG. 7. As in Fig. 3, but for PE_SST,where only the SST observations

are assimilated.
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It should be noted that the initial temperature values

are regarded as not only the control variables being es-

timated but also the background temperature values of

the cost function [see Eq. (20)] in the current minimiza-

tion cycle. The incorrect convergence of (a, b) suggests

that the initial temperature field (the background tem-

perature values) in the current cycle is not adjusted well

enough, which is regarded as the source of noise during

parameter estimation using the variational method.

Therefore, it is hard to obtain the accurate values of

(a, b) before the state variables (Tn and Tn21) attain the

adequate accuracy. To better understand the issue, two

other experiments are carried out, in which b is regarded

as the only control variable. The experiment PE_b_TI

described in Table 1 uses the ‘‘perfect’’ initial field that is

generated by the truth model with the truth values of a

andb; the other experiment, PE_b_BI, uses the ‘‘biased’’

initial field that is generated by the biased simulation

with the biased values of a and b. Table 3 shows the

evolution of the cost function, the norm of the projected

gradient, and the value ofbwith respect to the number of

iterations in PE_b_TI. The parameter b reaches its truth

value at the third iteration. The convergence criterion of

the gradient is satisfied at the fourth iteration. However,

b estimated from PE_b_BI cannot converge to its truth

value (Table 4). After the convergence criterion of the

gradient is satisfied at the sixth iteration, b reaches

3.302335, which is different from the truth value of 2.0.

Although b from PE_b_BI cannot converge to its truth

value, it reaches its optimal value to compensate for

the error derived from the biased initial field during

minimizing the model-observation misfit.

In fact, in a 3D ocean circulation model, model biases

arise from the imperfect dynamical core and empirical

physical schemes even if the initial field is perfect. With

a biased initial field alone, one expects that the parameter

optimization can compensate for both the numerical and

physical deficiencies of the numerical model and enhance

the performance of the model simulation to a certain

degree. In this situation, parameters can only converge to

their optimal value, instead of the truth values. In the next

section, real temperature profiles fromOWSPapawill be

assimilated into the assimilation model to obtain the

optimal wave-affected parameters (a, b).

5. Real experiment

OWS Papa is located in the North Pacific at 508N,

1458W, where the currents are relatively weak and the

FIG. 8. Time series of the estimated wave-effected parameters (a) a and (b) b for a different assimilation window

and assimilation period from 1 to 30Aug 1966, where the depth of the assimilation is 30m. Black, blue, red, and pink

solid lines in (a) and (b) show the assimilation period and are 48, 72, 96, and 120 h.

FIG. 9. Temporal variations of the natural logarithm of the cost

function at OWSPapa from 1 to 30Aug 1966. The solid and dashed

curves represent PE and PE_5d, respectively, with black dots de-

noting the time that observations are assimilated.
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local mixing modulates mainly the dynamical process in

the upper ocean in summer. The observed temperature

profiles from 1 to 31 August 1966 at the site have a 3-h

interval and a coarser vertical resolution (5m) than the

model grid points. There are seven observational layers

totally in the upper 30m, namely, 0, 5, 10, 15, 20, 25, and

30m. Linear interpolation is used to fill the spatial gap

between the modeled data and the observational data.

Table 5 lists all the assimilation experiments and

model simulations within the real experiment frame-

work. First, a control run without assimilating any ob-

servational data is called control (CTRL) to serve as the

reference for the evaluation of assimilation experi-

ments. The initial temperature and salinity are taken

from those at 0000 UTC 1 January 1961 and linearly

interpolated to model grids. The high-resolution (10

min) surface-observed data (momentum and net heat

fluxes) at the site are used to force the model. Figure 10a

shows the daily observed (red curve) and simulated sea

surface temperature from CTRL (black dashed curve)

at OWS Papa on August 1966. The simulated SST is

higher than the observed SST by about 38C (black

dashed curve vs red curve). At the same time, the sim-

ulated mixed layer depth from CTRL is shallower than

the observation by more than 10m (black dashed curve

vs red curve in Fig. 10b). The optimal values of (a, b) are

estimated with the variational method to mitigate the

bias between the model and the observation using the

real summer temperature data.

The real parameter estimation (RPE) is described in

the second row of Table 5. The initial field is generated

from the results on 1 August 1966 simulated by the truth

model in the above-mentioned synthetic experiments.

The initial values of (a, b) are also consistent with those

in the truth model simulation. The length of both the

assimilation window and the assimilation period are set

to 3 days (8 real observational temperature profiles in

each day, for a total of 24 profiles for 3 days) and the

assimilation depth is 30m. The process of PE is similar to

the process described in section 3, but with the real

temperature observations at OWS Papa in August 1966.

Table 6 shows the evolution of the cost function, a, andb

with respect to the number of iterations for RPE. After

the eighth iteration, the normalized cost function de-

creases to 5% of its initial value. The optimal values of a

and b reach 107.48 and 3.98, respectively. The SST from

RPE has a significant improvement compared to the

simulated SST from CTRL (black solid curve vs black

dashed curve in Fig. 10a), whose values are basically

consistent with those of the observations (black solid

curve vs red curve in Fig. 10a). The mixed layer depth is

also more accurate from RPE than from CTRL

(Fig. 10b). However, some discrepancy in the mixed

layer depth still exists between RPE and the observa-

tion. This is because too many factors modulate the

complicated thermodynamic processes of the upper

mixed layer besides the surface gravity waves, such as

horizontal advection, internal waves, upwelling, and

entrainment. Many physical processes are not enclosed

TABLE 3. Evolution of the cost function, the norm of the pro-

jected gradient, and the value of b with respect to the number of

iterations for the direct perturbed method with the perfect initial

field.

Iteration

step

Cost

function

Norm of the

projected gradient

Value

of b

0 5.881 2.097 1.0

1 1.354 3 1025 7.406 3 1022 2.000 365

2 2.631 3 1029 1.032 3 1023 2.000 005

3 7.441 3 10217 3.042 3 1027 2.000 000

4 5.056 3 10217 5.693 3 1029 1.999 999

TABLE 4. As in Table 3, but with the biased initial field.

Iteration

step

Cost

function

Norm of the

projected gradient

Value

of b

0 2.319 3 1022 4.819 1.0

1 1.072 3 1022 3.351 3.350 811

2 1.071 3 1022 1.234 3.317 216

3 1.071 3 1022 9.003 3 1023 3.301 275

4 1.071 3 1022 1.982 3 1023 3.302 359

5 1.071 3 1022 6.043 3 1026 3.302 335

6 1.071 3 1022 3.627 3 1026 3.302 335

TABLE 5. All the assimilation experiments and model simulations within the real experiment framework.

Name Description

Control

variables

Assimilation

windows

Assimilation

period

Assimilation

depth Initial fields

CTRL Simulation with a 5 200 b 52 — — — — 1 Aug 1966 from the truth

model simulation

RPE Real parameter estimation Tn, Tn21, a, b 3 days 3 days 30m Same as CTRL

RSE_Po Simulation using the parameters

estimated by RPE

— — — — 31 Aug 1966, derived from

RPE

RSE_Pd Simulation using the same

parameters as in CTRL

— — — — Same as RSE_Po
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in the simple ocean boundary layer model. The optimal

values of the parameters can only compensate for some

model bias but not all. However, the result from RPE

indicates that the variational estimation of wave-

affected parameters can indeed reduce model biases

and improve the model capability in the upper ocean.

To explore the impact of parameter estimation on

model simulation, two validation experiments, RSE_Po

and RSE_Pd, are conducted. The optimal parameters

estimated from RPE are used in RSE_Po, and the de-

fault values of the parameters from CTRL are used in

RSE_Pd. In addition, both experiments use the same

initial fields on 31 August 1966, which are derived from

RPE. Figure 11 shows the observed (red curve) and

simulated SST from RSE_Po (black solid curve) and

RSE_Pd (black dashed curve) at OWSPapa from 1 to 30

September 1966. The simulated SST is more consistent

with the observations fromRSE_Po than fromRSE_Pd.

The simulated twice-monthly averaged turbulent kinetic

energy q2 (Fig. 12a) and the vertical mixing coefficient

for temperatureKH (Fig. 12b) atOWSPapa in September

1966 are much larger for all the depths in RSE_Po

(solid curve) than in RSE_Pd (dashed curve). The en-

hanced KH in the upper-30-m depth in RSE_Po, due to

the improvement of the turbulent kinetic energy cal-

culation, mixes the momentum from the winds down-

ward through the water column and makes it more

vertically homogeneous. It indicates that the model per-

formance can be effectively improved using the optimal

parameters. However, more accurate model simulations

are needed using the optimal values of parameters via the

variational methods repeated at certain time intervals

with more available observations.

6. Discussion and conclusions

Wave-affected parameters in high-order turbulence

closure schemes can modulate distinctly the vertical

structure in the upper ocean. For improving the per-

formance of the model in simulating the upper-ocean

mixed layer, it is essential to estimate the optimal values

of the wave-affected parameters using available obser-

vations deployed in the upper ocean through some ro-

bust data assimilation methods. It is known that one of

the advantages of the variational method is that it can

seek a posterior maximum likelihood solution of the

model parameters in terms of the best fitting of the

modeling trajectory to the observations by minimizing

a cost function that measures the distance between ob-

servations and model states within an appropriate min-

imization time window. Therefore, in this study, the

TABLE 6. Evolution of the cost function (a, b) with respect to the

number of iterations for the real assimilation.

Iteration

step

Normalized

cost function

Value

of a

Value

of b

1 1.0 107.12 4.40

2 0.52 107.45 4.44

3 0.26 107.61 4.37

4 0.29 107.97 4.23

5 0.26 107.39 3.79

6 0.14 107.48 3.86

7 0.17 107.52 3.96

8 0.05 107.54 3.98

FIG. 10. (a) SST and (b) mixed layer depth from CTRL (black

dashed curve) and RPE (black solid curve), and observations (red

solid curve) at OWS Papa from 1 to 30 Aug 1966. Horizontal axis

represents the day relative to 1 Aug 1966.

FIG. 11. SST from observations (red solid curve), RSE_Po (black

solid curve), and RSE_Pd (black dashed curve) at OWS Papa from

31 Aug to 30 Sep 1966. Horizontal axis represents the day relative

to 1 Aug 1966.
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upper-layer temperature data are assimilated into an

ocean surface boundary layer model to tentatively esti-

mate the wave-affected parameters (a, b) employed in

the MY2.5 two-equation turbulence model using the

variational method. Within an identical synthetic ex-

periment framework, the ‘‘truth’’ values of the wave-

affected parameters in the high-order turbulence model

can be retrieved successfully when the assimilation

window, the assimilation period, and the assimilation

depth are set appropriately. The observational temper-

ature profiles at OWS Papa are also assimilated to cor-

rect the model bias arisen from multiple sources. By

fitting the model results to the observations using the

variational method, the optimal temperature field can

be obtained in the upper 30m through adjusting the

wave-affected parameters to their optimal values.

Wave-affected parameter estimation using the varia-

tional method can compensate in part for the numerical

and physical deficiencies of the model in the upper

ocean. However, because of the existence of the de-

ficiencies, the optimal values of the wave-affected pa-

rameters from the variational estimation might be not

close to so-called truth values, even far away from the

truth ones, which may induce that the upper-ocean

turbulent mixing is overestimated or underestimated.

The optimal values of the wave-affected parameters in

real applications are only applicable to the specific time

period, location, and model. Further, the optimal values

should vary temporally and spatially rather than being

constants, which can be obtained by using the varia-

tional methods repeatedly at certain time intervals and

the available observations (Peng et al. 2013). Although

the optimal values of the wave-affected parameters are

both model dependent (initial fields, time window of

assimilation, model configuration, etc.) and observation

dependent (sampling frequency, sampling errors, etc),

as is indicated by this study, they can indeedmitigate the

model biases from multiple sources, and obviously im-

prove the performance of the model simulation.

Besides the wave-breaking parameters, other param-

eters in the wave-related processes can also be in-

troduced into the model (which is compatible with those

pertinent to the wave breaking) to estimate their opti-

mal values. For instance, it is well known that Langmuir

turbulence plays a key role in modulating the upper-

layer mixing in the open sea. Recently, Harcourt (2013)

introduces two more parameters into a second-moment

closure turbulent model to describe the effect of the

FIG. 12. Vertical profiles of the simulated monthly averaged (a) 2 times q2 (m2 s22) and

(b) the vertical mixing coefficient for temperatureKH (1023 m2 s21) fromRSE_Po (solid curve)

and RSE_Pd (dashed curve) at OWS Papa in September 1966.
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Langmuir turbulence. One expects that the parameters

associated with the Langmuir turbulence can be esti-

mated together with the wave-breaking parameters

using the variational method. Further, satellite remote-

sensed SST data and in situ temperature data (such

as the Argo floats) can provide a mass of temperature

observations in upper oceans. Therefore, the optimal

geographic-dependent distribution of the wave-affected

parameters in a high-order turbulence closure scheme

can be obtained using the 4DVar that assimilates the

upper-layer available temperature data into ocean cir-

culation models.
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APPENDIX A

General Form of the Adjoint Model

The dynamical model composed of Eqs. (1)–(11) can

be summarized in a general form as

›x

›t
5F(x),

xjt
0
5 x0,

x(t)jG 5 y(t) , (A1)

where x is the vector of model state variables, including

u, y, T, S, q2 and q2l; x0 is the model states at initial time

t0, and y(t) is the boundary condition on G.
The tangent linearmodel of Eq. (A1) can bewritten as

›x0

›t
5

›F(x)

›x
x0,

x0jt
0
5 x00,

x0(t)jG 5 y0(t) , (A2)

where the prime is the perturbations of the state variables.

For the two vectorsw and z in the Euclidean space, the

adjoint operator L* of the linear operator L can be

defined as

hz,Lwi5 hL*z,wi .

In the Euclidean space,L* is the transpose ofL, namely,

L* 5 LT. The adjoint model corresponding to (A1) is

given by

›~x

›t
52

�
›F(x)

›x

�T
~x,

~xjt
E
5 0,

~x(t)jG 5 0, (A3)

where ~x represents the adjoint variables and tE is the end

time in the temporal integration of Eq. (A1). The neg-

ative sign on the right side of the first equation in (A3)

indicates that the adjoint model integrates backward in

time. When the adjoint model integrates backward to

the initial time t0, the corresponding ~xjt5t0
is the gradient

of the cost function with respect to the state variables

(note that the difference in the state variables and ob-

servations should be regarded as the external forcing of

the adjoint model in the practical applications).

APPENDIX B

Sensitivity of Simulated Temperature to Parameters

It is essential to investigate model sensitivities with

respect to parameters being estimated before parameter

estimation. Figure B1 shows the dependence of the cost

function on a and b. It increases with increasing a and b

in general. However, the local minimum of the cost

function can be found near the region inwhich botha and

b reach their default values (see Fig. B1b). The existence

of the local minimum indicates that it is likely to estimate

the optimal values of a and b if the values of the gradient

with respect to the parameters can be calculated correctly

in all the numerical iterations by the adjoint model.

The ensemble spread of T is used to evaluate the rel-

evant sensitivities quantitatively. For a and b, 100

Gaussian random numbers are generated with the stan-

dard deviation being 5% of the default value and super-

imposed into the parameter being perturbed, while the

other parameter remains unperturbed. All 100 ensemble

members are started from the same initial conditions (1

January 1961). The biased simulation model is integrated

up to 6 years. Sensitivities are calculated with the model

output from 1 to 31 August 1966. This process is looped

for the two wave-affected parameters. Fig. B2 shows the

ensemble spread of T with respect to a and b at different

depths. The ensemble spread of T near the sea surface is

more than 0.09 with respect to b and less than 0.02 with

respect to a. The sensitivity of T is obviously larger to b

than to a for the whole depth, especially in the upper

30m. Small sensitivity in the lower layer indicates that the

noise may be stronger than the signal during the param-

eter estimation when the lower-layer temperature ob-

servations are assimilated into the bias simulation model.
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The sensitivities with respect to the wave-affected

parameters are also investigated through calculating the

gradients of the cost function with the parameters,

namely, ›J/›a and ›J/›b. Table B1 shows the de-

pendence of the sensitivity on the initial values of the

parameters a and b. When the initial parameter values

(a, b) are set exactly to the truth values (200, 2), both

sensitivities are very close to zero. In general, the sen-

sitivity is several orders of magnitude greater on b than

on a. It indicates that the parameter a is more vulner-

able to being disturbed by the noises arisen from the

observational errors and the biased initial state fields

during the parameter estimation.

APPENDIX C

Process of the Wave-Affected Parameter Estimation

Figure C1 shows a flowchart of the wave-affected

parameter estimation with the variational method. The

process for the wave-affected parameter estimation is

outlined as follows:

(i) Begin with the initial field on 1 August 1966 and

use the different values of wave-affected parame-

ters from the truth for the biased simulation.

(ii) Integrate the model Eqs. (1)–(3) forward to a fixed

time windowDTw and calculate the value of the

cost function J(Tn, Tn21, a, b) using Eq. (20).

(iii) Integrate the adjoint model backward in time and

calculate the values of the gradient of the cost

function with respect to the control variables $J.
(iv) With the values of the cost function J(Tn, Tn21, a, b)

and the gradient$J, use theBFGSalgorithm toobtain

the new values of the control variables, namely, the

two wave-affected parameters a, b and the initial

upper-layer temperature fields Tn, Tn21.

(v) With the updated control variables fromprocess (iv),

repeat processes (ii)–(iv) until the convergence

criterion for the minimization is satisfied. The con-

vergence criterion is defined as

FIG. B1. Dependence of the cost function on a and b for (a) 10 $ b $ 0 and (b) 3 $ b $ 0.

FIG. B2. Ensemble spread of temperature with respect to the

wave-effected parameters a (dashed curve) and b (solid curve) at

different depths.

TABLEB1.Dependence of the sensitivity on the initial values of the

parameters a and b.

Initial values

of (a, b) Sensitivity of a Sensitivity of b

(0, 0) 27.5 3 1025 2.6 3 104

(100, 1) 24.69 2574.96

(100, 2) 242.63 25325.69

(100, 3) 158.70 1.79 3 104

(200, 1) 27.41 24427.36

(200, 2) 4.0 3 10211 23.3 3 10210

(200, 3) 172.36 2.73 3 104

(300, 1) 223.82 21.61 3 104

(300, 2) 7.76 2.50 3 103

(300, 3) 429.53 1.57 3 105

(400, 4) 471.18 1.80 3 105
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j$Jj/j$J0j, 0:01.

The solution of the control variables that satisfies

the convergence criterion is regarded as the opti-

mal solution.

(vi) Integrate the model Eqs. (1)–(3) to DTw using the

optimal solution derived from process (v), and

the results are regarded as the new initial fields for

the next integration.

(vii) Use the new initial fields derived from the process

(vi) and the optimal wave-affected parameters

derived from process (v), iterate the processes

(ii) to (vi) to obtain the time series of wave-

affected parameters a and b [note that the back-

ground fields will also be updated by the new initial

fields in process (ii)].

REFERENCES

Agrawal, Y. C., E. A. Terray, M. A. Donelan, P. A. Hwang, A. J.

Williams, W. Drennan, K. Kahm, and S. Kitaigorodskii, 1992:

Enhanced dissipation of kinetic energy beneath breaking

waves. Nature, 359, 219–220, doi:10.1038/359219a0.

Anis, A., and J. N. Moum, 1992: The superadiabatic surface layer of

the ocean during convection. J. Phys. Oceanogr., 22, 1221–1227,

doi:10.1175/1520-0485(1992)022,1221:TSSLOT.2.0.CO;2.

Babanin, A. V., 2006: On a wave-induced turbulence and a wave-

mixed upper ocean layer. Geophys. Res. Lett., 33, L20605,

doi:10.1029/2006GL027308.

——, and B. K. Haus, 2009: On the existence of water turbulence

induced by nonbreaking surface waves. J. Phys. Oceanogr., 39,

2675–2679, doi:10.1175/2009JPO4202.1.

Belcher, S. E., and Coauthors, 2012: A global perspective on

Langmuir turbulence in the ocean surface boundary

layer. Geophys. Res. Lett., 39, L18605, doi:10.1029/

2012GL052932.

FIG. C1. Flowchart of the wave-affected parameter estimation with the variational method.

544 JOURNAL OF ATMOSPHER IC AND OCEAN IC TECHNOLOGY VOLUME 32

http://dx.doi.org/10.1038/359219a0
http://dx.doi.org/10.1175/1520-0485(1992)022<1221:TSSLOT>2.0.CO;2
http://dx.doi.org/10.1029/2006GL027308
http://dx.doi.org/10.1175/2009JPO4202.1
http://dx.doi.org/10.1029/2012GL052932
http://dx.doi.org/10.1029/2012GL052932


Blumberg, A. F., and G. L. Mellor, 1987: A description of a three-

dimensional coastal ocean circulationmodel.Three-Dimensional

Coastal Ocean Models, N. S. Heaps, Ed., Coastal and Estuarine

Sciences, Vol. 4, Amer. Geophys. Union, 1–16.

Burchard, H., 2001a: On the q2l equation by Mellor and

Yamada. J. Phys. Oceanogr., 31, 1377–1387, doi:10.1175/

1520-0485(2001)031,1377:OTQLEB.2.0.CO;2.

——, 2001b: Simulating the wave-enhanced layer under breaking

surface waves with two-equation turbulence models. J. Phys.

Oceanogr., 31, 3133–3145, doi:10.1175/1520-0485(2001)031,3133:

STWELU.2.0.CO;2.

Carniel, S., J. C. Warner, J. Chiggiato, and M. Sclavo, 2009: In-

vestigating the impact of surface wave breaking on modeling

the trajectories of drifters in the northern Adriatic Sea during

a windstorm event. Ocean Modell., 30, 225–239, doi:10.1016/

j.ocemod.2009.07.001.

Chu, P. C., and K. F. Cheng, 2007: Effect of wave boundary layer

on the sea-to-air dimethylsulfide transfer velocity during

typhoon passage. J. Mar. Syst., 66, 122–129, doi:10.1016/

j.jmarsys.2006.01.013.

——, S. H. Lu, and Y. C. Chen, 2001: Evaluation of the Princeton

OceanModel using the South China SeaMonsoon Experiment

(SCSMEX) data. J. Atmos. Oceanic Technol., 18, 1521–1539,

doi:10.1175/1520-0426(2001)018,1521:EOTPOM.2.0.CO;2.

Craig, P. D., 1996: Velocity profiles and surface roughness under

wave breaking. J. Geophys. Res., 101, 1265–1277, doi:10.1029/

95JC03220.

——, andM. L. Banner, 1994: Modeling wave-enhanced turbulence

in the ocean surface layer. J. Phys. Oceanogr., 24, 2546–2559,

doi:10.1175/1520-0485(1994)024,2546:MWETIT.2.0.CO;2.

D’Alessio, S. J. D., K. Abdella, and N. A. Mcfarlane, 1998: A new

second-order turbulence closure scheme for modeling the oce-

anic mixed layer. J. Phys. Oceanogr., 28, 1624–1641, doi:10.1175/

1520-0485(1998)028,1624:ANSOTC.2.0.CO;2.

Denman, K. L., and M. Miyake, 1973: Upper layer modification at

ocean station Papa: Observations and simulation. J. Phys.

Oceanogr., 3, 185–196, doi:10.1175/1520-0485(1973)003,0185:

ULMAOS.2.0.CO;2.

Derber, J. C., 1987: Variational four-dimensional analysis using

quasi-geostrophic constraints.Mon. Wea. Rev., 115, 998–1008,

doi:10.1175/1520-0493(1987)115,0998:VFDAUQ.2.0.CO;2.

Donelan, M. A., 1990: Air-sea interaction. Ocean Engineering

Science, Parts A and B, B. LeNehaute and D. M. Hanes, Eds.,

The Sea—Ideas and Observations on Progress in the Study of

the Seas, Vol. 9, John Wiley and Sons, 239–292.

Drennan, W. M., M. A. Donelan, E. A. Terray, and K. B.

Katsaros, 1996: Oceanic turbulence dissipationmeasurements

in SWADE. J. Phys. Oceanogr., 26, 808–815, doi:10.1175/

1520-0485(1996)026,0808:OTDMIS.2.0.CO;2.

Ezer, T., and G. L. Mellor, 2004: A generalized coordinate ocean

model and a comparison of the bottom boundary layer dy-

namics in terrain-following and in z-level grids. Ocean Mod-

ell., 6, 379–403, doi:10.1016/S1463-5003(03)00026-X.

Gaspar, P., 1988: Modelling the seasonal cycle of the upper

ocean. J. Phys. Oceanogr., 18, 161–180, doi:10.1175/

1520-0485(1988)018,0161:MTSCOT.2.0.CO;2.

Giering, R., and T. Kaminski, 1998: Recipes for adjoint code con-

struction.ACMTrans. Math. Software, 24, 437–474, doi:10.1145/

293686.293695.

Harcourt, R. R., 2013: A second-moment closure model of Lang-

muir turbulence. J. Phys. Oceanogr., 43, 673–697, doi:10.1175/

JPO-D-12-0105.1.

Janssen, P. A. E. M., 2001: Reply. J. Phys. Oceanogr., 31, 2537–

2544, doi:10.1175/1520-0485(2001)031,2537:R.2.0.CO;2.

Jones, N. L., and S. G. Monismith, 2008: Modeling the influence of

wave-enhanced turbulence in a shallow tide- and wind-driven

water column. J. Geophys. Res., 113, C03009, doi:10.1029/

2007JC004246.

Kantha, L. H., U. Lass, and H. Prandke, 2010: A note on Stokes

production of turbulence kinetic energy in the oceanic mixed

layer: Observations in theBaltic Sea.OceanDyn., 60, 171–180,

doi:10.1007/s10236-009-0257-7.

Kitaigorodskii, S. A., and J. L. Lumley, 1983: Wave turbulence

interactions in the upper ocean. Part I: The energy balance

of the interacting fields of surface wind waves and

wind-induced three-dimensional turbulence. J. Phys. Oce-

anogr., 13, 1977–1987, doi:10.1175/1520-0485(1983)013,1977:

WTIITU.2.0.CO;2.

Kraus, E. B., and J. S. Turner, 1967: A one-dimensionalmodel of the

seasonal thermocline II. The general theory and its consequences.

Tellus, 19A, 98–105, doi:10.1111/j.2153-3490.1967.tb01462.x.

Le Dimet, F.-X., and O. Talagrand, 1986: Variational algorithms

for analysis and assimilation of meteorological observa-

tions: Theoretical aspects. Tellus, 38A, 97–110, doi:10.1111/

j.1600-0870.1986.tb00459.x.

Liu, D. C., and J. Nocedal, 1989: On the limited memory BFGS

method for large scale optimization.Math. Program., 45, 503–

528, doi:10.1007/BF01589116.

Martin, P. J., 1985: Simulation of the mixed layer at OWS No-

vember and Papa with several models. J. Geophys. Res., 90,

903–916, doi:10.1029/JC090iC01p00903.

Mellor, G. L., and T. Yamada, 1982: Development of a turbulence

closure models for geophysical fluid problems. Rev. Geophys.,

20, 851–875, doi:10.1029/RG020i004p00851.

——,andA. F.Blumberg, 2004:Wavebreaking andocean surface layer

thermal response. J. Phys. Oceanogr., 34, 693–698, doi:10.1175/

2517.1.

Osborn, T., D. M. Farmer, S. Vagle, S. A. Thorpe, and M. Cure,

1992: Measurements of bubble plums and turbulence from

a submarine. Atmos.–Ocean, 30, 419–440, doi:10.1080/

07055900.1992.9649447.

Peng, S.-Q., and L. Xie, 2006: Effect of determining initial condi-

tions by four-dimensional variational data assimilation on

storm surge forecasting.Ocean Modell., 14, 1–18, doi:10.1016/

j.ocemod.2006.03.005.

——, ——, and L. J. Pietrafesa, 2007: Correcting the errors in the

initial conditions and wind stress in storm surge simulation

using an adjoint optimal technique. Ocean Modell., 18, 175–

193, doi:10.1016/j.ocemod.2007.04.002.

——,Y. Li, and L. Xie, 2013: Adjusting the wind stress drag coefficient

in storm surge forecasting using an adjoint technique. J. Atmos.

Oceanic Technol., 30, 590–608, doi:10.1175/JTECH-D-12-00034.1.

Robert, A. J., 1966: The integration of a low-order spectral form of

the primitive meteorological equations. J. Meteor. Soc. Japan,

44, 237–245.

Smith, S. D., and Coauthors, 1992: Sea surface wind stress and drag

coefficients: The HEXOS results. Bound.-Layer Meteor., 60,

109–142, doi:10.1007/BF00122064.

Stacey, M. W., 1999: Simulations of the wind-forced near-surface

circulation in Knight Inlet: A parameterization of the rough-

ness length. J. Phys. Oceanogr., 29, 1363–1367, doi:10.1175/

1520-0485(1999)029,1363:SOTWFN.2.0.CO;2.

Terray, E.A.,M.A.Donelan, Y.Agarwal,W.M.Drennan, K. Kahma,

A. J. Williams III, P. Hwang, and S. A. Kitaigorodskii, 1996: Es-

timates of kinetic energydissipation under breakingwaves. J. Phys.

MARCH 2015 ZHANG ET AL . 545

http://dx.doi.org/10.1175/1520-0485(2001)031<1377:OTQLEB>2.0.CO;2
http://dx.doi.org/10.1175/1520-0485(2001)031<1377:OTQLEB>2.0.CO;2
http://dx.doi.org/10.1175/1520-0485(2001)031<3133:STWELU>2.0.CO;2
http://dx.doi.org/10.1175/1520-0485(2001)031<3133:STWELU>2.0.CO;2
http://dx.doi.org/10.1016/j.ocemod.2009.07.001
http://dx.doi.org/10.1016/j.ocemod.2009.07.001
http://dx.doi.org/10.1016/j.jmarsys.2006.01.013
http://dx.doi.org/10.1016/j.jmarsys.2006.01.013
http://dx.doi.org/10.1175/1520-0426(2001)018<1521:EOTPOM>2.0.CO;2
http://dx.doi.org/10.1029/95JC03220
http://dx.doi.org/10.1029/95JC03220
http://dx.doi.org/10.1175/1520-0485(1994)024<2546:MWETIT>2.0.CO;2
http://dx.doi.org/10.1175/1520-0485(1998)028<1624:ANSOTC>2.0.CO;2
http://dx.doi.org/10.1175/1520-0485(1998)028<1624:ANSOTC>2.0.CO;2
http://dx.doi.org/10.1175/1520-0485(1973)003<0185:ULMAOS>2.0.CO;2
http://dx.doi.org/10.1175/1520-0485(1973)003<0185:ULMAOS>2.0.CO;2
http://dx.doi.org/10.1175/1520-0493(1987)115<0998:VFDAUQ>2.0.CO;2
http://dx.doi.org/10.1175/1520-0485(1996)026<0808:OTDMIS>2.0.CO;2
http://dx.doi.org/10.1175/1520-0485(1996)026<0808:OTDMIS>2.0.CO;2
http://dx.doi.org/10.1016/S1463-5003(03)00026-X
http://dx.doi.org/10.1175/1520-0485(1988)018<0161:MTSCOT>2.0.CO;2
http://dx.doi.org/10.1175/1520-0485(1988)018<0161:MTSCOT>2.0.CO;2
http://dx.doi.org/10.1145/293686.293695
http://dx.doi.org/10.1145/293686.293695
http://dx.doi.org/10.1175/JPO-D-12-0105.1
http://dx.doi.org/10.1175/JPO-D-12-0105.1
http://dx.doi.org/10.1175/1520-0485(2001)031<2537:R>2.0.CO;2
http://dx.doi.org/10.1029/2007JC004246
http://dx.doi.org/10.1029/2007JC004246
http://dx.doi.org/10.1007/s10236-009-0257-7
http://dx.doi.org/10.1175/1520-0485(1983)013<1977:WTIITU>2.0.CO;2
http://dx.doi.org/10.1175/1520-0485(1983)013<1977:WTIITU>2.0.CO;2
http://dx.doi.org/10.1111/j.2153-3490.1967.tb01462.x
http://dx.doi.org/10.1111/j.1600-0870.1986.tb00459.x
http://dx.doi.org/10.1111/j.1600-0870.1986.tb00459.x
http://dx.doi.org/10.1007/BF01589116
http://dx.doi.org/10.1029/JC090iC01p00903
http://dx.doi.org/10.1029/RG020i004p00851
http://dx.doi.org/10.1175/2517.1
http://dx.doi.org/10.1175/2517.1
http://dx.doi.org/10.1080/07055900.1992.9649447
http://dx.doi.org/10.1080/07055900.1992.9649447
http://dx.doi.org/10.1016/j.ocemod.2006.03.005
http://dx.doi.org/10.1016/j.ocemod.2006.03.005
http://dx.doi.org/10.1016/j.ocemod.2007.04.002
http://dx.doi.org/10.1175/JTECH-D-12-00034.1
http://dx.doi.org/10.1007/BF00122064
http://dx.doi.org/10.1175/1520-0485(1999)029<1363:SOTWFN>2.0.CO;2
http://dx.doi.org/10.1175/1520-0485(1999)029<1363:SOTWFN>2.0.CO;2


Oceanogr., 26, 792–807, doi:10.1175/1520-0485(1996)026,0792:

EOKEDU.2.0.CO;2.

——, W. M. Drennan, and M. A. Donelan, 1999: The vertical

structure of shear and dissipation in the ocean surface layer.

The Wind-Driven Air-Sea Interface: Electromagnetic and

Acoustic Sensing,WaveDynamics and Turbulent Fluxes,M. L.

Banner, Ed., University of New South Wales, 239–245.

Thorpe, S. A., 1984: The effect of Langmuir circulation on

the distribution of submerged bubbles caused by breaking

wind waves. J. Fluid Mech., 142, 151–170, doi:10.1017/

S0022112084001038.

Umlauf, L., and H. Burchard, 2003: A generic length-scale equa-

tion for geophysical turbulence models. J. Mar. Res., 61, 235–

265, doi:10.1357/002224003322005087.

Yu, L., and J. J. O’Brien, 1991: Variational estimation of the wind

stressdrag coefficient and theoceanic eddyviscosity profile. J.Phys.

Oceanogr., 21, 709–719, doi:10.1175/1520-0485(1991)021,0709:

VEOTWS.2.0.CO;2.

——, and ——, 1992: On the initial condition in parameter es-

timation. J. Phys. Oceanogr., 22, 1361–1364, doi:10.1175/

1520-0485(1992)022,1361:OTICIP.2.0.CO;2.

Zhang, A., E. Wei, and B. B. Parker, 2003: Optimal estimation of

tidal open boundary conditions using predicted tides and ad-

joint data assimilation technique. Cont. Shelf Res., 23, 1055–

1070, doi:10.1016/S0278-4343(03)00105-5.

Zhang, X., G. Han, D. Wang, W. Li, and Z. He, 2011a: Effect of

surface wave breaking on the surface boundary layer of tem-

perature in theYellow Sea in summer.OceanModell., 38, 267–

279, doi:10.1016/j.ocemod.2011.04.006.

——, ——, X. Wu, W. Li, and D. Wang, 2011b: Effect of surface

wave breaking on upper-ocean structure revealed by assimi-

lating sea temperature data. J. Trop. Oceanogr., 30 (5), 48–54.

——,——,D.Wang, Z.Deng, andW.Li, 2012: Summer surface layer

thermal response to surface gravity waves in the Yellow Sea.

Ocean Dyn., 62, 983–1000, doi:10.1007/s10236-012-0547-3.

546 JOURNAL OF ATMOSPHER IC AND OCEAN IC TECHNOLOGY VOLUME 32

http://dx.doi.org/10.1175/1520-0485(1996)026<0792:EOKEDU>2.0.CO;2
http://dx.doi.org/10.1175/1520-0485(1996)026<0792:EOKEDU>2.0.CO;2
http://dx.doi.org/10.1017/S0022112084001038
http://dx.doi.org/10.1017/S0022112084001038
http://dx.doi.org/10.1357/002224003322005087
http://dx.doi.org/10.1175/1520-0485(1991)021<0709:VEOTWS>2.0.CO;2
http://dx.doi.org/10.1175/1520-0485(1991)021<0709:VEOTWS>2.0.CO;2
http://dx.doi.org/10.1175/1520-0485(1992)022<1361:OTICIP>2.0.CO;2
http://dx.doi.org/10.1175/1520-0485(1992)022<1361:OTICIP>2.0.CO;2
http://dx.doi.org/10.1016/S0278-4343(03)00105-5
http://dx.doi.org/10.1016/j.ocemod.2011.04.006
http://dx.doi.org/10.1007/s10236-012-0547-3

