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ABSTRACT

The optimization method proposed in this paper is for determining open boundary conditions from interior
observations. Unknown open boundary conditions are represented by an open boundary parameter vector (B),
while known interior observational values are used to form an observation vector (O). For a hypothetical B*
(generally taken as the zero vector for the first time step and as the optimally determined B at the previous time
step afterward), the numerical ocean model is integrated to obtain solutions (S*) at interior observation points.
The root-mean-square difference between S* and O might not be minimal. The authors change B* with different
increments dB. Optimization is used to get the best B by minimizing the error between O and S.

The proposed optimization method can be easily incorporated into any ocean models, whether linear or
nonlinear, reversible or irreversible, etc. Applying this method to a primitive equation model with turbulent
mixing processes such as the Princeton Ocean Model (POM), an important procedure is to smooth the open
boundary parameter vector. If smoothing is not used, POM can only be integrated within a finite period (45
days in this case). If smoothing is used, the model is computationally stable. Furthermore, this optimization
method performed well when random noise was added to the ‘‘observational’’ points. This indicates that real-
time data can be used to inverse the unknown open boundary values.

1. Introduction

One of the difficult problems in shallow-water mod-
eling is the uncertainty of the open boundary condition
(OBC). At open boundaries where the numerical grid
ends, the fluid motion should be unrestricted. Ideal open
boundaries are transparent to motions. Two approaches,
local type and inverse type, are available for determining
the OBC. The local-type approach determines the OBC
from the solution of the governing equations near the
boundary. The problem now becomes selection from a
set of ad hoc OBCs. Since any ad hoc OBC will intro-
duce inaccuracies into a numerical solution (Chapman
1985), it is important to choose a best one from ad hoc
OBCs for a particular ocean model. Using a barotropic
coastal ocean model, Chapman (1985) evaluated several
of the most used ad hoc OBCs (clamped, sponge, ra-
diation) and found that the best OBC consists of a
sponge at the outer edge of the model domain with an
Orlanski radiation condition (Orlanski 1976) and that
the clamped OBC is probably the worst choice. Apply-
ing these results to other ocean models needs further
investigation. The local approach suffers drawbacks that
may restrict its use: no observational data considered
and the ill-posedness of the primitive equations model
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with ad hoc OBC, that is, it is hard to prove the existence
of a unique solution (Bennett 1992; Oliger and Sund-
strom 1978). To improve the local approach by using
observations at open boundaries, Shulman and Lewis
(1995) proposed a method for determining OBCs of the
shallow-water model. Their method is based on the in-
tegration of governing equations forward in time and
the selection of OBCs via a specific inverse problem
that minimizes a measure of difference (energy flux)
between the values of observed and predicted variables
at open boundaries. Thus, their method helps us to select
the proper ad hoc OBC by using observations at the
open boundaries.

Without any ad hoc OBCs, the inverse-type approach
can determine the OBC from a ‘‘best’’ fit between model
solutions and interior observations. The most popular
scheme for this approach is an adjoint method, which
consists of four elements: set of control parameters or
control vector (e.g., the unknown OBC), numerical
ocean model, cost function, and adjoint equation. The
cost function is usually defined by the difference be-
tween observations and their model counterparts. The
adjoint equation is derived from minimizing the cost
function with respect to the control parameters. Using
an adjoint method, the initial-value problem of ocean
model with the OBC becomes integration of both the
governing equations and the equation for the control
parameters forward and backward in time. For a com-
prehensive discussion of the adjoint method, the reader
is referred to the numerous papers on that subject, for
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FIG. 1. Can open boundary condition be determined by interior
values?

FIG. 2. Flowchart showing the optimization method for determin-
ing open boundary vector B for the kth time step.

example, Seiler (1993). The advantage of using the ad-
joint method is the well posedness and the use of ob-
servational data. Seiler (1993) successfully determines
the unknown OBCs for a quasigeostrophic ocean by
using the adjoint method. The disadvantages that may
restrict its use are the requirement of large amounts of
computer time and memory; problems of stable inte-
gration of the adjoint equation; ocean-model dependen-
cy of the adjoint equation; and difficulty in deriving the
adjoint equation when the model contains rapidly chang-
ing processes, such as ocean mixed layer dynamics.

We propose a simplified method that overcomes the
disadvantage of the current inverse-type approach. This
method can determine OBCs of any ocean model (i.e.,
a universal method) from interior observations. The es-
sence of the method is to seek the relationship among
three vectors: open boundary parameter vector B, ob-
servation vector O, and solution vector S. If B is given,
we can integrate the numerical ocean model and get the
solution vector S. If B is unknown, the optimization
method is used to determine B by minimizing the root-
mean-square (rms) difference between O and S.

2. Optimization method

a. Three vectors

If r denotes the position of any point along the open
boundary G, the boundary values of any variable h is
a function of r, h(b) 5 h(b)(r). Let f1(r), f2(r), . . . , fn(r)
be a series of known basis functions. We expand the
function h(b)(r) into

n

(b)h (r) 5 b f (r). (1)O i i
i51

Thus, the determination of the open boundary condition
h(b)(r) becomes the determination of a set of parameters
b1, b2, . . . , bn. The n-dimensional vector,

b1

b2
.B 5 , (2).F G.

bn

is called the boundary parameter vector.
Assume that there are m observations (O1, O2, . . . ,

Om) located at the interior (Fig. 1). An m-dimensional
vector O can be constructed by

O1

O2
.O 5 , (3).F G.

Om
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FIG. 3. Smooth of the open boundary correction vector by the linear
regression method. Circles indicate smoothed data and asterisks de-
note unsmoothed data.

FIG. 4. Integration domain and lateral boundary conditions.

FIG. 5. Five basis functions of the open boundaries, used in the
Csanady’s shelf model.

which is called the observation vector. Notice that the
observational variable is not necessarily the same di-
mension as the variable at the open boundary. If B is
given, we can solve the dynamic system and obtain the
solution S. At the same locations where the observations
take place, the solutions are S1, S2, . . . , Sm, which form
a solution vector

S1

S2
.S 5 . (4).F G.

Sm

b. Optimization method for determining B

Ocean model performance can be measured by the
rms error

1/2
m1

2I 5 (S 2 O ) . (5)O j jF Gm j51

The vector S depends on B. Change of the boundary
vector B (boundary conditions) leads to a change of S
(solutions). Inversely, we may determine B by mini-
mizing I;

]I
5 0, i 5 1, 2, . . . , n. (6)

]bi

Substitution of (5) into (6) leads to a set of n equations
implicitly solvable for b1, b2, . . . , bn,

m

(S 2 O )R 5 0, i 5 1, 2, . . . , n, (7)O j j ij
j51

where

]SjR [ ; i 5 1, 2, . . . , n; j 5 1, 2, . . . , mij ]bi

(8)

are components of a n 3 m Jacobian matrix R 5 {Rij}.

From a first-guess boundary vector B*, a solution
vector S* is obtained by solving the numerical ocean
model. The rms between S* and O might not be min-
imal. We update the boundary parameter vector com-
ponents by increments {dbi z i 5 1, 2, . . . , n}, and
therefore components of the solution vector become
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FIG. 6. Sensitivity of relative errors on the cross-coastal location
of the observation points: (a) interior error and (b) open boundary
error.

FIG. 7. Two areas for the POM integration: (a) domain with three
rigid and one open boundaries and (b) a double size domain with
four rigid boundaries.

FIG. 8. Pseudo–zonal wind stress (m2 s22) used in the POM inte-
gration.

n

S 5 S * 1 R db 1 high-order terms. (9)Oj j ij i
i51

Substituting (9) into (7) and neglecting higher-order
terms leads to a set of n linear algebraic equations for
{dbi},

n

P db 5 d , i 5 1, 2, . . . , n, (10)O il l i
l51

where
m m

P [ R R , d [ R (O 2 S *);O Oil lj ij i ij j j
j51 j51 (11)

i 5 1, 2, . . . , n; l 5 1, 2, . . . , n.

Both Oj and are known quantities. Therefore, theS*j

linear algebraic equations (10) have definite solutions
when the Jacobian matrix {Rij} is determined and

det{Pil} ± 0. (12)

c. Determination of the Jacobian matrix by a
multiperturbation method

As soon as the Jacobian matrix is obtained, we can
solve (10) to get boundary parameter vector corrections
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FIG. 9. Basis functions and corresponding amplitudes: (a) f1(y), (b)
f2(y), and (c) b1(t) and b2(t).

dbi (i 5 1, 2, . . . , n). Therefore, the determination of
the Jacobian matrix is the key issue. We propose a sim-
ple multiperturbation method on the first-guess bound-
ary parameter vector B* to get the Jacobian matrix. The
vector B* at the initial state (t 5 0) of any numerical
ocean model is set to be a zero vector,

0
0
.

B*(0) 5 , (13)
.F G
.
0

and the first guess for B at time step k is set to be the
same as the determined boundary parameter vector at
time step k 2 1,

B*(k) 5 B(k 2 1), k 5 1, 2, . . . . (14)

We define a set of n-dimensional unit vectors

1 0 0
0 1 0
0 0 0

(1) (2) (n)c 5 , c 5 , . . . , c 5 (15)
. . .F G F G F G
. . .
0 0 1

and perturb the first guess at each time step by a small
fraction of these unit vectors c(i):

B(i) 5 B* 1 ebc(i), i 5 1, 2, . . . , n, (16)

where eb is a small positive number. Using the n 1 1
sets of boundary parameter vectors B*, B(1), B(2), . . . ,
B(n), we obtain n 1 1 sets of solution vectors for that
time step, S*, S(1), S(2), . . . , S(n). The Jacobian matrix
(8) denotes the rate of change of the solution vector
with the boundary parameter vector; therefore, it can
be computed by

1
(1) (2) (n). . .R 5 [e e e ], (17)

eb

where the m-dimensional vectors e(1), e(2), . . . , e(n) are
defined by

e(i) [ S(i) 2 S*, i 5 1, 2, . . . , n. (18)

d. Iteration process

After the algebraic equation (10) is solved, the bound-
ary parameter correction vector dB [ (db1, db2, . . . ,
dbn) is obtained. We replace B* by B* 1 dB and repeat
the process (Fig. 2) until reaching a certain criterion

z dB z
# e,

z B* z

where

1/2 1/2n n1 1
2 2z B* z [ b , z dB z [ db , (19)O Oi i1 2 1 2n ni51 i51

and e is a small positive number (user input). As soon
as the inequality (19) is satisfied, the iteration stops and
the final B* becomes the optimal boundary parameter
vector for the next time step.

e. Reference model

A model with a given boundary condition (called
reference boundary condition) is needed for error es-
timation. We run the model with the given reference
boundary condition and obtain the solution for interior
points, O 5 (O1, O2, . . . , Om), which are taken as ‘‘ob-
servations.’’ We also expand the reference boundary
values into basis functions (1) to obtain the reference
boundary vector B(ref) 5 ( , , . . . , ). Such a mod-ref ref refb b b1 2 n

el (with known boundary conditions) is called a refer-
ence model.
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FIG. 10. Time series of open boundary values of the domain A. The dots represent the
values computed from the basis functions.

f. Smoothing dB

Both observational (instrument) and computational
(numerical) errors perturb the values of B. When the
reference model results are used, there is no instrument
error in observations. But the computational errors still
cause errors in B. For prognostic ocean models, the
errors of B feed back to the next step model integration.
Error accumulation in each time step may cause com-
putational instability. We use linear regression for
smoothing dB to reduce high-frequency modes. The
procedure is as follows: 1) For the first 11 time steps,
we do not do any smoothing, and after the 11th time
step, we use the smoothing technique. 2) For each time
step k (k . 11), we maintain smoothed values of each
component at the previous 11 steps, d (k 2 11),(s)bj

d (k 2 10), . . . , d (k 2 1). Here the superscript s(s) (s)b bj j

indicates smoothed value. 3) We fit a linear regression
to fit the 12 values: d (k 2 11), d (k 2 10), . . . ,(s) (s)b bj j

d (k 2 1), and dbj(k). 4) We obtain the value at the(s)bj

time step k from the regression, d (k). 5) We replace(s)bj

dbj(k) by d (k). Such a treatment (Fig. 3) will filter(s)bj

out high-frequency noise in the derived open boundary
parameter vector.

g. Random noises added on ‘‘observations’’

When observations are taken from the reference mod-
el solution, there is no observational (instrument) error.
In order to see the effects of observational error on the
determination of open boundary conditions, we add a
Gaussian-type random variable to each observation at
each time step. The probability distribution function is
given by

21 (dO)
F(dO) 5 exp 2 , (20)

2[ ]2sÏ2ps

where dO is a random variable with a zero mean and a
standard deviation of s.

h. Relative errors

For a given observation vector O and unknown open
boundary condition, we use the optimization method to
obtain the values at the open boundary, B 5 (b1, b2,
. . . , bn). Then we integrate the same model with the
computed open boundary condition and get the solutions
at the observational points, S 5 (S1, S2, . . . , Sm). The
relative errors,

refz b 2 b z z O 2 S zO Oi i j j
(B) (O)E [ , E [ , (21)

refz b z z O zO Oi j

measure the validity of the optimization method. The
smaller the E(B) and E(O), the better the optimization
method.

3. Linear ocean models

a. Jacobian matrix

For any linear ocean model, the relationship between
{Sj} and {dbi} becomes linear. There are no high order
terms in (9). The Jacobian matrix can be easily obtained
by letting



JUNE 1997 729N O T E S A N D C O R R E S P O N D E N C E

FIG. 11. The velocity fields from the reference model results after
(a) 30 day’s run and (b) 90 day’s run.

FIG. 12. Randomly picked observational points for the POM model.

0
0
.

B* 5 , e 5 1,b.F G
.
0

for any time step. The algebraic equation (9) becomes

RB(i) 5 e(i) i 5 1, 2, . . . , n.

b. Example—Csanady’s shelf model

We use a steady-state shelf circulation model pro-
posed by Csanady (1978) as an example to show how
to obtain the Jacobian matrix R and to determine the
open boundary conditions. Consider a long and straight
coastline with coordinates such that the y axis coincides
with the coast and positive x points offshore. The water
depth is a function only of offshore distance, that is, h
5 h(x). As pointed out by Csanady (1978), this model
is appropriate for simulating mean flow along such a
coast driven by mean wind stress.

Under the assumptions of homogeneous water and
linear bottom friction (i.e., proportional to depth-aver-
aged velocity), the dynamical equations for depth-av-
eraged velocities (u, v) without wind forcing become

]h
2 fv 5 2g (22)

]x

]h rv
fu 5 2g 2 (23)

]y h

](uh) ](vh)
1 5 0, (24)

]x ]y

where h is the surface elevation, r the bottom resistance
coefficient, f the Coriolis parameter, and g the gravity.
Eliminating u and v from (22)–(24) leads to a single
equation for the surface elevation h:

2] h fdh]h
1 5 0. (25)

2]x r dx ]y

Wang (1982) applied the Csanady model to a region
(Fig. 4) with a combined flat shelf and steep slope,
depicted by

230.02 1 10 x, 0 # x # x0

h(x) 5 0.16 1 0.05(x 2 x ), x # x # x ,0 0 15 x . x ,12.0,
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FIG. 13. Components of the open boundary parameter vector ob-
tained by the optimization method for (a) case 1, (b) case 2, and (c)
case 3.

where x0 5 140 km and x1 5 180 km are the offshore
location of the shelf break and slope edge, respectively.
Following Wang (1982), we chose f 5 1024 s21, and r
5 0.1 cm s21, and use the boundary condition at the
coast (x 5 0),

]h r ]h
1 5 0. (26)

]y fh(x ) ]x0

We consider the pure open ocean forcing case; that is,
there is no inflow at the backward boundary (y 5 0),

h 5 0, at y 5 0. (27)

Equation (25) has the form of the one-dimensional
heat-conduction equation, with negative y playing the
role of time. We solve (25) numerically by the Gaussian

elimination method under the boundary conditions
(26)–(27) to obtain the first-guess solution at the interior.
The spatial increments are Dx 5 2 km, Dy 5 10 km.
We use the five basis functions f1(y), f2(y), . . . , f5(y)
(Fig. 5) for h(b). The first guess for B is the zero vector.
For simplicity and no loss of generality, we choose five
equally spaced points on an interior line paralleling to
the y axis as observation points. In this case,

1 0 0 0 0
0 1 0 0 0

(1) (2) (5)[B B ···B ] 5 0 0 1 0 0 (28)F G0 0 0 1 0
0 0 0 0 1

is a unit matrix. The Jacobian matrix then becomes

R 5 [e(1)e(2)e(3)e(4)e(5)]. (29)

c. Error estimation

For simplicity, we choose Wang’s (1982) solution
along with the open boundary condition as a reference
model for the error estimation. Five observation points
are equally spaced and located along lines paralleling
to the y axis. These lines are represented by their x
coordinate. Wang’s (1982) solution at the five points is
taken as observations, O 5 (O1, O2, O3, O4, O5), and
the Wang’s open boundary vector is denoted by B(ref) 5
( , , , , ). Since the model is steady state,ref ref ref ref refb b b b b1 2 3 4 5

we did not smooth dB.
The five observation points are given as O with un-

known open boundary condition. Using the optimization
method, we obtain values at the open boundary, B 5
(b1, b2, b3, b4, b5). Then, we integrate the Csanady model
(24) with the computed open boundary condition, and
get the solutions at the same five points, S 5 (S1, S2,
S3, S4, S5). Since the observation points are on the lines
paralleling the y axis in this study, E(B) and E(O) depend
only on x. Surprisingly, both E(B) and E(O) are extremely
small (Fig. 6). When the observation points are chosen
near the coast, the relative errors are on the order of
1026–1027. At the shelf break (x 5 x0, x0 5 140 km),
E(B) is on the order of 1026. Passing the shelf break, E(B)

and E(O) decrease very fast offshore and are on the order
of 10216 near the open boundary.

4. Nonlinear ocean model

a. Example—Princeton Ocean Model (POM)

We apply the optimization method to determine the
open boundary conditions of a flat bay centered at 358N
and bounded by three rigid boundaries. This bay ex-
pands 1000 km in both the north–south and east–west
directions. The northern, southern, and western bound-
aries are rigid, and the eastern boundary is open. The
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FIG. 14. Horizontal velocity fields after the 30-day run:
(a) case 1, (b) case 2, and (c) case 3.

Cartesian coordinate system is chosen with the origin
at the southwest corner. The x axis points toward the
east, and the y axis toward the north (Fig. 7a). The
circulation in the bay is modeled with the Princeton
Ocean Model (POM) developed by Blumberg and Mel-
lor (1987). POM is a primitive equation model with a
free surface and a level-2 turbulence closure scheme
(Mellor and Yamada 1982). A description of the model
code can be found in Mellor (1991). We use the 2D
version of POM to illustrate the usefulness of the op-
timization method for determining the open boundary
conditions.

The area depicted in Fig. 7a is called domain A, where
the boundary conditions are known at the three rigid
boundaries (northern, southern, and western), and un-
known at the eastern boundary. The eastern boundary
of domain A is connected to a mirror image of domain
A (about x 5 1000 km) forming a closed rectangular
domain (Fig. 7b), called domain B. The POM model
was integrated from the following initial conditions,

21 z/1000(u, v, w) 5 0 (m s ), T 5 283(1 1 e ) (K),

S 5 35 (psu), (30)

under no surface heat or salinity fluxes and zonal surface
pseudo–wind stress varying with latitude (Fig. 8):

t pyx 24 2 225 210 cos (m s ). (31)
r L0 y

The time step was chosen as 2 min. The horizontal
resolution was 50 km. Bottom stress is parameterized
by the quadratic drag relation. Horizontal kinematic vis-
cosity is set to be 500 m2 s21.

b. Boundary vector

We integrate POM over domain B with four rigid
boundaries (known boundary conditions) from the ini-
tial conditions (30) and surface forcing (31) and take
the solution along the middle of domain B (x 5 1000
km) as the reference open boundary condition for the
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FIG. 15. Horizontal velocity fields after the 90 day’s run: (a) case 2
and (b) case 3.

FIG. 16. The relative boundary vector error for (a) case 1, (b) case
2, and (c) case 3.

domain A integration. The velocity at x 5 1000 km for
the domain B run is nearly zonal,

zvz K zuz at x 5 1000 km.

For simplicity and no loss of generality, we assume zero
latitudinal velocity at the eastern open boundary for the
domain A integration. Therefore, our task here is to
determine the zonal velocity at the eastern open bound-
ary. Following the procedure depicted in section 2, we
expand the boundary values by two basis functions f1(y)
and f2(y) (Figs. 9a,b),

u(b)(y, t) 5 b1(t)f1(y) 1 b2(t)f2(y) (32)

with two temporally varying amplitudes b1(t) and b2(t),
as shown in Fig. 9c. After plotting the time series (from
day 5 to day 30) of the reference open boundary values
and the corresponding expanded values (Fig. 10), we
find that the boundary parameters can be well repre-
sented by the two-dimensional vector,

B(t) 5 [b1(t), b2(t)]. (33)

c. Reference model

We choose the POM model solution for domain A
computed with the reference open boundary condition
determined by the two time series b1(t), b2(t) (Fig. 9)
as a reference model. We ran the reference model for
90 days with known boundary conditions (three rigid
and one reference open boundary condition). Figure 11
shows the horizontal velocity of the reference model
run for two different times (30 day and 90 day). We
will use the reference model results to verify the opti-
mization method.

d. Three cases

A random number generator (Fortran function, Ranf)
was used to produce random disturbances for each ob-
servational point independently with mean value of zero
and standard deviation of 0.01 m s21. In order to test
the performance of the optimization method, we ran
three cases: 1) without smoothing on dB and without
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FIG. 17. The relative error at the observational points for (a) case
1, (b) case 2, and (c) case 3.

random noise added to the observations, 2) with smooth-
ing on dB and without random noise added to the ob-
servations, and 3) with both smoothing on dB and ran-
dom noise added to the observations.

Eighteen randomly picked points are treated as ob-
servational points (Fig. 12). The reference model so-
lution at the 18 points is the observations, O 5 (O1, O2,
. . . , O18). Using the optimization method, we obtain the
temporally varying b1(t) and b2(t) for the three cases.
For case 1 (Fig. 13a), both b1 and b2 fit the reference
values (Fig. 9c) very well until the 35th day. After that
day, b1 and b2 change rapidly with time and finally blow
up at the 45th day. For case 2 (Fig. 13b), both b1 and
b2 fit the reference values (Fig. 9c) very well. For case
3 (Fig. 13c), both b1 and b2 are very close to the ref-
erence values (Fig. 9c) with small perturbations. Figure
13 tells us that smoothing on dB is a key issue for this
method.

We integrate the POM for domain A with the com-
puted open boundary conditions from b1 and b2 for the
three cases. The 30th day’s horizontal velocity fields
(Fig. 14) for the three cases all agree quite well with
the reference model results (Fig. 11a), and the 90th day’s

horizontal velocity fields (Fig. 15) for cases 2 and 3
agree quite well with the reference model results (Fig.
11b).

e. Error estimation

Similar to the linear case, we use 18 interior obser-
vations O, the reference boundary vector Bref 5 ( ,refb1

), the open boundary vector B 5 (b1, b2), and therefb2

interior solution S 5 (S1, S2, . . . , S18) for error esti-
mation.

The boundary errors E(B) for the three cases are shown
in Fig. 16. When there is no smoothing on dB (case 1),
E(B) keeps very small values (10212–10213) for the first
few days. After the eighth day, E(B) increases exponen-
tially with time and reaches the order of 1 at the 45th
day. This indicates that we cannot use the optimization
method without smoothing on dB. When there is
smoothing on dB and no noise added to the observations
(case 2), E(B) has larger values (;1022) than case 1 at
the beginning, then rapidly decreases with time during
the first 10 days and gradually decreases with time af-
terward. After 10 days of integration, the magnitude of
E(B) is on the order of 1024–1025. When there is smooth-
ing on dB and noise added to the observations (case 3),
E(B) fluctuates around 1022.5 (.3.162 3 1023) with the
maximum value near 1021.5 (.0.03) and the minimum
value around 1024. Figure 16 indicates that smoothing
on dB is very important for this method.

The interior errors E(O) for the three cases are shown
in Fig. 17. When there is no smoothing on dB (case 1),
E(O) keeps very small values (10213) for the first few
days and then increases exponentially with time and
reaches the order of 1 at the 45th day. When there is
smoothing on dB and no noise added to the observations
(case 2), E(O) has larger values (;1022) than case 1 at
the beginning then rapidly decreases with time during
first 10 days and gradually decreases with time after-
ward. After 10 days of integration, the magnitude of
E(O) is on the order of 1024–1025. When there is smooth-
ing on dB and noise added to the observations (case 3),
E(O) fluctuates around 1022.2 (.6.3 3 1023) with the
maximum value near 1022 and the minimum value
around 1022.4 (.3.9 3 1023). Both Figs. 16 and 17
indicate that smoothing on dB is very important for
determining open boundary conditions.

5. Conclusions

1) The proposed optimization method provides a useful
scheme to obtain unknown open boundary values
from known interior values. Different from the ad-
joint method, this scheme can be easily incorporated
into any ocean models.

2) Extremely small computational errors are found in
applying this method to the Csanady shelf model,
which proves the feasibility of using this optimiza-
tion method for linear models.



734 VOLUME 14J O U R N A L O F A T M O S P H E R I C A N D O C E A N I C T E C H N O L O G Y

3) For time-dependent dynamical models, when the
temporally varying values are given at interior ob-
servation points, the optimization method can be
used for each time step to obtain the unknown open
boundary values for that time step.

4) For a primitive equation model with turbulent mixing
processes (e.g., POM), it is very important to use
smoothing on the open boundary parameter vector.
If smoothing is not used, POM can be integrated
only within a certain period (45 days in our case)
and will blow up afterward. If smoothing is used,
the model is computationally stable.

5) This optimization method performs well even when
random noises are added to the observational points
(case 3). This indicates that we can use real-time
data to invert for the unknown open boundary values.
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