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ABSTRACT

Climate variability is simply represented by teleconnection patterns such as the Arctic Oscillation (AO),
Antarctic Oscillation (AAQO), North Atlantic Oscillation (NAO), Pacific-North American pattern (PNA),
and Southern Oscillation (SO) with associated indices. Two approaches can be used to predict the indices:
forward and backward methods. The forward method is commonly used to predict the index fluctuation p
at time ¢ with a given temporal increment 7. Using this method, it was found that the index (such as for
NAO) has the Brownian fluctuations. On the basis of the first passage time (FPT) concept, the backward
method is introduced in this study to predict the typical time span (7) needed to generate a fluctuation in
the index of a given increment p. After the five monthly indices (AO, AAO, NAO, PNA, and SO) run
through the past history, the FPT density functions are obtained. FPT presents a new way to detect the
temporal variability of the climate indices. The basic features for the index prediction are also discussed.

1. Introduction

Complexity in climate systems makes prediction dif-
ficult. One way to simplify the climate systems is to
represent low-frequency variability of atmospheric cir-
culations by teleconnection patterns, such as the Arctic
Oscillation (AO), Antarctic Oscillation (AAO), North
Atlantic Oscillation (NAO), Pacific-North American
pattern (PNA), and Southern Oscillation (SO). Tem-
porally varying indices, s(f), were calculated for these
patterns, where ¢ denotes time.

Among them, the SO index (SOI) was first to utilize
equivalent barotropic seesaw in atmospheric pressure
between the southeastern tropical Pacific and the Aus-
tralian-Indonesian regions (Walker and Bliss 1937). A
popular formula for calculating the monthly SOI is pro-
posed by the Australian Bureau of Meteorology:

Paite() — {Paiee)
SD(paie)

Here, pg; is the mean sea level pressure of Tahiti minus
that of Dawin for that month; (p4; is the long-term
average of pg; for the month in question; and SD(p g;¢)

s(f) = 10 X )

Corresponding author address: Peter C. Chu, Naval Ocean
Analysis and Prediction Laboratory, Naval Postgraduate School,
Monterey, CA 93943.

E-mail: pcchu@nps.edu

DOI: 10.1175/2007JTECHA991.1

is the long-term standard deviation of pgy for the
month in question. The SOI ranges from about —35 to
about +35.

The indices of the other oscillations (AO, AAO,
NAO, PNA) are the expansions of similar seesaw phe-
nomena such as the Northern Hemisphere annular
mode (sometimes called AO) and the two patterns (i.e.,
NAO and AO) as “two paradigms of the same phe-
nomenon” (Wallace 2000). These oscillation patterns
are usually calculated on the basis of the Rotated Prin-
cipal Component Analysis (RPCA; Barnston and
Livezey 1987). Monthly (AO, AAO, NAO, and PNA)
indices are constructed by projecting the monthly mean
(1000, 700, 500, and 500 hPa) height anomalies onto the
leading EOF mode. The time series are normalized by
the standard deviation of the monthly index. Since the
loading pattern of AO, AAO, NAO, and PNA is ob-
tained using the monthly mean height anomaly dataset,
the index corresponding to each loading pattern be-
comes one when it is normalized by the standard de-
viation of the monthly index. (Detailed information is
available online at http://www.cpc.noaa.gov/.)

Long-term time series of the climate indices are in-
valuable sources of information to represent the com-
plex seasonal, interannual, and interdecadal variabili-
ties of the climate systems. For example, sustained
negative values of the SOI often indicate El Nifio epi-
sodes. These negative values are usually accompanied
by sustained warming of the central and eastern tropi-
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cal Pacific Ocean, a decrease in the strength of the
Pacific trade winds, and a reduction in rainfall over
eastern and northern Australia. Positive values of the
SOI are associated with stronger Pacific trade winds
and warmer sea temperatures to the north of Australia,
popularly known as a La Nifia episode. Waters in the
central and eastern tropical Pacific Ocean become
cooler during this time. Together these give an in-
creased probability that eastern and northern Australia
will be wetter than normal. The SOI has been used in
numerous studies as an indicator of the status of the
ENSO phenomenon and as a predictor for global and
regional climatic prediction such as temperature (e.g.,
Smith and Sterns 1993), precipitation (e.g., Ropelewski
and Halpert 1987), and agricultural products (e.g., Rim-
mington and Nicholls 1993). The other indices have
similar features.

How to effectively predict the climate indices has
practical significance because of their connection to the
large-scale atmospheric circulations. Usually, these in-
dices are treated as time series and statistical predic-
tions are conducted (forward method). For example,
the singular spectrum analysis (Keppenne and Ghil
1992), the wavelet analysis (Torrence and Campo
1998), and the nonlinear analog analysis (Drosdowsky
1994) were used to obtain the dominant frequencies of
the SOI time series. The power-law correlations were
found for the self-affine properties of the SOI (Ausloos
and Ivanova 2001).

It may be possible to use an alternative “backward”
method that predicts a typical time span (7) needed to
generate a fluctuation in the index of a given increment
p. This method is established on the basis of the first
passage time (FPT) concept, which is widely used in
many disciplines, such as physics, chemistry, biology,
and economics, but not in meteorology until recently
when Chu et al. (2002a,b) used FPT to study ocean—
atmospheric model predictability. The major purpose
of this paper is to show the usefulness of FPT on the
climate index prediction.

The rest of the paper is outlined as follows. Section 2
discusses the two approaches to predict the climate in-
dices. Section 3 shows the FPT concept applied in this
paper. Section 4 investigates the sensitivity of the FPT
density function to the index reduction p. Section 5
shows the power-law dependence of optimal FPT on
the index reduction density p and classifies the variabil-
ity of the climate indices as the Brownian motion using
the FPT. Finally, section 6 presents the conclusions.

2. Forward and backward approaches of prediction

Monthly varying climate indices from the National
Oceanic and Atmospheric Administration (NOAA)
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Climate Prediction Center show randomness (Fig. 1)
with poor predictability because their phases and am-
plitudes are rather unpredictable as both involve many
(time and space) scales that are often intrinsic to cha-
otic behavior [see reviews for the NAO index (Palmer
2000; Greatbatch 2000; Wanner et al. 2001)]. The his-
tograms of the monthly mean indices show Gaussian-
type distributions with mean values near zero for all the
indices (AO: —0.136; AAO: —0.01; NAO: —0.004;
PNA: 0.018; SO: —0.077) and with standard deviations
near 1 for the AO (0.981), AAO (0.989), and NAO
(0.985) indices, and near 10 for the SOI (10.5) (Fig. 2).

Both forward and backward approaches exist in in-
dex prediction. The forward approach predicts the
change of the index (p) at time ¢ with a given temporal
increment 7 from analyzing single or multiple time se-
ries. Because of stochastic nature, the probability den-
sity function (PDF) p[p(¢), 7] should be constructed
first. Collette and Ausloos (2004) analyzed the NAO
monthly index (single time series) from 1825 to 2002
and found that the long-range time correlations are
similar to Brownian fluctuations. The distribution func-
tions of the NAO monthly index fluctuations have a
form close to a Gaussian for all time lags. This indicates
the lack of predictive power of the present NAO
monthly index. Lind et al. (2005) used the standard
Markov analysis to get the Chapman-Kolmogorov
equation for the conditional PDF of the increments p of
the NAO index over different time intervals 7 and to
compute the diffusion and drift coefficients (D", D?®)
from the first two moments of such probability distri-
bution. The random variable p(z) is found to satisfy the
Langevin equation:

dp(t
%ZD(D[P(’)’ 1+ a0\ D0, 1, ()

where m(¢) is a fluctuating &-correlated force with
Gaussian statistics, such that

(n(m(1") = 28(t = 1').

Maharaj and Wheeler (2005) predict the daily bivariate
index (multiple time series) of the Madden-Julian os-
cillation using seasonally varying vector autoregressive
(VAR) models. The first-order VAR model on the
original (nondifferenced) time series was found to be
the most satisfactory for forecasting the index beyond a
few days. Although this model shows no strong skill
advantage over a lagged regression technique, it has the
convenience of employing only a single set of equations
to make predictions for multiple forecast horizons.
The backward approach predicts the typical time
span (1) needed to generate a fluctuation in the index of
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F1G. 1. The monthly mean climate index data obtained from NOAA Climate Prediction Center for the (a) AO, (b) AAO, (c)
NAO, (d) PNA, and (e) SO. (Detailed information is available online at http://www.cpc.noaa.gov/.)
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F1G. 2. Histograms of the climate indices for the (a) AO, (b) AAO, (c) NAO, (d) PNA, and (e) SO.




262

a given increment p. To do so, the FPT concept is used.
As the index data run through the past history, the
accumulated values of the FPTs form the PDF (called
FPT density function). The mode of the PDF shows the
most probable time when the index decreases with the
value of p at the first time.

The FPT is important from a prediction point of view
in several ways. First, although the climate indices are
related to certain circulation patterns such as the nega-
tive SOI values generally connected to El Nifio events,
one still does not know the exact time of the El Nifio
onset. Therefore, the best one can do, from a statistical
point of view, is to make a prediction at a time that is
probabilistically favorable. This optimal time, as we will
see, is determined by the maximum of the FPT density
function, that is, the optimal FPT. Second, but not least,
the FPT density function will by itself give invaluable,
nontrivial information about the stochasticity of the cli-
mate indices. Third, FPT effectively represents the
ocean—atmospheric model predictability (Chu et al.
2002a,b).

3. FPT

In a series of papers, Chu et al. (2002a) introduced
the FPT (7) concept into the ocean—atmospheric model
predictability with the model error (i.e., “some quan-
tity”) first exceeding a predetermined tolerance level
(i.e., “predetermined criterion”); they found that the
FPT density function satisfied the backward Fokker—
Planck equation; and they obtained the analytical solu-
tion of the FPT density function for the nonlinear sim-
plified low-order Lorenz atmospheric model (Nicolis
1992). Both linear and nonlinear perspectives of fore-
cast errors are investigated analytically (Chu et al.
2002b). Furthermore, the FPT was used to evaluate the
full physical nowcast/forecast ocean prediction system.
For example, the FPT density function is asymmetric
with a broader and longer tail in a higher value side,
which indicates long-term predictability. The long-term
(extremely long) predictability is not an “outlier” and
shares the same statistical properties as the short-term
predictions (Chu et al. 2002c). The FPT is also used to
verify the model’s ability to predict Lagrangian drifter
trajectories (Chu et al. 2004) and the regional ocean
model predictability of stochastic perturbations in ini-
tial conditions, open boundary conditions, and winds
(Chu and Ivanov 2005; Ivanov and Chu 2007).

Using the same concept, the FPT is used to explore
the statistical features of the time series of climate in-
dices. The features change either positively or nega-
tively at a given time (Fig. 1). Then, of course, it is
interested in predicting the exact change at a point in
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time. However, this is not possible. Therefore, the best
one can do, from a statistical point of view, is to predict
the time that is probabilistically favorable for the given
index change. This optimal time is determined by the
maximum of the first passage time distribution, that is,
the optimal FPT.

Given a fixed value of an index reduction (p), the
corresponding time span (positive) is estimated for
when the index reduction

Yadt) = st + A1) — s(2) 3
reaches the level p for the first time,
7,(1) = inf{Ar > 0]y (1) = —p}, 4)

which is called the FPT. It is noted that a similar defi-
nition can be used for the index enhancement. As the
index data run through the past history, which is rep-
resented by (2), the FPT density function satisfies the
backward Fokker—Planck equation (Chu et al. 2002a):

ap ap 1 a’p
2 rpm F_ 2. 2pne £ _
o D70 ap 2" D™ (p, t e 0. ()
The cumulative distribution is introduced for the tran-
sition time being larger than 7, such that

P(r) = J p(7)dr. (6)
p

All five climate indices show similar Gaussian-type
distributions (Fig. 2). The Brownian fluctuations iden-
tified in the NAO monthly index (Collette and Ausloos
2004) may extend to the other indices. For the Brown-
ian fluctuations with zero drift, the FPT density func-
tion has the analytical solution for finite p (Rangarajan
and Ding 2000),

a2

1 a
p(T):WT‘P_/zeXP(_?) a>0, 7>0. (7)

Here, a is a function of p. With p — 0 as a limit case (i.e.,
no index reduction), the FPT tends toward 0 with a
probability of 100%. Thus, the FPT density function
cannot be represented by (7) but by the & function,

p(t)—>8(r), as p—0.

The maximum value of p(7) (for finite p) indicates the
most favorable FPT,

(max) 2a2
T =3 8
With the known FPT density function (7), the kth mo-
ment (k = 1, 2,...) of FPT for finite p is calculated by
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F1G. 3. FPT density functions with particular index reduction p for the (a) AO, (b) AAO, (c) NAO, (d) PNA, and (e) SO.
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FIG. 4. Linear relationship between the parameter a in the FPT density function and the index reduction 6 for the (a) AO, (b)
AAO, (c) NAO, (d) PNA, and () SO.
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o

Mk(p)=kj p(F tdr,  k=1,...,% (9

0

The mean and variance of FPT can be calculated from
the first two moments:

<Tp> = Ml’
<8T,23> = M2 - M%?

(10)
(11)

where the bracket denotes the average over realiza-
tions.

4. Sensitivity of p(7,) with respect to p

The theoretical distribution of (7) depends solely on
the parameter a. This parameter can be determined
from the monthly index data. First, the FPT density
functions are constructed and fitted to (7) for each in-
dex with various values of index reduction p. For ex-
ample, Fig. 3 shows p(7,) with p = 1.9 for the AO,
AAOQO, NAQO, and PNA indices and with p = 25 for the
SOI. Note that almost an order of difference in p values
(1.9 versus 25) is selected. This is due to the different
ranges of index fluctuation: (—4, 4) for the AO, AAO,
NAO, and PNA indices, and (—40, 40) for the SOI. It
exhibits a rather well-defined and pronounced maxi-
mum, followed by an extended tail for very long FPTs
indicating a nonzero and important probability of large
passage times (note that the 7, axis is logarithmic).
These long (toward El Nifio for the SOI) FPTs reflect
periods where the tropical Pacific is in a strong El Nifio
phase and needs a long period of time before finally
coming to an even stronger El Nifio. The short FPTs on
the other hand—those around the maximum—are in La
Nifia periods, which appears to be the most common
scenario.

Second, for each index reduction (p), parameter (a) is
determined from the 7, data fitted to (7). From the
scatter diagram for each index (Fig. 4), the linear rela-
tionship between a and p,

(12)

a=o; +ap,

is found using the least squares method. Here, Eq. (12)
represents the NAO, NPA, and SOI indices quite well,
but not so well for the AO and AAO indices because
oscillations are found around the linear trend. Despite
oscillations, the linear correlation between a and p is
very evident with the positive regression coefficient a,
(Table 1).

To better understand the tail of this distribution,
various values of p are considered. If this level is small
enough, it is likely that the index reduction will break
through the level after the first month while larger
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TaBLE 1. Coefficients (o, @) in Eq. (12) for the five climate

indices.
AO AAO NAO PNA SO
o 0.430 0.508 0.604 0.600 0.165
a, 0.696 0.562 0.351 0.373 0.125

FPTs will become more and more unlikely. However,
the probability for a large FPT value will not be zero; if,
say, it is a small-level p, then a period of strong El Nifio
will result in a 7,(¢) that might be considerably longer
than one month since it takes time to recover from the
El Nifio event. For instance, after the 1992 El Niifio
event, it took five years to reach a new El Nifio event in
1997.

5. Characteristics of the index variability—
Brownian motion

A random process is called fractional Brownian mo-
tion if its cumulative FPT density function satisfies the
power law (Ding and Yang 1995)

P(7) ~ 7171, (13)

with 0 < H < 1. Here H is the Hurst exponent. For
H = 1/2, the random process is the ordinary Brownian
motion. The cumulative distribution, P(’Tp), for climate
index data (Fig. 5) shows a power-law feature in the tail
of the distribution scales. For a very small value of the
index reduction, p, (0.01 for the AO, AAO, NAO, and
PNA indices and 0.1 for the SOI), the cumulative FPT
density function calculated from the index data shows
that

P(TO) ~ T “0,

(14)

with a, ~ 1/2. Since the Hurst exponent of an ordinary
Brownian motion is H = 1/2, the empirically observed
scaling (see Fig. 5) is a consequence of (at least close to)
the Brownian motion behavior of the climate indices.
This argument of an unbiased Brownian motion is also
strengthened by observing that (see Fig. 5)

Pty =1) ~ 122. (15)

This indicates that the climate index has a 50% chance
of increase or decrease at each time step (one month).

Figure 5 also shows the cumulative distributions
P(7,) for different values of p: for the AO, AAO,NAO,
and PNA indices, p = 0.5, 1.0, and 1.5; for the SOI, p =
10, 20, and 30. From this figure it is seen that the tail
exponent «, is rather insensitive to the value of p. In
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Fi1G. 6. FPT density function of the SOI with different values of p: (a) 15, (b) 20, (c) 25, and (d) 30. It is noted that the optimal
FPT increases as p increases.

particular one finds that , ~ 1/2 over a broad range of
values for p, which is consistent with the Brownian mo-
tion hypothesis.

Moreover, it is noted that as the level of p is increased
from zero, the optimal FPT [{"*] moves away from 7,
= 1 and toward larger values. How does the optimal
FPT Tf)ma") depend on the level of p for a large p? This
dependence, as measured from the empirical distribu-
tion (i.e., the histogram of FPT), is shown in Fig. 6.
Intuitively, it is clear that the optimal FPT will increase
as p increases.

The power law is found for the optimal FPT versus p,

TSnaX) ~pY for large p, (16)

with y ~ 2.0 for the AO, AAO, and SO indices and
v ~ 1.0 for the NAO and PNA indices (see Fig. 7),
which is consistent with the results for a Brownian mo-
tion with the theoretical FPT density function [see (7)
and (8)]. Substituting (12) into (8) gives

17)

Tﬁfmx) = a3p® + 2eq00p + F.

The exponent of the power law depends on the regres-
sion coefficients a; and «, (see Table 1). A large p value
usually means much larger than 1 for the SOI, and
slightly larger than 1 for the AO, AAO, NAO, and
PNA indices. For the SOI, the regression coefficients
are given by «; = 0.165 and «, = 0.125, the leading
term of (17) is a3p® and therefore the exponent of the
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power law is around 2. For the AO and AAO indices,
a, is larger than «,, the leading term of (17) is a3p?® for
a large p value, and therefore the exponent of the
power law is around 2. However, for the NAO and
PNA indices, «, is smaller than «;, the leading term of
(17) is 2aya,p for a large p value, and therefore the
exponent of the power law is around 1. Not surpris-
ingly, there are some deviations from standard theories
for the variation of the optimal FPT with the level p
(i.e., the straight line). Furthermore, we have checked
and found that there is an approximate symmetry under

p—>—p

for the FPT density function. One therefore does not
have to consider index enhancement explicitly.

6. Conclusions

1) FPT presents a new way to detect the temporal vari-
ability of the climate indices. It predicts a typical
time span (7) needed to generate an index reduction
of a given increment p. FPT is a random variable
whose density function satisfies the backward Fok-
ker—Planck equation. Solving this equation, it is easy
to obtain the ensemble mean and variance of the
FPT of the climate indices.

2) FPTs for the five climate indices show the Brownian
fluctuations. This means that the early results of the
Brownian fluctuations for the NAO index (e.g., Col-
lette and Ausloos 2004) are also valid for the other
indices (AO, AAO, PNA, and SO). With § > 0 as a
limit case (i.e., no index reduction), the FPT density
function tends to the & function.

3) For a very small value of the index reduction, p,
(0.01 for the AO, AAO,NAO, and PNA indices and
0.1 for the SOI), the cumulative FPT density func-
tion, shows the power-law dependence on 7, with
the exponent approximately —1/2. Another well-
known method to check power-law dependence is
examination of the autocorrelation function. This
also confirms that the climate indices have the
Brownian-type fluctuations.

4) The optimal FPT has a power-law dependence on
the index reduction (p) for large-value p with the
exponent (~2) for the AO, AAO, and SO indices
and (~1) for the NAO and PNA indices.

5) The FPT density functions as well as the variation of
the optimal FPT can be applied if one wants to es-
timate the most probable time period needed for the
low-frequency atmospheric circulation pattern to be
sustained if a prediction aims at a specific optimal
transition.
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6) The FPT analysis can be applied to other air-ocean
time series.
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