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ABSTRACT

A recently developed parametric model by P. C. Chu et al. is used in this paper for determining subsurface
thermal structure from satellite sea surface temperature observations. Based on a layered structure of temperature
fields (mixed layer, thermocline, and lower layers), the parametric model transforms a vertical profile into several
parameters: sea surface temperature (SST), mixed layer depth (MLD), thermocline bottom depth (TBD), ther-
mocline temperature gradient (TTG), and deep layer stratification (DLS). These parameters vary on different
timescales: SST and MLD on scales of minutes to hours, TBD and TTG on months to seasons, and DLS on an
even longer timescale. If the long timescale parameters such as TBD, TTD, and DLS are known (or given by
climatological values), the degree of freedom of a vertical profile fitted by the model reduces to one: SST. When
SST is observed, one may invert MLD, and, in turn, the vertical temperature profile with the known long
timescale parameters: TBD, TTG, and DLS.

The U.S. Navy’s Master Oceanographic Observation Data Set (MOODS) for the South China Sea in May
1932–94 (10 153 profiles) was used for the study. Among them, there are 40 data points collocating and
coappearing (same week) with the weekly daytime NASA multichannel SST data in 1986–94. The 40 MOODS
profiles were treated as a test dataset. The MOODS dataset excluding the test data is the training dataset,
consisting of 10 113 profiles. The training dataset was processed into a dataset consisting of SST, MLD, TBD,
TTG, and DLS using the parametric model. SST from the test dataset was used for the inversion based on the
known information on TBD, TTG, and DLS. The 40 inverted profiles agreed quite well with the corresponding
observed profiles. The rms error is 0.728C, and the correlation between the inverted and observed profiles is
0.79. This is much better than the simple method of estimating subsurface temperature anomaly from SST
anomaly by correlating the two in the training dataset. The possibility of using this method globally is also
discussed.

1. Introduction

The most difficult problem in physical oceanography
is the lack of in situ observations. With the help of
electromagnetic techniques, especially satellite remote
sensing, we may obtain global coverage of temporally
varying surface data such as sea surface temperature
(SST). Can we determine the vertical thermal structure
from satellite SST observations? The answer should
come from examining the linkage between SST and
subsurface thermal structure (Fig. 1).

For a given location this is a linkage between a zero-
dimensional variable (SST) and a one-dimensional var-
iable (subsurface thermal structure). The key issue is
how to compress a large profile dataset into a small
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parameter (or coefficient) dataset. The U.S. Navy’s Gen-
eralized Digital Environmental Model uses several an-
alytical curve fitting functions (submodels) to compress
the profile data into a set of coefficients (Teague et al.
1990). The number of coefficients varies among the
submodels. For example, the shallow top submodel
(0–400 m) contains eight coefficients. The middepth
submodel (200–2450 m) contains seven coefficients.
Most coefficients represent the feature of the profile.

Recently, a parametric model (Chu et al. 1997a,b,
1999) has been developed for analyzing observed tem-
perature profiles based on a layered structure (mixed
layer, thermocline, and deep layer). The output of the
parametric model is a set of major physical character-
istics of each profile: SST, mixed layer depth (MLD),
thermocline bottom depth (TBD), thermocline temper-
ature gradient (TTG), lower layer stratification, and deep
layer temperature. The model successfully reproduced
Yellow Sea. (Chu et al. 1997a,b) and Beaufort/Chukchi
Sea (Chu et al. 1999) historical temperature profiles
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FIG. 1. A thermal parametric model.

from the Naval Oceanographic Office (NAVO-
CEANO)’s Master Oceanographic Observation Data Set
(MOODS). Using the parametric model, the inversion
of the subsurface thermal structure from satellite SST
becomes a relationship between SST and subsurface pa-
rameters such as MLD, TBD, and TTG.

2. Thermal parametric model

Keeping the minimal possible degrees of freedom, a
temperature profile can be simply depicted by (Fig. 1),

T(z) 5 T , (0 $ z $ 2h ),s 1

T(z) 5 T 1 G (z 1 h ), (2h $ z $ 2h ),s th 1 1 2

w wz 2 (z 2 z 2 h )0 0 2T(z) 5 T 1 (T 2 T ) exp ,d tb d w[ ]H

(z # 2h ),2 (1)

where TS, Ttb, and Td are SST, temperature at TBD, and
a deep temperature; h1, h2, H are MLD, TBD, and a
lower layer e-folding scale, respectively; and Gth is TTG.
The deep temperature Td is the temperature at the deep-
est ocean depth such as 5500 m in the climatological
data (Levitus and Boyer 1994). For shallow water re-
gions, Td is, of course, not a real observed value but an
extrapolated value to the deepest depth (e.g., 5500 m).
We use Td to keep the data above the bathymetry fitting
the parametric model (1).

In this model, the thermocline is featured by a linear
profile (constant Gth), and the lower layer is character-
ized by a nonlinear profile. To guarantee T(z) and T9(z)
continuous at TBD,

T(h 1 0) 5 T(h 2 0),2 2

dT(h 1 0) dT(h 2 0)2 25 5 G , (2)thdz dz

we need two additional parameters, z0 and w.
Differentiation of (1) with respect to z and use of (2)

lead to

1/(w21)
HGthz 5 . (3)0 [ ]w(T 2 T )tb d

The parameter w cannot be greater than or equal to 1.
Otherwise, z0 becomes very large and distorts the e-fold-
ing decrease of temperature with depth. Also, w cannot
be 0. In this study we use w 5 0.5.

Thus, from a vertical temperature profile we may ex-
tract three temperatures (TS, Ttb, Td), three depths (h1,
h2, H), and one gradient (Gth), seven parameters in total.
We require continuity of temperature at TBD, that is,

TS 2 Gth(h2 2 h1) 5 Ttb. (4)

Therefore, any six of the seven parameters (TS, Ttb, Td,
h1, h2, H, Gth) determine a vertical profile. Thus, the
degrees of freedom of the thermal parametric model are
six.

3. The U.S. Navy’s MOODS data

The South China Sea (SCS) has a bottom topography
(Fig. 2) that makes it a unique semienclosed ocean basin
that is seasonally forced by a pronounced monsoon sur-
face wind. Extended continental shelves (less than 100
m deep) exist along the north boundary and across the
southwest portion of the basin, while steep slopes with
almost no shelf are found along the eastern boundary.
The deepest water is confined to an oblate bowl oriented
southwest–northeast, centered around 138N. The max-
imum depth is around 4500 m.

The MOODS is a compilation of ocean data observed
worldwide consisting of (a) temperature-only profiles,
(b) both temperature and salinity profiles, (c) sound-
speed profiles, and (d) surface temperature (drifting
buoy). Due to the shear size (more than six million
profiles total for the global ocean) and constant influx
of data to NAVOCEANO from various sources, quality
control is very important (Chu et al. 1997b, 1998). After
quality control, we used a subset of MOODS data in
May (1932–94) consisting of 10 153 profiles for the
whole SCS (28–268N, 998–1238E).

The temporal and spatial distribution of MOODS data
is irregular. Certain periods and areas are very well sam-
pled, while others lack enough observations to gain any
meaningful insights. There are some 10–20-day gaps
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FIG. 2. Geography and isobaths showing the bottom topography of
the South China Sea.

FIG. 3. Distribution of MOODS profiles in May 1932–94: (a) his-
torical data and (b) data used for the study.

FIG. 4. Number of temperature profiles in the South China Sea in
May 1932–94.

with no observations in the whole SCS (Chu et al.
1997b). Figure 3 shows the sparsity of profiles in the
southeast portion of the study domain and in the coastal
region of China continent. Figure 4 indicates a heavily
sampled period during the Vietnamese War (1965–69).
The maximum number of observations is in 1966 (1230
profiles). The minimum number of observations is in
1935 (three profiles).

In May, for the years 1986–94, there are 40 daytime
multichannel SST (MCSST) and MOODS data points
that are collocated in the same week, marked by (*) in
Fig. 5. Notice that the number of *’s in Fig. 5 is much
less than 40. This is due to several data points sharing
the same spots. The 40 MOODS profiles were treated
as a test dataset. The MOODS dataset excluding the test
data is the training dataset, consisting of 10 113 profiles.

4. Mean thermal parameters

We used the May climatological temperature dataset
in the SCS with a 18 3 18 horizontal resolution and
values located at half-degrees (Levitus and Boyer 1994)
at 5500-m depth for Td, and processed all the training
data profiles (10 113) using the parametric model (1).
Here, an iteration method illustrated in Chu et al.
(1997a) was used. A set of parameters (TS, Ttb, h2, H,
Gth, Td) was obtained for each profile. We averaged the
thermal parameters within 18 3 18 grid and took the
averaged values as the representative values for the grid
cell. These values might not be representative in high
gradient and coastal regions. Three types of cells were
found in the SCS, representing collocated MCSST and

MOODS data points (*), MOODS data points less than
10 (1), and MOODS data points more than 10 (V), as
shown in Fig. 5.

Usually early May is the time of SCS summer mon-
soon onset (Tao and Chen 1987). The thermal param-
eters obtained from processing the MOODS dataset
(May 1932–94) may represent thermal response of SCS
to the monsoon onset. Figure 6 shows the mean thermal
parameter fields in May averaged over 1932–94. Surface
warm water ($29.58C) with a maximum temperature
308C occupies most of the southern half of the SCS
(Fig. 6a). The 29.58C isotherm extended from the south-
east corner of the Vietnam coast (near 118N, 1088E)
northeastward to the southwest coast of the Luzon Island
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FIG. 5. Three types of 18 3 18 cells represented by center grid
points: collocating and coappearing of MCSST and MOODS data
points (*), MOODS data points less than 10 (1), and MOODS data
points more than 10 (V).

(near 158N, 1208E). MLD (h1) varied from 10 to 40 m
and had a latitudinal variation (Fig. 6b). The southern
SCS (south of 138N) was characterized by a deep mixed
layer (h1 $ 20 m) region with a maximum value of 40
m near Palawan Island. This suggests strong turbulent
mixing in the southern part of SCS right after the sum-
mer monsoon onset. The northern SCS (north of 138N)
has a shallow mixed layer (h1 # 20 m) with a depth of
10 m. In the continental shelf regions, TBD (h2) was
quite shallow (#100 m) and in the deep SCS basin, h2

was deeper (.100 m) with a maximum value of 400 m
in the Luzon Strait (Fig.6c), where, however, a weak
thermocline (Gth) was found with a vertical temperature
gradient around 0.048C m21 (Fig. 6d). Temperature at
TBD (Ttb) was coldest (128C) in Luzon Strait and warm-
est (228C) in the southern shelf region near Natuna Is-
land (Fig. 6e). The lower layer e-folding thickness (H)
represents the stratification in the layer below the ther-
mocline. The smaller the value of H, the stronger the
stratification of this layer. In the SCS deep basin, H is
quite large (100–200 m), indicating weak stratification
below the thermocline (Fig. 6f).

Thus, the SCS thermal response to the monsoon onset
can be characterized by a northward advancement of
warm surface water, strong turbulent mixing in the
southern part with deeper mixed layers, and a relatively
uniform deep layer below the thermocline in the SCS
deep basin.

5. Regression method
For each grid cell, we compute the mean temperature

profile T(z) and subtract the mean profile from each

profile in the MOODS training dataset to obtain tem-
perature anomaly T9(z). The simplest method of esti-
mating subsurface T9(z) from SST9 is to regress T9(z)
with SST9:

T9(z) 5 b(z)SST9, (5)

where b(z) is the regression coefficient obtained from
the training dataset.

6. Multitimescale inverse method

Having the current SST information in the inversion,
we need to use the multidecorrelation timescale hy-
pothesis. This hypothesis will reduce the degrees of free-
dom of the parameter space.

a. Multitimescale hypothesis

The seven parameters vary on different timescales:
TS and h1 on a short decorrelation timescale; Ttb, Td, h2,
H, and Gth on a long decorrelation timescale. The pa-
rameters on a long decorrelation timescale are treated
as a background dataset, which may be predetermined
by historical data. The parameters on the short timescale
are determined by the inverse method. If the five pa-
rameters on the long timescale are assumed to be pre-
determined, the degrees of freedom of this model re-
duces to one. Between the two short timescale param-
eters TS and h1, only one parameter is independent. Usu-
ally, we take TS as the independent parameter. If TS is
given by satellite observation, we can use (4) to deter-
mine h1 and therefore the vertical profile. We call this
inverse method the multitimescale method. We use the
U.S. Navy’s MOODS data for SCS in May to verify
this inverse method.

b. Correlation between SST and subsurface
parameter anomalies

For each 18 3 18 grid cell, we subtract the mean
values (for that cell) from each of the thermal parameters
(TS, Ttb, h1, h2, H, Gth) to obtain the thermal parameter
anomalies ( , , , , H9, ) and to compute theT9 T9 h9 h9 G9S tb 1 2 th

correlation coefficients (Table 1) between and theT9S
subsurface parameter anomalies ( , , , , H9).h9 h9 G9 T91 2 th tb

Figure 7 shows the scatter diagram between andT9S
( , , , , H9). Both Table 1 and Fig. 7 indicateh9 h9 G9 T91 2 th tb

that among the subsurface parameters has the stron-h91
gest linear association with . The significance of theT9S
correlation can be evaluated by

rÏn 2 2
t 5 , (6)

2Ï1 2 r

which has a t distribution with n 2 2 degrees of freedom.
Here, r is the correlation coefficient, n is the number of
samples (10 153). We begin with the usual null hy-
pothesis that there is no linear association between T9S
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FIG. 6. Horizontal distributions of mean thermal parameters obtained from the training dataset: (a) SST, (b)
h1, (c) h2, (d) Gth, (e) Ttb, and (f ) H.
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TABLE 1. Correlation coefficients with the SST anomaly.

h91 h92 G9th T9tb H9

20.12 0.03 0.05 20.01 20.01

TABLE 2. The t values of various correlation coefficients.

h91 h92 G9th T9tb H9

215.77 3.98 6.64 21.33 21.33

and ( , , , , H9). The critical t value at signif-h9 h9 G9 T91 2 th tb

icance level of 0.005 (t0.005) is 2.576. Three absolute
values of t computed by (5) are larger than the critical
value (2.576): 215.77 between and , 6.64 betweenT9 h9S 1

and , and 3.98 between and (Table 2). Thus,T9 G9 T9 h9S th S 2

we reject the null hypothesis for , , and . Here,h9 h9 G91 2 th

we notice that the use of the number of MOODS samples
as degree of freedom in the t test gives a very low critical
t value (2.576 for a 5 0.005), which may be caused by
the dependence of some MOODS sampling.

Considering various correlation coefficients (Table 1)
we may conclude that the correlation between the two
short timescale parameters and is much strongerT9 h9S 1

than the correlation between and the long timescaleT9S
parameters ( , , , H9). This in turn confirms theh9 G9 T92 th tb

multitimescale hypothesis for the SCS thermal param-
eters.

A negative correlation between and might notT9 h9S 1

be true everywhere in the ocean. For example, Tully
and Giovando (1963) found it difficult to establish such
a relationship at least for a portion of the eastern sub-
arctic Pacific Ocean. However, Chu (1993) pointed out
the possibility of such a negative correlation using an
analytic ocean mixed layer model for the equatorial Pa-
cific.

c. Inversion

If we take SST from the MOODS test data (40 data
points) (Fig. 5) as known values for the short timescale
parameter TS, we may use (a) the background long time-
scale parameters Ttb, h2, H, and Gth to determine h1 (Figs.
6b–e); or (b) the temperature continuity condition at
TBD [Eq. (4)] to determine h1; plus the May climato-
logical values for Td (Levitus and Boyer 1994). With
all the seven parameters given, we can easily construct
vertical profiles T̂ (F )(z) by (1).

The 40 inverted profiles agree quite well with the ob-
served profiles; however, the 40 regressed profiles have a
larger mismatch with the observed profiles (Fig. 8).

7. Model verification

Any model, including the regression and inverse mod-
els presented here, should be verified before claiming
any practical usefulness. Usually, the model verification
contains two parts: the root-mean-square (rms) error and
the correlation coefficient between modeled and ob-
served profiles.

The May climatological profiles (Levitus and Boyer
1994) at the MCSST points are used as the ‘‘least-ef-
fort’’ profiles. The standard deviation (SDV) of the cli-

matological profiles (climatological SDV) represents the
first criterion for the model validity. If the model rms
error is larger than the climatological SDV, the model
does not have any practical usefulness. The model be-
comes valid only if its rms error is smaller than the
climatological SDV.

Figure 9a shows the vertical distribution of the model
rms and climatological SDV over the whole test data
area. The rms errors for both regression and inverse
methods increase with depth from the surface to max-
imum values around 1.88C near 100-m depth, and then
reduce with depth. At all depths except near 100-m
depth, the rms errors for the inverse model are much
smaller than the rms errors for the regression model,
which in turn are smaller than the climatological SDV.
The depth of 100 m is approximately the mean TBD
(Fig. 6). This implies some difficulty in inverting the
temperature at TBD. Overall, the vertically averaged
inverse model rms error (around 0.728C) is smaller than
the regression model rms error (around 1.068C), which
in turn is smaller than the climatological SDV (1.518C).

The correlation coefficients between modeled and ob-
served profiles at all depths represent the second cri-
terion for the model validity. The correlation coefficient
for the inverse model varies with depth between 1 and
0.5 and has a vertical mean value of 0.79. Use of (6)
leads to t 5 3.559 for n 5 40 and r 5 0.5. This value
is much larger than the critical t value (2.576), which
means significant correlations at confidence level of
0.005 between the inverted and the observed profiles
for all depths.

However, the correlation coefficient for the regression
model decreases rapidly from 1 at the surface to 0 near
100-m depth, and then becomes negative below that
depth (Fig. 9b), which indicates no significant positive
correlations between the regressed and the observed
profiles for the sublayer depths.

The small mean rms error (0.728C) and high positive
correlation coefficient (0.79) make this multitimescale
inverse method valid for practical use.

8. Limitation of the multitimescale inverse method

The key issue of inverting subsurface thermal struc-
ture from SST is to reduce the degree of freedom of the
thermal parameter space by multitimescale hypothesis.
To apply this method globally, we should first test the
validity of this hypothesis. This can be done by the
correlation analysis. If correlation between and isT9 h9S 1

much stronger than the correlation between and theT9S
other parameters ( , , , H9), we may confirm theh9 G9 T92 th tb

multitimescale hypothesis and use this inverse method
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FIG. 7. Scatter diagrams of SST anomaly with various thermal parameter anomalies: (a) , (b) , (c) , (d) , and (e) H9.h9 h9 G9 T91 2 th tb

for the region. If correlation between and is notT9 h9S 1

significant, such as Tully and Giovando (1963) found
in one region of the North Pacific, it is very hard to use
this inverse method for that region. Furthermore, we
should do the rms error and correlation tests after the
inversion to see the real usefulness.

9. Conclusions
1) The thermal parametric model depicted in this paper

demonstrates the capability to invert subsurface

structure from SST for one oceanic region, the South
China Sea (SCS). Based on a multitimescale hy-
pothesis, the long correlation timescale parameters
are treated as a background dataset during the in-
version, which may be predetermined by historical
data. The short timescale parameters are determined
by the inverse method. In this study, only SST and
MLD are treated as short correlation timescale pa-
rameters. After a long timescale parameter dataset is
established, we have a one-to-one relation between
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FIG. 8. Comparison between 40 regressed (dotted), inverted (dash–dotted), and observed (solid) profiles.
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FIG. 9. Vertical distribution of (a) inverse model rms errors (solid), regression model rms errors (dotted), and
climatological SDV (circle); and (b) correlation coefficients between observed and inverted (solid), observed and
regressed (dotted) profiles.

SST and MLD. Through this relation, MLD is de-
termined from SST. Together with the predetermined
long timescale parameters, we can easily obtain the
vertical profile for each known SST.

2) The inverse methods proposed here were verified by
a dataset from the U.S. Navy’s Master Observational
Oceanographic Data Set (MOODS) for SCS in May
1932–94. Among the total 10 153 profiles, 10 113
profiles, treated as training data, were processed into
a dataset consisting of SST, MLD, TBD, TTG, and
DLS using the parametric model. SST of the re-
maining 40 profiles were used for the inversion based
on the known information on TBD, TTG, and DLS.
The 40 inverted profiles agreed quite well with the
corresponding observed profiles. The rms error is
around 0.728C, and the correlation between the in-
verted and the observed profiles is 0.79. The im-
provement of the multitimescale versus the mean
inverse methods is in the upper layer from around
18C at the surface to 0.18C at 30-m depth.

3) To apply the multitimescale inverse method globally,
we should first test the validity of the multitimescale
hypothesis. This can be done with the correlation
analysis. If the multitimescale hypothesis is valid,
we can use this method to invert the subsurface ther-
mal structure from SST. Furthermore, we should do
the model verification after the inversion to see the
real usefulness.
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