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ABSTRACT

A new approach is developed to reconstruct a three-dimensional incompressible flow from noisy data in an
open domain using a two-scalar (toroidal and poloidal) spectral representation. The results are presented in two
parts: theory (first part) and application (second part). In Part I, this approach includes (a) a boundary extension
method to determine normal and tangential velocities at an open boundary, (b) establishment of homogeneous
open boundary conditions for the two potentials with a spatially varying coefficient k, (c) spectral expansion
of k, (d) calculation of basis functions for each of the scalar potentials, and (e) determination of coefficients in
the spectral decomposition of both velocity and k using linear or nonlinear regressions. The basis functions are
the eigenfunctions of the Laplacian operator with homogeneous mixed boundary conditions and depend upon
the spatially varying parameter k at the open boundary. A cost function used for poor data statistics is introduced
to determine the optimal number of basis functions. An optimization scheme with iteration and regularization
is proposed to obtain unique and stable solutions. In Part II, the capability of the method is demonstrated through
reconstructing a 2D wind-driven circulation in a rotating channel, a baroclinic circulation in the eastern Black
Sea, and a large-scale surface circulation in the Southern Ocean.

1. Introduction

Ocean observational current data are usually acquired
from limited number of stations in domains with open
boundaries and contain various errors or noises. It is an
important task for physical oceanographers to establish
(or to reconstruct) a realistic and complete velocity field
from sparse and noisy data.

From a mathematical point of view, the reconstruction
requires solving a least square problem without or with
a priori information (limit) on the circulation charac-
teristics. An a priori limit can be formulated as a set of
inequalities that the solutions should satisfy, as a dy-
namical model applied to the description of circulation
dynamics or hypotheses on statistical properties of re-
constructed field.

Several techniques are available for fulfilling such a
task: various kinds of spline interpolation (e.g., Washba
and Wendelberger 1980; Smith and Wessel 1990; Bran-
kart and Brasseur 1996), optimal interpolation (OI; e.g.,
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Gandin 1965), fitting models (Cho et al. 1998; Lipphardt
et al. 1977, 2000), objective mapping combined with a
fitting (e.g., Davis 1985), and numerous approaches us-
ing ocean numerical models such as the adjoint method
and Kalman filter (e.g., Malonette-Rizzoli and Tziper-
man 1996).

Several error sources deteriorate the reconstruction
skill. One of them is the uncertainty in boundary con-
ditions, especially at open boundaries. Therefore, how
to determine open boundary conditions becomes a key
issue in the reconstruction process.

The classical OI technique does not allow accounting
for any boundary condition as an a priori limitation.
Davis (1985) used a combined OI–spectral fitting model
with a priori knowledge of the statistical weights to
overcome this weakness. However, it remains uncertain
how to select the weights for an open domain and how
to determine basis functions with a priori nonzero flux
at the open boundary.

With velocities given along the open boundary and
with an additional boundary condition such as the ‘‘nat-
ural’’ boundary condition (Courant and Hilbert 1966),
the spline functions can be used as universal basis func-
tions. However, a detailed analysis (Inoue 1986) shows
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that the natural boundary condition is more appropriate
for rigid than open boundaries.

An effective approach to determine open boundary
condition is to use an optimization procedure together
with an ocean numerical model such as the adjoint meth-
od (e.g., Seiler 1993), the Jacobian matrix method (e.g.,
Chu et al. 1997), and the local variation principle (e.g.,
Shulman and Lewis 1995). The open boundary condi-
tions can be determined through minimizing the differ-
ence between observations and model estimations inside
the integration domain. These approaches need to solve
an ill-posed inverse problem using an iteration proce-
dure independent of the chosen local boundary condi-
tions. To ensure their convergence to physical reality,
we need a ‘‘good’’ initial approximation for the open
boundary conditions even if the noise-to-signal ratio in
the data is small (Engl et al. 1996).

Without knowing statistical weights and without us-
ing ocean numerical models, a kinematical method is
proposed for reconstructing a velocity field from noisy
and sparse data. For a three-dimensional incompressible
flow, two scalar functions, toroidal (C) and poloidal (F)
potentials, satisfy Poisson equations with the vertical
vorticity (z 5 ]y/]x 2 ]u/]y) and vertical velocity (w)
as the sources terms, respectively (Moffat 1978; Ere-
meev et al. 1992a,b; Chu 1999; Chu et al. 2002).

The two potentials (F, C) are expanded into a series
of basis functions, which are eigenfunctions of the La-
placian operator for the given geometry of the ocean
domain and homogeneous boundary conditions. For a
closed basin with no slip on the rigid boundary, it is
typical to use the Dirichlet and Neumann boundary con-
ditions for C and F (Eremeev et al. 1992a,b), and to
use the Dirichlet boundary condition for the transport
streamfunction (Rao and Schwab 1981). This procedure
allowed construction of basis functions and reconstruc-
tion of the velocity field from data for the Black Sea
(Eremeev et al. 1992a,b) and Lake Ontario (Rao and
Schwab 1981), both treated as closed basins.

Lipphardt et al. (2000) proposed an approach for a
domain with an open boundary through expanding the
poloidal potential into a combination of harmonic func-
tions satisfying boundary conditions a priori given from
a large-scale numerical model and a spectral decom-
position with the basis functions as the eigenfunctions
of the Laplacian operator with homogeneous Neumann
conditions. The reconstruction skill of their method
strongly depends on the quality of the numerical model.

In this study, a new set of basis functions is introduced
for reconstructing the ocean circulation in a domain with
open boundaries. These functions are the eigenfunctions
of the Laplacian operator with homogeneous mixed con-
ditions. With known velocities along the open boundary,
the mixed boundary conditions are accurate. With un-
known velocities along the open boundary, a parame-
terization scheme is proposed for obtaining approximate
open boundary conditions from data. In general, the
reconstruction is reduced to linear and nonlinear re-

gression models for known and unknown velocities
along the open boundary, respectively. For the latter
(without data on the open boundary), the velocity inside
the domain and along the boundaries are simultaneously
determined.

The reconstruction skill depends on various factors
such as the noise level in the data, the sampling strategy,
and the quality of numerical algorithms used in the re-
construction. This study shows that even if the com-
bination of all the factors is not favorable, the recon-
structed circulation pattern and the velocity along the
open boundary are acceptable according the criterion
mentioned in the text. Thus, the proposed reconstruction
scheme is a useful tool in analyzing kinematic and en-
ergetic characteristics of the circulation, and provides
zero-order initial conditions for numerical ocean mod-
els.

The outline of this paper is as follows. In section 2,
we describe the decomposition of flow into poloidal and
toroidal components, specify the boundary conditions
for both potentials, and introduce two sets of complete
basis functions. In section 3, we depict the principal
relationships used in the reconstruction process. In sec-
tion 4, we discuss a regularization technique. In section
5, we provide an approach to determine the optimal
number of basis functions used in linear or nonlinear
regression models, and two criteria such as Vapnik–
Chervonkis cost function, and root-mean-square errors
to determine the reconstruction skill. In section 6, we
give conclusions.

2. Two scalar potentials

a. Toroidal and poloidal components

In magnetohydrodynamics and astrophysics, it is
common to decompose any vector Q in an arbitrary
coordinate system into three parts (Dubrovin et al.
1992). For example, it is in spherical coordinate system,
written as

Q 5 r 3 =A 1 rA 1 =A ,1 2 3 (2.1)

where A1, A2, and A3 are scalar functions (see appendix
A), = is the three-dimensional gradient operator, and r
is the radius vector from the origin. Borrowing this idea
for ocean currents (Q 5 u) satisfying the incompressible
property

= ·u 5 0, (2.2)

the three-dimensional velocity field at large-, meso-, and
submesoscales is represented by [(A.5), see appendix
A]:

u 5 = 3 (rC) 1 = 3 = 3 (rF), (2.3)

where the two terms in the right-hand side of (2.3) are
called toroidal and poloidal velocities.

If the velocity is reconstructed on horizontal planes,
the radius vector r can be replaced by the unit vector
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FIG. 1. Boundary conditions and open boundary extension method.

in the vertical direction k (Moffat 1978). Thus, the ve-
locity u (u, y, w), determined on any horizontal plane,
is represented by (Eremeev et al. 1992a,b)

2 2]C ] F ]C ] F
u 5 1 , y 5 2 1 , and

]y ]x]z ]x ]y]z

w 5 2DF, (2.4)

where the Cartesian coordinate system is used with (x,
y) and z as the horizontal and vertical coordinates, re-
spectively.

Obviously, both toroidal and poloidal potentials sat-
isfy the Poisson equations

DC 5 2z and (2.5a)

DF 5 2w. (2.5b)

Here, D [ ]2/]x2 1 ]2/]y2 is the two-dimensional La-
placian operator, and z 5 ]y/]x 2 ]u/]y is the vertical
component of vorticity.

In general, the toroidal and poloidal potentials C and
F are not the same as the geostrophic stream function
and velocity potential commonly used in meteorology
and oceanography (e.g., Lynch 1988). If the Coriolis
parameter varies considerably within the domain, the
poloidal potential satisfies the Poisson equation with a
source term determined by the horizontal velocity and
the gradient of the Coriolis parameter even in the pure
geostrophic flow. That can be checked out through the
direct substitution of (2.4) into the geostrophic equa-
tions.

Before introducing a new set of basis functions for
an open domain, one should answer the question, What
boundary conditions will be used for toroidal and po-
loidal potentials? Let fluid be in a simply connected
domain with rigid (G) and open ( ) boundaries. TheG91
open boundary has two end points ta and tb (Fig. 1).
Both toroidal and poloidal potentials satisfy Poisson
equations with coupled boundary conditions. Along the
boundary, the velocity is decomposed into normal (Vn)
and tangential (Vt) components

2 2]C ] F ]C ] F
V 5 1 , V 5 2 1 , (2.6)n t]t ]n]z ]n ]t]z

where (n, t) represent normal and tangential unit vectors
along G < .G91

b. Rigid boundary segment (G)

Along the rigid boundary (G) segment, the kinematic
boundary conditions are given by

V 5 0, V ± 0.n t

The two scalar potentials satisfy (Eremeev et al.
1992a,b)

2] F
C| 5 C, 5 0, (2.7)G )]n]z

G

where C is a constant to be determined. Since ta and
tb are also the two end points of the rigid segment, we
have

C | 5 C | 5 C.t ta b

Note that the scalar potentials C and F cannot be de-
termined if the velocity at the rigid segment vanishes
(Ladyzhenskaya 1969):

V 5 V 5 0.n t

c. Open boundary segment ( )G91

When the normal (Vn) and tangential (Vt) components
are given, we integrate the first equation in (2.6) with
respect to t along the open boundary segment ( ) fromG91
the end point ta,

t 2] F
C(t) 5 C| 1 V 2 dt9, (2.8)t E na 1 2]n]z

t a

and define a coefficient k(t) varying along byG91

2] F
2 V 2t1 2]t]z

k(t) 5 . (2.9)
t 2] F

V 2 dt9 1 CE n1 2]n]z
t a

The boundary condition for C is obtained from (2.6):

]C
1 k(t)C 5 0, (2.10))[ ]]n 9G1

where t ∈ [ta, tb], is a moving point along .G91
When the constant C in (2.9) vanishes, the coefficient

k(t) tends to infinity as t tends to ta or tb. From the
theoretical point of view, such a behavior of k(t) does
not add any complexity in applying (2.10). First, the
singularity of k(t) can be effectively eliminated by a
perturbation technique (Morse and Freshbach 1953) due
to the toroidal potential C being a smooth function along
the boundary . Second, we may transform (2.10) intoG91
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]C
k (t) 1 k (t)C 5 0,1 2 )[ ]]n 9G1

where no singularity occurs. Here

t 2] F
k (t) 5 V 2 dt9 1 C,1 E n1 2]n]z

t a

2] F
k (t) 5 2 V 2 .2 t1 2]t]z

In this paper, these conditions are not used because
the unknown open boundary condition is assumed a
priori. A smooth function is used to parameterize k(t)
and in turn to provide an approximate open boundary
condition.

d. Basis functions

1) SIMPLY CONNECTED ENCLOSED DOMAIN

For a domain with an enclosed rigid boundary (G),
the appropriate basis functions {Ck} and {Fm} are given
by

DC 5 2l C , C | 5 0, k 5 1, . . . , `,k k k k G

(2.11)

]FmDF 5 2m F , 5 0, m 5 1, . . . , `.m m m )]n
G

(2.12)

Here, {lk} and {mm} are the corresponding eigenvalues.
Similar basis functions were obtained by Rao and
Schwab (1981) for Lake Ontario, and Eremeev et al.
(1992a,b) for the Black Sea, respectively.

2) SIMPLY CONNECTED OPEN DOMAIN

Both velocity components (Vn, Vt) are usually non-
zero at the open boundary . The toroidal potential CG91
satisfies the boundary condition (2.10) with the param-
eter k(t) depending on F. Thus, a possible approach is
to specify F at the open boundary to obtain a condition
for C.

(i) Minimum poloidal kinetic energy assumption

Decomposition of the velocity field into toroidal and
poloidal parts can take various forms. The potentials
have no physical significance themselves (Ladyzhen-
skaya 1969). They are meaningful only in representing
the circulation. To reduce the degree of freedom without
loss of any generality, the poloidal kinetic energy is
assumed averaged over the domain including the open
boundary to be minimal and obtain, according to Ped-
ersen (1971),

]F
5 0 at G9. (2.13)1]z

Thus, the boundary conditions for the rigid and open
segments are represented by (2.7) and (2.10), (2.13),
respectively. The corresponding basis functions are the
eigenfunctions of the following spectral problems:

DC 5 2l C , (2.14)k k k

DF 5 2m F , (2.15)m m m

]FmC | 5 0, 5 0, and (2.16)k G )]n
G

]Ck 1 k(t)C 5 0, F | 5 0, (2.17)9k m G1)[ ]]n 9G1

which are the mixed boundary conditions formulated
for a simply connected domains.

(ii) Features of the basis functions

The basis functions defined by (2.14)–(2.17) have the
following features.

1) Each of the two sets of basis functions {Ck} and
{Fm} is orthonormal and complete (Vladimirov
1971). To calculate directly these basis functions, it
requires a priori knowledge of geometry and velocity
components at the boundary (i.e., a known boundary
condition). For unknown boundary conditions, a
nonlinear regression scheme should be developed.

2) Three reasons make the basis functions defined here
more appropriate than trigonometric polynomials
(plane geometry) and spherical harmonics (spherical
geometry) in flow reconstruction from noisy and
sparse data. First, the trigonometric polynomials and
spherical harmonics are not the solutions of (2.14)–
(2.17) for a domain with complex boundaries and/
or with k varying along the open boundary. That is
to say that the trigonometric polynomials and spher-
ical harmonics cannot formulate a complete set of
basis functions in this case. Second, the spectral se-
ries usually converges quicker using the basis func-
tions determined by (2.14)–(2.17) than using trigo-
nometric polynomials and spherical harmonics since
the physical information at the boundary is suffi-
ciently used. This leads to fewer modes needed using
{Ck} and {Fm} as the basis functions than using the
trigonometric polynomials and spherical harmonics.

3) If normal and tangential velocities along the open
boundary change with time, the coefficient k also
depends on time. The velocity field should be re-
constructed at a particular time. This usually does
not add any complexity to the reconstruction. How-
ever, it may consume considerable computer re-
sources if (2.9) is applied for the analysis of long-
term observation series. This topic will not be dis-
cussed further in this paper.

4) The boundary condition (2.10) may be simplified,
for example, assuming zero tangential velocity at an
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FIG. 2. A multiply connected domain.

extended open boundary . The boundary condi-G92
tions become (Fig. 1)

]C ]F
5 0, 5 0. (2.18)) )]n ]z9 9G G2 2

The solutions of (2.14) and (2.15) are relatively easy
to obtain since {Ck} and {Fm} do not depend on
each other. Notice that the condition (2.18) allows
for nonzero normal velocity along the open bound-
ary.

5) The approach can be extended to a multiply con-
nected domain through the methodology originally
described by Kamenkovich (1961). This is demon-
strated through circulation reconstruction in the
Southern Ocean from the drifter data [see Part II,
(Chu et al. 2003)].

3) MULTIPLY CONNECTED OPEN DOMAIN

Consider a multiply connected domain with a rigid
boundary G and an open boundary G9. Inside the do-
main, there are L islands with rigid boundaries G1, G2

. . . , GL (Fig. 2). The solution of the Poisson equation
(2.5a) can be decomposed into (Vladimirov 1971):

L

(l)ˆ ˆ ˜C 5 C C 1 CC 1 C, (2.19)O l
l51

such that the harmonic functions (l ) and satisfy theˆ ˆC C
Laplacian equation

(l)ˆ ˆDC 5 0, DC 5 0, (2.20)

with the inhomogeneous boundary condition

1 on Gl(l)Ĉ 5 50 on G, G9, and G (l9 ± l),l9

1 on G < G9
Ĉ 5 (2.21)50 on G (l 5 1, 2, . . . , L).l

Here, Cl(l 5 1, 2, . . . , L) and C are the integration

constants along the boundaries G1, G2, . . . , GL, and G
< G9.

The variable satisfiesC̃

˜DC 5 2z (2.22)

with the homogeneous boundary conditions,

˜]C˜ ˜C| 5 0, 1 kC 5 0. (2.23)G ,G , . . . ,G ,G1 2 L )[ ]]n
G9

where the coefficient k is given by

2 ˜] F ]C
2 V 2 2 Ct1 2]t]z ]n

k 5 . (2.24)
t ]F

V 2 dt9E n1 2]n]z
t a

The (L 1 1) constants, Cl(l 5 1, 2, . . . , L) and C
should be determined by the data or by additional dy-
namic constraints (Kamenkovich 1961; McWilliams
1977; Flierl 1977).

The poloidal potential satisfies

DF 5 2w,

with the rigid boundary conditions

]F
5 0 on G , . . . , G and G, (2.25)1 L]z]n

and with the open boundary conditions

]F
5 0 on G9. (2.26)

]z

The capability for the multiply connected domain is
demonstrated through reconstructing the Southern
Ocean circulation from the First Global Atmospheric
Research Program (GARP) Global Experiment (FGGE)
drifter buoy data, which is illustrated in Part II (Chu et
al. 2003) of this paper.

3. Reconstruction procedure

a. Horizontal velocity

From the mathematical point of view, such a recon-
struction can be reduced to a linear regression if normal
and tangential velocities are given at the open boundary,
and to a nonlinear regression otherwise. The regression
coefficients are calculated from observed data.

The two scalar potentials are expanded into following
Fourier series:

`

C(x, y, z, t8) 5 a (z, t8)C (x, y, z, k8),O k k
k51

`]F(x, y, z, t8)
5 b (z, t8)F (x, y, z), (3.1)O m m]z m51

where t8 is the time of observations.
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Substituting (3.1) into (2.4) and truncating modes at
K and M for C and F, respectively, we obtain an ap-
propriate regression model through minimizing the fol-
lowing functional

J(a , . . . , a , b , . . . , b , k, P)1 K 1 M

1
obs 2 obs 25 (\u 2 u \ 1 \y 2 y \ ) → min, (3.2)p KM P p KM P2

where , are observations at location p (p 5 1,obs obsu yp p

. . . , P), P is the total number of observations, and
K ]C (x, y, z, k8)ku 5 a (z, t8)OKM k ]yk51

M ]F (x, y, z)m1 b (z, t8) ,O m ]xm51

K ]C (x, y, z, k8)ky 5 2 a (z, t8)OKM k ]xk51

M ]F (x, y, z)m1 b (z, t8) , (3.3)O m ]ym51

are reconstructed velocity components. Here, \. . .\ P is
the P-dimensional Euclidean norm. After obtaining the
spectral coefficients in (3.1) and parameterized k, the
horizontal velocity can be calculated for any point of
the domain.

b. Vertical velocity and vorticity

For the reconstruction of vertical velocity at depth
z*, vertical differentiation is used on the second equation
in (2.5):

]w ]F
5 2D . (3.4)

]z ]z

Equation (3.4) is integrated from the surface to the depth
z* or from the depth z* to bottom and rewrite the result
of integration as the following integral equation:

G(x, x9, y, y9, z*, t8)w(x9, y9, z*, t8) dx9 dy9EE
2 G(x, x9, y, y9, z*, t8)w(x9, y9, 0, t8) dx9 dy9EE

z* ]F(x, y, z9, t8)
5 dz9, (3.5)E ]z90

where the Green function G and the vertical gradient of
the poloidal potential ]F/]z are given by

G(x, x9, y, y9, z, t8)
M

215 m F (x, y, z, t8)F (x9, y9, z, t8), (3.6)O m m m
m51

M]F(x, y, z, t8)
5 b (z, t8)F (x, y, z). (3.7)O m m]z m51

Equation (3.5) shows that to determine w, the vertical
gradient of poloidal potential should be known on all
horizons from surface to z* or from z* to bottom.

The same approach can be applied for the vertical
vorticity:

G̃(x, x9, y, y9, z, t8)j(x9, y9, z, t8) dx9 dy9EE
5 C(x, y, z, t8), (3.8)

where

G̃(x, x9, y, y9, z, t8)
K

215 l C (x, y, z, t8)C (x9, y9, z, t8), and (3.9)O k k k
k51

K

C(x, y, z, t8) 5 a (z, t8)C (x, y, z, t8). (3.10)O k k
k51

The series (3.6), (3.7), (3.9), and (3.10) converge rap-
idly.

c. Several steps in reconstruction

The reconstruction is generally divided into several
steps: (a) parameterizing k for the unknown open
boundary condition, (b) reducing the optimization prob-
lem (3.2) to a linear regression model for a known open
boundary condition or a nonlinear regression model for
an unknown open boundary condition, (c) determining
the optimal number of toroidal and poloidal modes in
(3.3), and (d) estimating the reconstruction skill.

4. Regularization technique for solving the
optimization problem

a. Spectral expansion of k(t)

We expand k(t) along the open boundary G9 into
series:

S

k(t) 5 c T (t), (4.1)O s s
s51

where Ts (s 5 1, . . . , S) are the continuous polynomials
of 1, t, t 2, . . . , t S that are preliminarily orthogonalized
along the open boundary.

For known (unknown) boundary conditions, a set of
linear (nonlinear) regression equations is easily obtained
from (3.2) to determine K 1 M (Q 5 K 1 M 1 S)
spectral coefficients from (3.3). The nonlinear regres-
sion is discussed here only since the nonlinear regres-
sion at each iteration uses the same technique as the
linear regression. Thus, it is necessary to estimate K 1
M spectral coefficients in (3.3) and S coefficients (c1,
. . . , cS) in (4.1).
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FIG. 3. Flowchart for determining the realization (h[i]) using the
iteration process (4.2)–(4.4).

b. Iteration process for nonlinear regression

The classical iteration approach (Eykhoff 1973) is
used to the nonlinear regression equations. For the ith
iteration,

[i11] [i] [i]h 5 h 1 dh , (4.2)
[i] [i] [i] [i] [i] [i] [i] Th 5 (a , . . . , a , b , . . . , b , c , . . . , c ) , (4.3)1 K 1 M 1 S

where the increment dh[ i ] is determined through mini-
mizing the following functional:

2
1 ]uKM[i] obs [i] [i]J(dh ) 5 u 2 u (h ) 2 dhKM( ) (2 ]h [i] Ph

2
1 ]y KMobs [i] [i]1 y 2 y (h ) 2 dh , (4.4)KM( ) (2 ]h [i] Ph

where the symbol (. . .)T indicates the transpose operator.
The iteration process (4.2)–(4.4) is divided into nine steps
(Fig. 3). Detailed description is listed in appendix C.

At each iteration, determining dh[ i ] is reduced to solv-
ing a set of ill-posed linear algebraic equations:

[ i]Adh 5 Y, (4.5)

where the coefficient matrix A is given by

]u ]yKM KMA 5 B B 1 C C ; B 5 , C 5 ,rq r q r q r r]h ]hr r

r, q 5 1, . . . , Q,

and the source vector Y is represented by
obs [ i] obs [ i]Y 5 [u 2 u (h )]B 1 [y 2 y (h )]C .r KM r KM r

Here, MATLAB (1997) software is used to compute the
basis functions {Ck} and {Fm} and adopt the same
approach as Chu et al. (1997) to calculate Br and Cr.
Obviously, (4.5) is an ill-posed system and should be
solved using a regularization method.

c. Stabilized least squares method

Numerous regularization techniques exist such as Go-
lub’s dumping high-order singular values, Tikhonov’s
regularization, iteration regularization, and others (see
Engl et al. 1996). Most existing regularization tech-
niques require a priori knowledge of statistical prop-
erties of noise and/or the structure of the solution of
(4.5). Such a priori information is usually not available
in oceanographic studies. Therefore, the methods that
do not require this a priori knowledge are useful. The
cross-validation method (e.g., Washba and Wendelber-
ger 1980) is very popular in geophysical studies (e.g.,
Brankart and Brasseur 1996). However, it was found
that the cross-validation approach often overdetermines
the regularization parameter (Kugiumtzis et al. 1998;
Ivanov et al. 2001a) and is highly sensitive to the size
of observational samples used for the reconstruction
(Mikhalsky 1987; Ivanov et al. 2001a). Thus, the sta-

bilized least squares (SLS) method is used (Ivanov and
Margolina 1996; Ivanov et al. 2001a).

This method constructs a special quasi-orthogonal ro-
tation matrix R and multiplies it by the specially con-
structed linear system

[ i]RA9dh 5 RY9, (4.6)

such that RA9 → Areg and RY9 → Yreg, where Areg and
Yreg are both regularized Q 3 Q matrix A and Q-di-
mensional observation vector Y. Appendix B shows the
procedure to construct the Q 3 2P matrix A9 and the
2P-dimensional observation vector Y9. A new trans-
formed system (4.6) should have a much smaller noise-
to-signal ratio h1 and conditional number h2 (the ratio
of the maximum to minimum singular values of the
system matrix).
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FIG. 4. Flowchart for determining the first guess (dh[0]) for the
iteration process (4.2)–(4.4).

The rotation matrix is constructed as the limit of plane
rotation matrices (Givens matrices):

J 2P 2P
[ j] [ j] [ j]R 5 lim R · · · R R , (4.7)P P P2P,2P21 2p 1p1 2J→` j51 p53 p52

where is Givens matrix at jth iteration applied to[ j]Rqp

qth and pth lines. The rotation angles ( ) of are[ j] [ j]w Rqp qp

determined through the following maximization pro-
cess:

Q

[ j] [ j] [ j21] 2 2 [ j] [ j21] 2J (w ) 5 (R a ) \dh \ 2 (R Y ) → max,Or qp rp qp eff Q rp p
q51

[0] [0]a 5 a , Y 5 Y , (4.8)qp qp p p

with \dheff called the effective norm.2\Q

This norm is determined by

2[l] 2\dĥ \
J̃ 5 2 1 → min, (4.9)

21 2\dh \eff

where dĥ[ l ] is a regularized solution of the transformed
system (4.6). Iteration is used to solve (4.8) and (4.9)
with an empirical requirement:

1.5P , Q , 2P.

See Ivanov et al. (2001a) for detailed information.

d. Properties of the rotation matrix

To construct the linear transformation R, we do not
need a priori knowledge on statistical properties of
noise. However, the best results are obtained if the exact
observational (no error) vector Yexact is perpendicular to
the noise vector Ynoise; that is, the inner product is equal
to 0:

Y · Y 5 0,exact noise

which indicates no interference between noise and the
exact observational vectors.

For a high conditional number, the rotation matrix
algorithm (4.6)–(4.9) has the same accuracy as Tikhon-
ov et al.’s (1995) technique for selecting the optimal
regularization parameter (Ivanov et al. 2001a). For a
small condition number (h2 → 1), the estimate using
the SLS method has the same accuracy as the classical
least squares (LES) solution (4.4) when the noise-to-
signal ratio is small (h1 → 0), and has much better
accuracy than the LES estimation when the noise-to-
signal ratio is large (h1 k 0).

The accuracy of the approach is estimated by

21 21T T Tcov(dĥ) 5 (R A9) R VR(R A9) , (4.10)

where V is the noise covariance matrix, which is usually
unknown, and which makes (4.10) less practical.

e. First guess for the iteration process

It is well known that the iteration process (4.2)–(4.4)
(shown in Fig. 3) may be divergent if the first guess
dh[0] is far from reality. Therefore, to have a good es-
timate of dh[0] becomes important. A boundary exten-
sion method is proposed to determine the initial guess
values of the spectral coefficients. Let the domain (V1)
have an open boundary . The domain V1 is extendedG91
into V2 (V1 , V2) with an open boundary (Fig. 1)G92
such that

]C ]F
9G 5 0, 5 0. (4.11)2) )]n ]z9 9G G2 2

The circulation is reconstructed in V2 using (4.5) from
appropriate linear regression model at first. Then, with
the known velocity field at , we determine k usingG91
(2.9) and obtain dh[0] for the domain V1. Figure 4 shows
the flowchart for determining dh[0]. Detailed description
of the process is listed in appendix D.
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f. A priori limitation in the regularization procedure

The construction of quasi-orthogonal matrix R uses
an a priori limit formulated as an inequality. Strakhov
(1991) pointed out that in the maximizing process (4.8),
the observational vector is projected onto a hyperplane
such that the Cauchy–Schwartz–Buniakowsky inequal-
ity is satisfied:

Q

[i] 2 2˜ ˜ ˜A9 A9 \dh \ 2 (Y9) $ 0, (4.12)O pr rq Q p
q51

where Ã and Ỹ are the system matrix and observational
vector after the transformation R is applied.

Such a procedure reduces the noise-to-signal ratio in
the right-hand side of the transformed algebraic equa-
tions (Eykhnoff 1973; Strakhov 1991; Ivanov et al.
2001a) and is called the ‘‘filtration of linear algebraic
equations’’ (Strakhov 1991). Notice that the inequality
(4.12) is automatically satisfied when the observation
is not distorted by noise.

Another way to introduce an a priori limitation is to
obtain a highly smoothed solution dhsmoth at first. Such
a solution is stable to perturbations with different scales
and its main peculiarities are already lost. Then, the
regularized solution dĥ is found in the neighborhood of
this smoothed solution dhsmoth by adding a term,
g \dhsmoth 2 dĥ\ P, to the cost function. However, it has
not been used in the current study.

g. Vertical velocity

After reconstructing the horizontal velocity field at
various depths, the integral equation (3.5) is solved nu-
merically to obtain vertical velocity by discretizing into
a set of algebraic equations in the ordinary way (Tik-
honov et al. 1995):

Gw 5 z, (4.13)

where G is a coefficient matrix, and w and z are vectors.
Their dimensions are determined by the discretization
of (3.5). Since G is usually a square matrix, the SLS

method cannot be used to regularize the ill-posed system
(4.13).

Tikhonov et al. (1995) change (4.13) into an opti-
mization process:

2 2\Gw 2 z\ 1 d\w\ → min, (4.14)

where d is the regularization parameter. Here, the min-
imum sensitivity of the solution to d is used to determine
its value without the knowledge of the low-order noise
statistics. Baglai (1986) pointed out that this method is
equivalent to classical Tikhonov’s method in determin-
ing d.

h. Summation of the Fourier series

Usually, the calculated Fourier coefficients {ak(z, t)},
{bm(z, t)} contain errors. If the errors are large, the
summation of the Fourier series in (3.6), (3.7), (3.9),
and (3.10) needs to be regularized [taking (3.7) as an
example]. Such a regularization is achieved through
multiplying each term of the series by a weight factor
(Strahkov and Valyashko 1981):

M 2]F m (z)m5 b (z, t)F (x, y, z), (4.15)O m m2 2]z m (z) 1 dL (z)m50 m m

where Lm is chosen as

|b |m21L 5 .m max(|b |)m

Such a process strongly smooths out the low-energy
modes and keeps the high-energy modes in (4.15). Here-
in, also, d is estimated from sensitivity ideas.

5. Estimation of reconstruction skill and choice of
model parameters (K, M, S)

a. Vapnik–Chervonkis cost function

Theoretically, the reconstruction skill should be es-
timated through the statistical cost function ^J&, deter-
mined as

1
2^J& 5 (u 2 u ) f (u, y | x, y) f (x, y) du dy dx dyEE KM 1 2[2

21 (y 2 y ) f (u, y | x, y) f (x, y) du dy dx dy , (5.1)EE KM 1 2 ]
where f 1(u, y | x, y) and f 2(x, y) are both the proba-
bility density functions for the velocity and station dis-
position inside the domain, respectively; the angle
brackets (^ &) denote the ensemble average over real-
izations of u and y .

For a limited number of data (P finite), the ensemble
average is replaced by the empirical average over all ob-
servational points. This leads to the empirical cost function

J 5 J(a , . . . , a , b , . . . , b , k, P).emp 1 K 1 M (5.2)
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For a large number of data (P → `), the coefficients
{â1, . . . , âK, b̂1, . . . , b̂M, } obtained by minimizing Jempk̂
coincide with the coefficients { , . . . , , , . . . , ,a* a* b* b*1 K 1 M

k*} obtained by minimizing ^J&. However, this is not true
for the limited data.

Vapnik (1983) suggested to estimate the difference
between Jemp and ^J& by the probabilistic approach. He
found that the probability of the maximum difference
between the empirical and ensemble cost functions be-
ing larger than a given tolerance m should be less than
some level g, which tends to zero as the observational
sample size tends to infinity:

Prob sup |^J(K, M, S)& 2 J (K, M, S)| $ memp5 6K,M,S

# g(P, m) (5.3)

lim g(P, m) 5 0, (5.4)
P→`

where ‘‘Prob’’ denotes the probability. From (5.3) we
have

J (K, M, S) 2 m # ^J(K, M, S)&emp

# J (K, M, S) 1 m, (5.5)emp

which leads to a formula for so-called Vapnik–Cher-
vonkis cost function (VCCF):

J 5 J (K, M, S) 1 m.KMS emp (5.6)

The tolerance m depends on the chosen numerical
model and is determined by two criteria: (a) minimi-
zation of the probability (5.3), and (b) uniform con-
vergence of the coefficient set

{â , . . . , â , b̂ , . . . , b̂ , k̂}1 K 1 M

to {a*, . . . , a*, b*, . . . , b*, k*} as P → `.1 K 1 M

b. Optimal spectral truncation

Vapnik’s (1983) method is used to determine the op-
timal values for three model parameters (Kopt, Mopt, Sopt).
For simplicity without loss of generality, we illustrate
the approach with a given Sopt. Let the family of models

(u , y ), (u , y ), (u , y ), . . . , (u , y )K0 K0 K1 K1 K2 K2 KM KM

be used in the reconstruction process. The velocity com-
ponent (uK0, yK0) does not contain contribution from the
poloidal potential (i.e., b0 5 0). The optimal parameter
Kopt is determined through minimization of the func-
tional

1/2
K 2P ln(g)ˆJ 5 J 1 2J ln 1 1 2 ,Km emp m5 1 2 6[ ]P K P

m 5 0, . . . , M, (5.7)

where g 5 0.95 and

1
obs 2sup [(u 2 u )Km2a , . . . ,a ,b , . . . ,b ,k,x,y1 K 1 M

obs 2 ˆ1 (y 2 y ) ] # J . (5.8)Km m

Then, the optimal parameter Mopt should be obtained
through the minimization process:

J 5 min(J , J , J , . . . , J ).K M K 0 K 1 K 2 K Mopt opt opt opt opt opt
(5.9)

The reconstructed field {u(Kopt, Mopt), y(Kopt , Mopt)}
is the solution that guarantees the minimum difference
between ^J& and Jemp for a given observational sample
size. It is noticed that the less the difference between
^J& and Jemp, the closer the truncated mode {uKM, y KM}
is to reality.

From the physical point of view, the optimal param-
eters are found through the cost function (5.9), which
is a trade-off between the likelihood of a model (i.e.,
its ability to reproduce data) and a penalty for making
the model too complex for the data.

c. Root-mean-square error

When the exact solution is known, we used the root-
mean-square error (rmse) inside the domain:

1/2
2(u 2 u )ex KMx 5 dx dy ,u EE 25 6^u &ex

1/2
2(y 2 y )ex KMx 5 dx dy , (5.10)y EE 25 6^y &ex

and along the open boundary:
1/2

2ˆ(V 2 V )n nx 5 dt9 ,n R 25 6^V &n9G1

1/2
2ˆ(V 2 V )t tx 5 dt9 , (5.11)t R 25 6^V &t9G1

to determine the reconstruction skill. Here, uex, yex, Vn,
and Vt represent the exact velocity components, () de-
notes the reconstructed field, and ^. . .& is the averaging
operator over the domain or along the open boundary.
To estimate spatial structure of reconstruction error, the
residual velocity defined by Lipphardt et al. (2000),

u 5 u 2 u ,res ex KM (5.12)

is used. It is noticed that such a skill is on the base of
the known exact velocity uex and (Vn, Vt) and has little
practical significance. However, it is applicable for ver-
ification in identical twin experiments.

6. Computational cost

Flow reconstruction is performed by solving a set of
(K 1 M)I linear algebraic equations (3.3) for the zero-
order approximation case and by solving a set of (K 1



488 VOLUME 20J O U R N A L O F A T M O S P H E R I C A N D O C E A N I C T E C H N O L O G Y

M 1 S)(K 1 M 1 S)II1 1 (K 1 M 1 S)II1 linear
algebraic equations (4.1)–(4.5) for iteration process for
nonlinear regression. Here, I and I1 are the numbers of
iteration to determining h[ i ] and (Kopt, Mopt), respective-
ly. Thus, computational cost depends on the selection
of the optimal modes (the basis functions) used in the
spectral decomposition. In general, the number of the
basis functions determines the smoothness of the re-
constructed circulation (Courant and Hilbert 1966).

In additional to the three examples presented in Part
II of this paper, the spectral decomposition (2.11)–(2.17)
was performed for the Black Sea with horizontal res-
olution of 18 km (Eremeev et al. 1992a,b); for the Gulf
of Mexico with horizontal resolution of 9 km (Chu et
al. 2003); for the Monterey Bay with horizontal reso-
lution of 1 km (Ivanov and Melnichenko 2002); and for
Louisiana–Texas shelf with horizontal resolution of 10
km (Ivanov et al. 2001b). In these calculations, the op-
timal number of basis functions are

K 5 40, M 5 30, S 5 0,opt opt

for the Black Sea reconstruction [closed basin, with the
boundary conditions (2.11), (2.12)];

K 5 120, M 5 20, S 5 5,opt opt opt

for the Gulf of Mexico reconstruction [semiclosed basin,
with the open boundary conditions (2.10), (2.13)];

K , 70, M , 20,opt opt

for the Monterey Bay reconstruction [with the open
boundary conditions (2.10), (2.13), and (2.18)]; and

K , 40, M , 10, S 5 3,opt opt opt

for the Louisiana–Texas shelf reconstruction [open shelf
area, with the simplified open boundary conditions
(2.18)]. If the zero-order approximation (first guess) is
successfully chosen, the numbers of iteration, I and I1,
usually do not exceed 7. If they are larger than 7, the
simplified open boundary conditions (2.18) is recom-
mended.

In reconstructing the Gulf of Mexico circulation on
a Pentium-III (850 MHz) processor, 300 toroidal and
poloidal basis functions are determined (40 CPU min)
from a 15 400 3 15 400 matrix corresponding to 2D
Laplacian with the Gulf of Mexico geometry. A set of
105 linear algebraic equations is solved at each iteration
in (4.2)–(4.5) using a special technique for super large
linear algebraic system developed by Strakhov and
Strakhov (1999). Such calculation consumes about 5.6
CPU h. The relatively high computational cost is caused
by the use of large data with the total open boundary
conditions (2.10) and (2.13). If the simple open bound-
ary condition (2.10) is used, the computational cost is
greatly reduced.

7. Conclusions

First, a multistep scheme is developed to reconstruct
velocity from sparse and noisy data in an open domain:

(a) a boundary extension method to determine normal
and tangential velocities at an open boundary, (b) es-
tablishment of homogeneous open boundary conditions
for the two potentials with a spatially varying coefficient
k(t), (c) spectral expansion of k(t), (d) determination
of basis functions for the two potentials for the spectral
decomposition using homogeneous boundary condi-
tions, and (e) determination of coefficients in the spec-
tral decomposition of velocity and k(t) using linear or
nonlinear regressions.

Second, the homogeneous boundary conditions of (C,
F) at both rigid and open boundary segments make it
possible to obtain basis functions for an open domain.
The basis functions are the eigenfunctions of the La-
placian operator with homogeneous boundary condi-
tions and depend on the spectrally varying parameter k
at the open boundary.

Third, the spectra of the two horizontal velocity com-
ponents and k are truncated at K, M, and S. The optimal
model parameters (Kopt, Mopt, Sopt) are determined
through a modified cost function, which is constructed
on the basis of model capability and data reproduction
complexity (penalty). This cost function is also used to
verify the model reconstruction skill from sparse and
noisy data.

Fourth, the spectral coefficients for horizontal veloc-
ity and k are determined simultaneously using the sta-
bilized least squares (SLS) method. This method does
not require a priori knowledge about noise and is robust
to the size of observational samples used for the re-
construction.

Fifth, after reconstructing the horizontal velocity field
at various depths, the vertical velocity may be recon-
structed through solving the integral equation (3.5) nu-
merically. Since the coefficient matrix is square, the
minimum sensitivity of solution is used to determine
the regularization parameter and then use Tikhonov’s
approach to reconstruct the vertical velocity.
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APPENDIX A

Two-Scalar Potential Representation of
Three-Dimensional Incompressible Flow

Consider spherical coordinates with r representing the
radius vector. Using the Helmholtz theorem (Morse and
Feshbach 1953), the horizontal velocity at a given radius
| r | 5 r is written as

u 5 r 3 = A 1 = A ,H H 1 H 3 (A.1)

where =H is the two-dimensional nabla operator.
Let us define a new function A2 such that the radial

velocity component is written by

]A3u 5 rA 1 . (A.2)r 2 ]r

Combination of (A.1) and (A.2) gives a well-known
form for a three-dimensional vector field (Dubrovin et
al. 1992):

u 5 r 3 =A 1 rA 1 =A .1 2 3 (A.3)

To reduce the number of scalar functions in (A.3)
from 3 to 2, two fundamental properties of oceanic flows
are accounted for 1) existence of the vertical axis
marked out by the earth’s rotation for large-, meso- and
submesoscales; and 2) incompressibility.

The first property of ocean flows allows to construct
the unique invariant transformation for (A.1) and (A.2):

1 df (r)2˜ ˜A 5 A 2 f (r), A 5 A 1 ,1 1 1 2 2 r dr

Ã 5 A 2 f (r), (A.4)3 3 2

where f 1 and f 2 are two arbitrary functions depending
on r only. In general, the three-dimensional flow is de-
composed by

˜ ˜ ˜u 5 r 3 =A 1 rA 1 =A .1 2 3 (A.5)

Two velocity components,

tor ˜ ˜u 5 r 3 =A 5 = 3 (rA ), and1 1

pol ˜ ˜u 5 rA 1 =A , (A.6)2 3

are also invariant in the transform (A.3). The two com-
ponents utor and upol are called the toroidal and poloidal
velocities (Moffat 1978), respectively. Substitution of
(A.3) into the incompressibility condition

= ·u 5 0

leads to the following relationship:

˜ ˜DA 5 2=(rA ).3 2 (A.7)

According to (A.6), the poloidal potential F of the field
can be defined by

˜ ˜rA 1 =A 5 = 3 = 3 (rF).2 3 (A.8)

Let Ã1 5 C, then (A.3) becomes

u 5 = 3 (rC) 1 = 3 = 3 (rF), (A.9)

which is the two-scalar representation for a three-di-
mensional incompressible field. For more details, see
Moffat (1978) and Zeldovich et al. (1985). Obviously,
the two potentials (C, F) defined here are not the same
as the streamfunction (A1) and velocity potential (A3)
of a two-dimensional flow uH on a spherical surface.

APPENDIX B

Structure of A9 and Y9 in (4.5)

The matrix A9 and the vector Y9 in (4.6) are given by

]u ]u NM NM· · ·) )]h ]h1 p51 Q p51

· · · · · · · · ·

]u ]uNM NM· · ·) )]h ]h1 p5P Q p5P 
A9 5 ; 

]y ]yNM NM· · ·) )dh ]h1 p51 Q p51

· · · · · · · · ·

]y ]yNM NM · · ·) )]h ]h1 p5P Q p5P 

obs [i]u 2 u (h )| KM p51

· · ·
obs [i]u 2 u (h )| KM p5P

Y9 5 . (B.1) 
obs [i]y 2 y (h )|KM p51

· · · 
obs [i]y 2 y (h )| KM p5P

After multiplying R to the system (4.5) we have

a · · · a @ b   11 1Q 1

· · · · · · · · · @ · · ·   
A 5 a · · · a @ ; Y 5 b .   reg Q1 QQ reg Q

@ @ @ @ 0   
c · · · · · · c d   2P1 2P2P 2P2P

(B.2)

Here, the last rows in Areg and Yreg are excluded from
the analysis because they are not filtered. The trans-
formed system (4.6) is well posed and can be solved
using a typical linear algebraic method such as the Gauss
procedure.
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APPENDIX C

Determination of the Realization (H[I])

This process starts from the first-guess optimal ve-
locity ( , ) in the domain V1 (G < ). There[0] [0]u y G9K M K M 1opt opt opt opt

are nine steps (for iteration i) to determine the reali-
zation (h[ i ]) (Fig. 3).

1) Calculate k[ i ] (i 5 1, 2, . . .) along the open boundary
for the domain V1 (G < ).G9 G91 1

2) Determine the basis functions { , , . . . , }[ i] [ i] [ i]C C C1 2 K

and { , , . . . , } for the domain V1 with[ i] [ i] [ i]F F F1 2 M

k[ i ] .
3) Calculate the velocity ( , ) for the pair of (K,[ i] [ i]u yKM KM

M). Determine the optimal pair (Kopt, Mopt) through
minimizing the Vapnik–Chervonkis cost function
(5.6). Then, obtain the optimal adjustment d [ i]hK Mopt opt

using (4.6).
4) Update the vector h[ i ] .
5) Compute the optimal velocity ( , ).[ i] [ i]u yK M K Mopt opt opt opt

6) Compare \dh[ i ]\ with the tolerance level «. If \dh[ i ]\
, «, the iteration stops, and ( , ) is the[ i] [ i]u yK M K Mopt opt opt opt

final reconstructed velocity field. If \dh[ i ]\ $ «, the
next step iteration starts.

APPENDIX D

Determination of the First Guess (dH[0])

This process starts from noisy observational velocity
data in the expanded domain V2 (G < ) with theG92
assumption k[0] 5 0. There are five steps to determine
the first guess (dh[0]) (Fig. 4).

1) Calculate the two sets of the basis functions { ,[0]C1

, . . . , } and { , , . . . , } using the[0] [0] [0] [0] [0]C C F F F2 K 1 2 M

Lanchoz–Arnoldi method from MATLAB 6.0.
2) Calculate the velocity ( , ) for the pair of (K,[0] [0]u yKM KM

M) using (3.3). Determine the optimal pair (Kopt,
Mopt) through minimizing the Vapnik–Chervonkis
cost function (5.6). Detailed explanation of this pro-
cedure can be found in section 5b.

3) Compute the first-guess optimal velocity ( ,[0]uK Mopt opt

) using (3.3).[0]yK Mopt opt
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