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ABSTRACT

Optimal spectral decomposition (OSD) is applied to ocean data assimilation with variable (temperature,

salinity, or velocity) anomalies (relative to background or modeled values) decomposed into generalized

Fourier series, such that any anomaly is represented by a linear combination of products of basis functions and

corresponding spectral coefficients. It has three steps: 1) determination of the basis functions, 2) optimal mode

truncation, and 3) update of the spectral coefficients from innovation (observational increment). The basis

functions, depending only on the topography of the ocean basin, are the eigenvectors of the Laplacian operator

with the same lateral boundary conditions as the assimilated variable anomalies. The Vapnik–Chervonkis di-

mension is used to determine the optimalmode truncation.After that, themodel field updates due to innovation

through solving a set of a linear algebraic equations of the spectral coefficients. The strength andweakness of the

OSD method are demonstrated through a twin experiment using the Parallel Ocean Program (POP) model.

1. Introduction

Data assimilation is required for operational ocean

studies and maneuvers (Sun 1999), and has contributed

significantly to the success of ocean modeling and pre-

diction. In a numerical ocean model, a single variable or all

themodel variables c (nomatter two- or three-dimensional)

can be ordered by grid point and by variable, forming

a single vector of length NP with N as the total number

of grid points and P as the number of variables. For

multiple model variables, nondimensionalization is

conducted before forming a single vector c. The ex-

isting data assimilation is to blend modeled (or back-

ground) fields (cb) (usually on the grid points) with

observational data (co) (usually not at the grid points)

of any ocean variable (Cohn 1997; Tang and Kleeman

2004; Chu et al. 2004b; Galanis et al. 2006; Lozano et al.

1996),

ca5 cb 1W[co 2H(cb)] , (1)

to represent the (unknown) ‘‘truth’’ ct with an analysis

error,

ea5 ca2 ct . (2)

Here, ca is the assimilated field (analysis field); H is an

operator that provides the model’s estimate at the ob-

servational points;W is the weight matrix; and d5 [co2
H (cb)] is the innovation (observational increment)

(Fig. 1). Various data assimilation schemes such as op-

timal interpolation (OI), Kalman filter, and variational

method [three- and four-dimensional variational data

assimilation (3DVAR and 4DVAR)] were developed,

and given unified notation by Ide et al. (1997). Their

differences are the different ways to determine theweight

matrixW. For example, minimization of the cost function

in the OI gives the weight matrix (e.g., Bretherton et al.

1976; Lozano et al. 1996),

W5BHT(HBHT 1R)21 . (3)

The minimization of the analysis error covariance (P) in

the Kalman filter (Galanis et al. 2006) leads to

Wi 5Pf (ti)H
T
i [HiP

f (ti)H
T
i 1Ri]

21 . (4)
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Here, B and P f are the background error covariance

matrices, where P f is also called the forecast projection

matrix by some authors; Ri is the observational error

covariance matrix; and t is time. Despite some differ-

ences in formality, (3) and (4) are identical. The most

significant challenge for the existing data assimilation

methods is the determination of the background error

covariance matrix B (or forecast projection matrix P f)

for the OI and 3DVAR (or Kalman filter), since B and

P f are enormous matrices that are difficult to estimate

due to the following characteristics: uncertain tunable

parameters, inhomogeneous and anisotropic structures,

and complex boundaries in oceans.

In standard OI the covariance of a field between two

events (space, time) or between a field at a grid location

and an observation are prescribed from some general

considerations on the nature of the covariances. These

covariances can be converted to their equivalent repre-

sentations in spectral space. Oceanographers have con-

structed B to include inhomogeneities and anisotropies

associated with the presence of topography, and to reflect

in a way the adaptation of the ocean fields to the topog-

raphy. Utilization of ocean topography may change the

weighting operation, W[co 2H(cb)] in (1), into a mathe-

matical operator, F [co 2H(cb)], that maps the innovation

(at the observational points) directly onto the grid points,

ca 2 cb 5F [co 2H(cb)]5F [Dco], Dco [ co2H(cb) ,

(5)

where H could be different in (1) and (5) when vertical

interpolation is involved. The difference, Dc5 c2 cb, is

called the anomaly (relative to the background field) of

c. Very early in the application of OI to ocean fields,

Bretherton et al. (1976) explored the use of spectral

representation of functions defined on a grid instead of

field values defined on a grid was considered. Along

their path, the optimal spectral decomposition (OSD)

was developed to apply the spectral method to field

values, that is, to perform as such an operatorF with the

eigenvectors of the Laplacian operator as the basis

functions that only depend on the topography, satisfy

the same boundary conditions as the assimilated ocean

variable anomalies (e.g., temperature, salinity, velocity),

and are predetermined before the data assimilation.

Although the relative simplicity of an atmospheric

spherical shell in comparison to the complexity of oce-

anic basins might explain the limited use of spectral

models for the ocean, the OSD has been proven as an

effective ocean data analysis method. With it, several

new ocean phenomena have been identified from

observational data, such as a bimodal structure of

chlorophyll-a with winter/spring (February–March)

and fall (September–October) blooms in the Black Sea

(Chu et al. 2005b), fall–winter recurrence of current

reversal from westward to eastward on the Texas–

Louisiana continental shelf from the current meter,

a near-surface drifting buoy (Chu et al. 2005a), prop-

agation of long Rossby waves at middepths (around

1000m) in the tropical North Atlantic from the Argo

float data (Chu et al. 2007), and temporal and spatial

variability of global upper-ocean heat content (Chu

2011) from the data of the Global Temperature and

Salinity Profile Program (GTSPP; Sun et al. 2009).

However, the OSD method has not yet been used for

ocean data assimilation.

The purpose of this paper is to extend the use of OSD

from ocean data analysis to ocean data assimilation. The

OSD can be either three- or two-dimensional. However,

it is conducted in a horizontal plane (i.e., two-dimensional

OSD) in this study. The rest of the paper is organized as

follows. Section 2 discusses the lateral boundary condi-

tions. Sections 3 describes the generation of basis functions.

Section 4 presents variables at grid versus observational

points. Section 5 shows the determination of spectral

coefficients from minimization of combined observa-

tional and analysis errors. Section 6 illustrates the mode

truncation as a statistical learning process using the

Vapnik–Chervonenkis (VC) dimension. Section 7 shows

the ocean model with the OSD data assimilation pro-

cedure. Sections 8 and 9 describe a twin experiment and

error statistics of the OSD data assimilation. Section 10

presents the conclusions.

FIG. 1. Illustration of ocean data assimilation with cb located at

the grid points and co located at the points ‘‘*.’’ The ocean data

assimilation is to convert the innovation, d 5 co 2 H(cb), from the

observational points to the grid points.
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2. Lateral boundary condition

Let (x, z) be the horizontal and vertical coordinates,

respectively; andR(z) be the area bounded by the lateral

boundary G(z). The anomaly Dc satisfies the generalized
homogeneous lateral boundary (G) condition (see the

appendix for a detailed explanation),

b1(t)n � $(Dc)1 b2(t)Dc5 0, (6)

where $5 i›/›x1 j›/›y is the horizontal gradient oper-

ator with (i, j) as the unit vectors in the horizontal plane;

n is the unit vector normal to the boundary; t denotes

a moving point along the boundary; and [b1(t), b2(t)]

are parameters varying with t. The boundary condition

(6) becomes the Dirichlet boundary condition when

b15 0 and theNeumannboundary conditionswhenb25 0.

It is noted that different variable anomalies have dif-

ferent [b1(t), b2(t)]. For example, the temperature, sa-

linity, and velocity potential anomalies have b2 5 0 for

the rigid boundary and b1 5 0 for the open boundary.

However, the streamfunction anomaly has b15 0 for the

rigid boundary and b2 5 0 for the open boundary.

3. Basis functions

a. Three necessary conditions

Selection of basis functions ffk(x, z)g needs to satisfy

three necessary conditions: (i) satisfaction of the same ho-

mogeneous boundary condition (6) of the assimilated var-

iable anomaly, (ii) orthonormal, and (iii) independence of

the assimilated variable. The second necessary condition is

given by ðð
R(z)

fk(x, z)fk0(x, z) dx5 dkk0 , (7)

where dkk0 is the Kronecker delta, defined as

dkk0 5

�
0 if k 6¼ k0

1 if k5 k0
. (8)

Because of the independence of the assimilated variable

(the third necessary condition), the basis functions are

available prior to the data assimilation.

Use of the eigenvectors of the horizontal Laplacian op-

erator as the basis functions is an effective and easy way to

get the basis functions that satisfy the three necessary con-

ditions. The eigenvectors ffkg of the horizontal Laplacian

operator are the solutions of the Poisson equation,

=2fk 52lkfk, [b1(t)n � $fk 1 b2(t)fk]
��
G 5 0,

k5 1, . . . ,‘ . (9)

Here, flkg are the eigenvalues, and n is the unit vector

normal to the lateral boundary. It is noted that these ei-

genvectors ffkg satisfy the three necessary conditions:

(i) satisfaction of the same homogeneous boundary condi-

tion (9) as the assimilated variable anomaly, (ii) ortho-

normal, and (iii) independent of the assimilated variables.

The features (i) and (iii) distinguish the eigenvectors

ffkg from the commonly used empirical orthogonal

functions (EOFs) in ocean data assimilation (e.g., Pham

et al. 1998). The EOFs depend on the assimilated vari-

ables and do not satisfy the same homogeneous boundary

condition (9) as the assimilated variable anomalies.

Because of irregular lateral boundaries, the basis

functions ffkg are usually numerical solutions of (9),

ffk(xn, z)g. Here, xn 5 (xi, yj), n 5 1, 2, . . . , N, repre-

senting the horizontal grid points. From now on, the

vertical coordinate z is omitted for simplicity. The firstK

discrete basis functions for all grid points are repre-

sented by the following matrix:

G5 fgnkg5

2
6664
f1(x1) f1(x2) . . . f1(xN)

f2(x1) f2(x2) . . . f2(xN)

. . . . . . . . . . . .

fK(x1) fK(x2) . . . fK(xN)

3
7775 . (10)

b. Example

With the NOAANational Geophysical Data Center’s

Digital Bathymetry Data Base with 50 3 50 resolution
(ETOPO5), the basis functions fk(xn) (k5 1, . . . , K) at

a certain depth z are computed for the Pacific Ocean. In

assimilating temperature observations, the temperature

anomaly Dc satisfies the Dirichet boundary condition

(b1 5 0) at the southern boundary (Antarctica) and the

Newmann boundary condition (b2 5 0) elsewhere (rigid

boundary). Figure 2 shows the first 12 basis functions

ffkg for the Pacific Ocean at the surface for illustration.

The first basis function f1(xn) shows the latitudinal

variability. The second basis function f2(xn) shows the

dipole pattern of zonal variability with opposite signs in

the eastern Pacific (negative) and the western Pacific

(positive). The third basis function f3(xn) shows the

slanted dipole pattern with opposite signs in the north-

eastern Pacific (positive) and the southwestern Pacific

(negative). The fourth basis function f4(xn) shows the

tripole pattern with negative values in the western and

eastern Pacific and positive values in between. The higher-

order basis functions have more complicated variability

structures. Some features are quite similar to the recently

described global thermal structure (e.g., Chu 2011). It

may imply the topographic effect (at least partially) on

the horizontal variability such as temperature, salinity,

density, and velocity potential (Song et al. 2001).
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FIG. 2. First 12 s-type basis functions ffk, k 5 1, . . . , 12g for the Pacific Ocean at the surface.
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4. Grid versus observational points

Let variable c have M observations co(x
(m), t) at loca-

tion x(m) (m5 1, 2, . . . ,M) indicated by a superscript (m),

and have background field cb(xn, t) at grid points xn. The

H operator in (1) interpolates the background (modeled)

field (cb) from grid to observational point x(m),

cb(x
(m), t)5 �

N

n51

hmncb(xn, t) (11)

with

�
N

n51

hmn 5 1. (12)

The innovation d(m) is then given by

d(m)(x(m), t)5 co(x
(m), t)2 �

N

n51

hmncb(xn, t) . (13)

Let H 5 [hmn] be an M 3 N matrix. Distribution of all

innovations d(m)(x(m)) (m 5 1, 2, . . . , M) from the obser-

vational points into the grid points is represented by the

same proportionality coefficient. The mean adjustment at

grid point xn due to all the observations is given by

Dn 5

�
M

m51

hmnd
(m)

fn
, fn [ �

M

m51

hmn , (14)

where fn denotes observational data influence at grid point

xn. The larger the value of fn, the larger the observational

influence on that grid point. Let d be the M-dimensional

innovation vector and let D be its distributed N-

dimensional vector on the grid points,

dT 5 (d(1), d(2), . . . ,d(M)), DT 5 (D1,D2, . . . ,DN) ,

(15)

where the superscript T indicates the transpose. Note

that (14) can be written in matrix form,

FD5HTd , (16)

and F is an N 3 N diagonal matrix,

F5

2
6664
f1 0 0 0

0 f2 0 0

0 0 ⋱ 0

0 0 0 fN

3
7775 , (17)

which is called the data influence matrix. It is noted that

bothmatrices F andH depend solely on the location of the

observational points [x(m)]. The algebraic equation (16) is

usually ill-posed. The rotationmethod (Chu et al. 2004a) is

used to convert (16) into a well-posed algebraic equation.

5. OSD data assimilation equation

The observational error («o) at grid point xn is given by

«o(xn, t)5 co(xn, t)2 ct(xn, t) . (18)

The components of the vector D represent the differ-

ence (observationminus background values) at the grid

points,

fnDn 5 co(xn, t)2 cb(xn, t) . (19)

Its spectral form, Dn, is represented by

D(K)
n 5 �

K

k51

ak(t)fk(xn) , (20)

where K is the mode number of the optimal truncation

(see section 6). The assimilated field with the given K is

represented by

c(K)
a (xn, t)5 cb(xn, t)1 fnD

(K)
n . (21)

The difference between Dn and D(K)
n is given by

fn(Dn 2D(K)
n )5 co(xn, t)2 c(K)

a (xn, t) . (22)

Substitution of (2) and (18) into (22) leads to

fn(Dn 2D(K)
n )5 [co(xn, t)2 ct(xn, t)]2 [c(K)

a (xn, t)

2 ct(xn, t)]5 «o2 «(K)
a [ «(K) , (23a)

which contains the observational error («o) and the

analysis error for a given K [«(K)
a ] at grid point xn. It is

noted that «o contains the instrumentation error, es-

pecially those associated with remote sensing obser-

vations, and the representativeness error, that is, for

example, the mismatch of the point observation with the

ocean model resolution. The combined observation–

analysis error variance over the whole domain is defined

by

Jtr 5

�
N

n51

[ fn(Dn2D
(K)
n )]2

N2 1
. (23b)

Minimizationof Jtr after substituting (19) and (20) into (23b),

›Jtr
›ak

5
1

N21

›

›ak

 
�
N

n51

(
fn �

K

k51

[ak(t)fk(xn)2Dn(t)]

)2!
50,
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leads to a set of algebraic equations for the spectral

coefficients fakg,

�
K

k51

"
�
N

n51

fl(xn)fnfk(xn)

#
ak 5 �

N

n51

fl(xn)fnDn

l5 1, 2, . . . ,K , (24)

which is rewritten into a matrix form after using (10),

GFGTA5GFD , (25)

where A is the spectral coefficient vector, AT 5 (a1,

a2, . . . , aK). The solution of (25) is given by

A5 [GFGT]21GFD . (26)

Then (21) is written into thematrix form after using (16),

ca5 cb 1FGT[GFGT]21E, E[GFD5GHTd , (27)

which is called the OSD data assimilation equation. The

vectorE denotes the observational innovation projected

into the spectral space. Thematrix form of theOSDdata

assimilation is quite similar to the existing ocean data

assimilation schemes fOI and the Kalman filter with the

matrix B replaced by F and H by G [see (3) and (4)]g.
The two matrices B and F play a similar role that make

the analysis field compact in the observational data-rich

area. It is also noted that the OSD data assimilation [see

(27)] is applied to one vertical level z. As such, the data

assimilation may distort the vertical stratification. Re-

cently developed fully conserved minimal adjust

schemes (Chu and Fan 2010; Wang et al. 2012) can be

used to stabilize the vertical stratification.

6. Mode truncation using theVapnik–Chervonenkis
dimension

The assimilation results depend on the mode trunca-

tion (K), since the spectral coefficients (a1, . . . , aK) are

determined on the base of minimization of the com-

bined observation–analysis error variance Jtr [see (23b)]

for the givenK. With the calculated spectral coefficients

(a1, . . . , aK) based on observational data, the assimilated

field, c(K)
a (xn, t), can be calculated at any grid point (xn)

using (27), and the analysis error is estimated by [see (2)]

«(K)
a (xn, t)5 «b(xn, t)1 fn �

K

k51

ak(t)fk(xn),

«b(xn, t)[ cb(xn, t)2 ct(xn, t) , (28)

where «b(xn, t) is the model (or background) error. It is

noted from (28) that reduction of the model (or

background) error «b (i.e., smaller «(K)
a ) is achieved by

the observational innovation using OSD (second term

on the right-hand side).

Since the ‘‘true’’ field, ct(xn, t), is still uncertain, the

analysis error «(K)
a should be estimated probabilistically.

In the spectral decomposition method, the observation

space and the model space are projected into the spectral

space. There is a need to ensure that the size of the spec-

tral space is adequate for these two purposes. The spectral

representation acts as a spatial low-pass filter for the fields,

where the highest allowed wavenumbers relate to the

highest spectral eigenvalues. The observational network is

required to provide information without aliasing. For ex-

ample, in an eddy field in the deep ocean, one expects that

the basis functions can resolve well features of the size of

the Rossby radius of deformation. Thus, the ratio of ob-

servational points (M) and the spectral truncation (K) is

a key to determining the optimal mode truncationKopt. It

is noted that cb(xn, t), (a1, . . . , aK), and ffk, k51, . . . , Kg
are given. Let J be the ensemble average of analysis error

variance. The probability for the upper bound of J is given

by (Vapnik 2000; Chu et al. 2003a,b)

P

(
J# Jtr1 J*

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
[ln(2M/K)1 1]2 ln(h/4)

M/K

r )
5 12h ,

(29)

where the mode truncation K is treated as the VC di-

mension and h (�1) is the significance level. Term J* is

the upper bound of Jtr. The minimization of the VC cost

function (JK),

JK 5 Jtr 1m(K,M,h),m(K,M,h)

5 J*

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
[ln(2M/K)1 1]2 ln(h/M)

M/K

r
, K5 1, 2, . . . ,‘ ,

(30)

leads to another set of spectral coefficients fa1*, . . . , aK*g.
It is noted that for a given M, Jtr decreases mono-

tonically with K and that m increases with K if h is given

(h5 0.1 in this study). Thus, JK has a minimum value for

certain mode number Kopt,

min
K

(JK)5 JK
opt
. (31)

7. Ocean modeling

a. Model description

The Parallel Ocean Program (POP) model (Smith and

Gent 2002) is used to show the feasibility of theOSDdata

assimilation. Within the framework of the Community
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Earth System Model (CESM), the POP is a time-

dependent, level-coordinate primitive equation ocean

general circulation model rendered on a three-

dimensional grid that includes a free surface and re-

alistic topography. The B grid is used for the spatial

discretization. Derived from the Bryan–Cox–Semtner

class of models, the POP was officially adopted as the

ocean component of the CESM based at NCAR in 2001.

It has an implicit free surface and general orthogonal

coordinates. It is a global model, with the grid defined so

that the pole is located in Greenland. Since the purpose

of this study is to show the feasibility of the OSD

data assimilation rather than to simulate/predict the

real ocean processes, a low-horizontal-resolution (38),
60-vertical-level (Table 1) version of the model with

a time step of 2h is used in this study. In the top 175m, the

model has 30 levels with 10m between each of the con-

secutive levels. The discretized model variable at the grid

points is represented by c(xn, zl, t), n5 1, 2, . . . ,Nl, l5 1,

2, . . . , L. Here, Nl is the total number of the horizontal

grid points at the vertical level l and L 5 60 is the total

number of the vertical levels.

The atmospheric forcing at the surface is provided by

an annually varying climatology derived from the sur-

face Co-ordinated Ocean–Ice Reference Experiments

(CORE), version 2 (Large and Yeager 2009). The air–

sea fluxes of momentum, heat, freshwater, and their

components have been computed globally from 1948 at

frequencies ranging from 6 hourly to monthly. All fluxes

are computed over the 23 years from 1984 to 2006, but

radiation prior to 1984 and precipitation before 1979 are

given only as climatological mean annual cycles. The

input data are based on NCEP–NCAR reanalysis for the

surface vector wind, temperature, specific humidity, and

density, and on a variety of satellite based radiation, sea

surface temperature, sea ice concentration, andprecipitation

products (from https://climatedataguide.ucar.edu/

climate-data/large-yeager-air-sea-surface-flux-corev2-

1949-2006). The model simulations for this experiment

used climatological forcing, (daily 23-yr average). The

forcing is interpolated to the time step of the model.

The POP model has been spun up from rest and clima-

tological annual mean (temperature and salinity) with the

daily climatological surface forcing from the CORE, ver-

sion 2 (Large andYeager 2009), and integrated for a period

of over 300 simulation years. Themodel output for the year

300 (c300) is treated as the ‘‘truth field,’’ ct(xn, zl, t).

b. Initial error

Although we are using a global model, temperature

‘‘observations’’ are only incorporated for the Pacific basin.

It is noted that use of single-variable (i.e., temperature)

data is not ideal, since observational temperature (T), sa-

linity (S), and velocity (V) data should be assimilated to

keep dynamic balance, since (T, S, V) are the dependent

variables in ocean models. Chu (2006) shows that assimi-

lation with (T, S) data only introduces dynamic imbalance

and suggests that geostrophic velocity corresponding to

the (T, S) data should also be assimilated. The results of

this study are only used for the preliminary evaluation.

The model is integrated from 1March of year 210 and

uses observations sampled from the fields from 1 March

of year 300. The initial error (the variable c denoting

temperature) is

e(xn, zl, t0)5 c210(xn, zl, t0)2 c300(xn, zl, t0) . (32)

The temperature at the surface initially has maximum

errors (i.e., the mismatch between years 210 and 300),

such as128C in the Southern Ocean near the Antarctic

and 228C north of the Kuroshio Extension; medium

errors, such as 118C in the central equatorial Pacific;

and low errors (jej, 0:58C) in subtropical areas in

both hemispheres (Fig. 3a). The temperature initially

has smaller errors at 1106-m depth (level 41) with

maximum errors in the circumpolar currents near118C
in the west and 218C in the east, and low errors

(jej, 0:58C) elsewhere (Fig. 3b). The model without

TABLE 1. Depths (m) of vertical levels in the POP model.

Level Depth Level Depth Level Depth Level Depth Level Depth

1 5 13 125 25 268 37 708 49 2649

2 15 14 135 26 285 38 787 50 2890

3 25 15 145 27 305 39 879 51 3133

4 35 16 155 28 328 40 985 52 3380

5 45 17 165 29 351 41 1106 53 3628

6 55 18 175 30 378 42 1245 54 3876

7 65 19 186 31 409 43 1401 55 4126

8 75 20 198 32 443 44 1574 56 4375

9 85 21 210 33 483 45 1764 57 4625

10 95 22 223 34 528 46 1969 58 4875

11 105 23 236 35 579 47 2186 59 5125

12 115 24 251 36 639 48 2414 60 5375
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data assimilation is integrated from 1 March with the

initial condition,

cb(xn, zl, t0)5 c210(xn, zl, t0) , (33)

using daily surface forcing for 20 days, represented by

cnon(xn, zl, t).

8. OSD data assimilation

a. Bilinear interpolation

Let the observational point x(m) located in the grid cell

be xi # x(m) , xi11, yj # y(m) , yj11. In this study, the bi-

linear interpolation is chosen for the H operator (Fig. 4),

H(cb)5w
(m)
i, j cb(i, j) 1w

(m)
i11, jcb(i11, j) 1w

(m)
i, j11cb(i, j11)

1w
(m)
i11,j11cb(i11,j11) , (34)

where

w
(m)
i,j 5

(xi112 x(m))(yj112 y(m))

(xi112 xi)(yj112 yj)

w
(m)
i11,j 5

(x(m) 2 xi)(yj11 2 y(m))

(xi112 xi)(yj112 yj)

w
(m)
i,j115

(xi112 x(m))(y(m) 2 yj)

(xi112 xi)(yj112 yj)

w
(m)
i11,j115

(x(m) 2 xi)(y
(m) 2 yj)

(xi112 xi)(yj112 yj)
. (35)

It is noted that the proportionality coefficients

fw(m)
i,j , w

(m)
i11,j, w

(m)
i,j11, w

(m)
i11,j11g depend solely on the lo-

cation of the observational points (x(m)), and

w
(m)
i,j 1w

(m)
i11,j1w

(m)
i,j111w

(m)
i11,j115 1. (36)

Each row of theM3NmatrixH5 [hmn] in (16) only has

four nonzero values,

H5

2
66666666666666666664

0 0 w
(1)
11 w

(1)
21 0 . . . w

(1)
12 w

(1)
22 0 . . . 0 0

0 w
(2)
11 w

(2)
21 . . . w

(2)
12 w

(2)
22 0 0 0 0 . . . 0

0 0 0 w
(3)
11 w

(3)
21 0 . . . w

(3)
12 w

(3)
22 0 . . . 0

. . .

. . .

. . .

. . .

. . .

0 w
(M21)
11 w

(M21)
21 . . . 0 w

(M21)
12 w

(M21)
22 0 0 0 . . . 0

0 0 0 w
(M)
11 w

(M)
21 0 . . . 0 w

(M)
12 w

(M)
22 0 0

3
77777777777777777775

.

FIG. 3. Initial errors in temperature (8C) at (a) the sea surface and (b) the depth of 1106m (at level 41).
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Other simple interpolations such as inverse distance

weighting, spline, and trigonometric polynomials can

also be used for H matrix.

b. Twin experiment

A sampling pattern consisting of a data-rich area and

a data-poor area offers a challenge to the ability of the

basis function to represent the intended fields well, since

the projection of the data onto the spectral fields is likely

to generate a field defined in the entire domain. To test

the ability of the OSD to represent the intended fields,

the ‘‘observational’’ data are sampled from c300 begin-

ning with 1 March for 20 days at locations (unchanged

during the data assimilation process) given by the hori-

zontal distribution of the Argo floats in March 2003

(Fig. 5). This produces the observational dataset

[co(x
(1), z, t), . . . , co(x

(M), z, t)] with a data-rich area

north of 208S and a data-poor area south of 208S. If the
spatial decorrelation scale is much less than the domain

size, then the analysis fields using OI will be compact in

the data-rich area (i.e., north of 208S).
The OSD data assimilation process at day 5 t follows

(27) with the following procedure: (i) determine the

optimal mode decomposition (Kopt); (ii) compute the

difference between the observational and background

values at the observational points following (13);

(iii) substitute the difference into (26) to obtain the spec-

tral coefficients [a1(z, t), a2(z, t), . . . , aKopt(z, t)]; and

(iv) substitute the spectral coefficients [a1(z, t), a2(z, t), . . . ,

aK(z, t0)] into (27) to get the assimilated initial condition

ca(xn, z, t). The dependence of the VC cost function (JK)

on theVCdimension (Fig. 6) shows that the optimalmode

truncation isKopt 5 12 at 125-m depth (level 13; Table 1)

and day 0 (for illustration). The assimilation model is then

run forward in time for 24h with the model field saved at

the end of 24h, which is the background field for the day5
(t1 1), cb(xn, z, t1 1 day). At each assimilation time, the

optimal mode truncation (Kopt) is recalculated. This pro-

cess repeats for 20 days and leads to the assimilated out-

put, ca(xn, z, t).

9. Error statistics

The three datasets ca(xn, zl, t), cnon(xn, zl, t), ct(xn, zl, t)

(l5 1, . . . ,L) for the period of 20 days (t0 # t # t15 t01
20 days) are used to show the root-mean-square error

FIG. 4. Bilinear interpolation for calculating the basis functions

at the observational point xm from their values at the four neigh-

boring grid points.

FIG. 5. Daily sampling taking from the horizontal distribution of

the Argo floats in March 2003. It is noted that the observational

data-rich area is north of 208S and that the observational data-poor

area is south of 208S.

FIG. 6. Optimal mode decomposition (Kopt) at 125-m depth and

day 0 is determined by the minimization of the VC cost function

(denoted by red square).
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(RMSE) with and without the OSD data assimilation.

LetNl be the number of the horizontal grid points at the

vertical level l and L be the number of the total vertical

levels (L5 60). The basinwide RMSE and BIAS for the

assimilation run (Eassim, Bassim) and nonassimilation run

(Enon, Bnon) are given by

Eassim(t)5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

L
�
L

l51

(
1

Nl

�
N

l

i51

[ca(xi, zl, t)2 ct(xi, zl, t)]
2

)vuut ,

(37a)

Enon(t)5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

L
�
L

l51

(
1

Nl

�
N

l

i51

[cnon(xi, zl, t)2 ct(xi, zl, t)]
2

)vuut ,

(37b)

Bassim(t)5
1

L
�
L

l51

(
1

Nl

�
N

l

i51

[ca(xi, zl, t)2 ct(xi, zl, t)]

)
,

(38a)

Bnon(t)5
1

L
�
L

l51

(
1

Nl

�
N

l

i51

[cnon(xi, zl, t)2 ct(xi, zl, t)]

)
.

(38b)

Figure 7 shows the comparison of the basinwide RMSE

and BIAS of the model between without data assimila-

tion (dashed curve) and with the OSD data assimilation

(solid curve). RMSE increases from 0.508C at day 1 to

0.528C at day 20 (0.028C increase) without data assimi-

lation (4% of error increase), and it decreases from

0.508C at day 1 to 0.438C at day 20 with the OSD data

assimilation (14% of error decrease). BIAS increases

from 0.0808C at day 1 to 0.0828C at day 20 (0.0028C in-

crease) without data assimilation (2.5% increase), and it

decreases from 0.088C at day 1 to 0.048C at day 20

(0.048C decrease) with the OSD data assimilation (50%

decrease).

The local RMSE and BIAS for the assimilation and

nonassimilation runs are given by

Eassim(xn, t)5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

L
�
L

l51

[ca(xn, zl, t)2 ct(xn, zl, t)]
2

s
,

(39a)

Enon(xn, t)5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

L
�
L

l51

[cnon(xn, zl, t)2 ct(xn, zl, t)]
2

s
,

(39b)

Bassim(xn, t)5
1

L
�
L

l51

[ca(xn, zl, t)2 ct(xn, zl, t)] ,

(40a)

Bnon(xn, t)5
1

L
�
L

l51

[cnon(xn, zl, t)2 ct(xn, zl, t)] .

(40b)

A comparison of the local RMSE (Fig. 8) and BIAS

(Fig. 9) between without data assimilation (right

panels) and with the OSD data assimilation (left

panels) for day 1 (top panels), day 10 (middle panels),

and day 20 (bottom panels) shows the strength and

weakness of the OSD scheme. At day 1, the local

RMSE and BIAS are quite comparable between the

assimilated run (Figs. 8a and 9a) and the non-

assimilated run (Figs. 8b and 9b). The local RMSE has

large values around ;28C in the central equatorial

Pacific (108S–108N, 1608–1208W), in the eastern tropical

North Pacific (108–188N, 1208–908W), a very narrow

strip in the Antarctic Circumpolar Current region near

the ice shelf (south of 688S, 1608–908W), and relatively

low values elsewhere. The local BIAS has large values

around 0.5 ; 18C in the most areas of the low latitudes

(208S–208N) and high latitudes (north of 408N) except

in the eastern Pacific near coastal regions and in the

FIG. 7. Comparison between the assimilation and nonassimilation runs of the temporally

varying basinwide (a) RMSE and (b) BIAS.
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Antarctic Circumpolar Current region, and relatively

low values elsewhere.

As the time progresses, the local (RMSE, BIAS) for

the nonassimilate run remains almost the same at day 10

(Figs. 8d and 9d) and day 20 (Figs. 8f and 9f) as at day 1

(Figs. 8b and 9b), but it changes evidently for the as-

similated run at day 10 (Figs. 8c and 9c) and day 20

(Figs. 8e and 9e) as compared to day 1 (Figs. 8a and 9a).

The localRMSE is reduced drastically north of 208Swith
a disappearance of high local RMSE originally (day 1) in

FIG. 8. Comparison of temporally varying local RMSE for the (a) assimilation run at day 1, (b) nonassimilation

run at day 1, (c) assimilation run at day 10, (d) nonassimilation run at day 10, (e) assimilation run at day 20, and

(f) nonassimilation run at day 20.
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FIG. 9. Comparison of temporally varying local BIAS for the (a) assimilation run at day 1,

(b) nonassimilation run at day 1, (c) assimilation run at day 10, (d) nonassimilation run at day 10,

(e) assimilation run at day 20, and (f) nonassimilation run at day 20.
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the central equatorial Pacific, and the eastern tropical

North Pacific, and is not reduced or may even be in-

creased slightly south of 208S with the appearance of

high local RMSE originally (day 1) in the Antarctic

Circumpolar Current region near the ice shelf (south of

688S, 1608–908W). It is noted that the areas with large

reduction in error and bias are the observational data-

rich areas, and that areas with less decreasing (or even

increasing) in error and bias are the observational data-

poor areas (cf. Figs. 8 and 9 to Fig. 5).

10. Conclusions

The OSD method has been developed for ocean data

assimilation on the basis of the classic theory of the

generalized Fourier series expansion, such that any

ocean field is represented by a linear combination of the

products of basis functions (modes) and corresponding

spectral coefficients. The basis functions are the eigen-

vectors of the Laplacian operator, determined only by

the topography with the same lateral boundary condi-

tions for the assimilated variables.

Different from the existing ocean data assimilation

methods such as optimal interpolation, Kalman filters,

and variational methods (originally developed for at-

mospheric data assimilation), the OSD method has four

specific features: (i) effective utilization of the ocean

topographic data, (ii) orthonormal and predetermined

basis functions that are independent on and satisfy the

same lateral boundary condition of the assimilated

variable anomalies, (iii) no requirement of a priori in-

formation on a background error covariance matrix (B),

and (iv) optimal mode truncation through minimization

of the Vapnik–Chervonkis dimension as a statistical

learning process. After the mode truncation, the model

field updates due to innovation through solving a set of

a linear algebraic equations of the spectral coefficients.

The capability of the OSD method is demonstrated

through a twin experiment using the Parallel Ocean

Program (POP) model for the Pacific Ocean. For an

objective evaluation, the ‘‘observational’’ data are not

uniformly distributed in the data-rich area north of 208S
and in the data-poor area south of 208S. Within 20 days,

the basinwide RMSE (BIAS) increases 4% (2.5%)

without the OSD data assimilation and decreases 14%

(50%) with the OSD data assimilation. However, the

improvement using the OSD data assimilation depends

on the observational data distribution. The local RMSE

is reduced drastically in data-rich areas (i.e., north of

208S) but not in data-poor areas (i.e., south of 208S).
No use of the a priori B matrix implies that the ob-

servations are purely extrapolated to the data-poor area

with the control of the observational influence matrix F

[see (17) and (27)]. Since the extrapolation causes un-

predictable analysis errors and the twin experiment does

not show improvement by OSD assimilation in the data-

poor area, further studies on constructing the F matrix

are needed. Moreover, verification using a twin experi-

ment is just a first step. Feasibility studies should be

conducted for real ocean data such as conductivity–

temperature–depth (CTD), expendable bathythermo-

graph (XBT), Argo profiling data, and glider data.

The OSD method proposed here is two-dimensional

and conducted at each vertical level with the basis

functions given by the eigenvectors of the horizontal

Laplacian operator. This can be extended to a three-

dimensional OSDmethod with the basis functions given

by the eigenvectors of the three-dimensional Laplacian

operator, where much larger matrix operations will be

involved. Besides, for the three-dimensional OSD, the

surface boundary conditions of the assimilated variable

anomalies may vary due to local climatology. Its impact

on the three-dimensional basis functions will be in-

vestigated in future studies.

Acknowledgments. The Office of Naval Research, the

Naval Oceanographic Office, and the Naval Post-

graduate School supported this study.

APPENDIX

Derivation of Lateral Boundary Condition [(6)]

Generally, the assimilated ocean variable c (temper-

ature, salinity, density, velocity, . . .) have the lateral

boundary (G) condition

b1(t)n � $c1 b2(t)c5D(t) , (A1)

where D(t) is the forcing term varying with t. With the

inhomogeneous boundary condition (A1), the assimi-

lated variable c(x, z, t) consists of two parts,

c(x, z, t)5 ĉ(x, z, t)1 S(x, z, t) , (A2)

where S(x, z, t) is the solution of the Laplacian equation

with the inhomogeneous boundary condition

=2S5 0, k1(t)n � $S1 k2(t)S5D(t) at G ; (A3)

and ĉ(x, z, t)5 c(x, z, t)2 S(x, z, t), which satisfies the

homogeneous boundary condition

b1(t)n � $ĉ1 b2(t)ĉ5 0. (A4)

Since

cb(x, z, t)5 ĉb(x, z, t)1 S(x, z, t) , (A5)
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subtraction of (A5) from (A2) leads to

Dc(x, z, t)5 c(x, z, t)2 cb(x, z, t)5 ĉ(x, z, t)2 ĉb(x, z, t) .

(A6)

Both ĉ(x, z, t) and ĉb(x, z, t) satisfy the boundary condi-

tion (A4), which leads to the boundary condition (6) forDc,

b1(t)n � $(Dc)1 b2(t)Dc5 0.
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