
Accuracy Progressive Calculation of Lagrangian Trajectories from a Gridded
Velocity Field

PETER C. CHU AND CHENWU FAN

Naval Ocean Analysis and Prediction Laboratory, Department of Oceanography, Naval Postgraduate School,

Monterey, California

(Manuscript received 29 September 2013, in final form 21 January 2014)

ABSTRACT

Reduction of computational error is a key issue in computing Lagrangian trajectories using gridded ve-

locities. Computational accuracy enhances from using the first term (constant velocity scheme), the first two

terms (linear uncoupled scheme), the first three terms (linear coupled scheme), to using all four terms

(nonlinear coupled scheme) of the two-dimensional interpolation. A unified ‘‘analytical form’’ is presented in

this study for different truncations. Ordinary differential equations for predicting Lagrangian trajectory are

linear using the constant velocity/linear uncoupled schemes (both commonly used in atmospheric and ocean

modeling), the linear coupled scheme, and the nonlinear using the nonlinear coupled scheme (both proposed

in this paper). The location of the Lagrangian drifter inside the grid cell is determined by two algebraic

equations that are solved explicitly with the constant velocity/linear uncoupled schemes, and implicitly using

the Newton–Raphson iteration method with the linear/nonlinear coupled schemes. The analytical Stommel

ocean model on the f plane is used to illustrate great accuracy improvement from keeping the first term to

keeping all the terms of the two-dimensional interpolation.

1. Introduction

Oceanic and atmospheric motion can be represented

byEulerian andLagrangian viewpoints. The former gives

time-dependent three-dimensional (Eulerian) fields of

velocity, temperature, salinity, and other variables, which

are commonly represented in satellite observations,

modeling, simulation, and prediction at numerical grid

points. The latter provides continually changing char-

acteristics (temperature, salinity, velocity, etc.) along

the fluid particles’ trajectories (i.e., Lagrangian trajec-

tories), which are commonly represented in in situ

oceanographic measurements by Argo floats, drifters,

and gliders. Employing the Lagrangian trajectories,

water masses can also be distinguished in terms of or-

igin and/or destination and can be traced (Vries and

Doos 2001). The two types of velocity are convertible.

Routine ocean data assimilation systems (Galanis et al.

2006; Lozano et al. 1996; Song and Colberg 2011; Sun

1999) and data analysis methods, such as optimal

interpolation (OI) (Gandin 1965) and optimal spectral

decomposition (OSD) (Chu et al. 2003a,b), can be used

for converting Lagrangian drifter data into gridded

Eulerian-type data, and for evaluating ocean models

(e.g., Chu et al. 2001, 2004). Several new phenomena

were discovered after the conversion. For example, with

the OSD method new signals have been identified, such

as fall–winter recurrence of current reversal from west-

ward to eastward on theTexas–Louisiana continental shelf

from near-surface drifting buoy and current meter (Chu

et al. 2005), and propagation of long baroclinic Rossby

waves at middepth (around 1000m deep) in the tropical

North Atlantic from the Argo floats (Chu et al. 2007).

Consider water particles flowing with ocean currents in

three-dimensional space (x, y, z) and time t, discretized

into grid cells with the spacing of (Dx, Dy, Dz) and time

step of Dt, with the discrete Eulerian velocity filed rep-

resented by

v̂(xi, yj, zk, tl)

5 [û(xi, yj, zk, tl), ŷ(xi, yj, zk, tl), ŵ(xi, yj, zk, tl)] . (1a)

Here, the subscripts (i, j, k, l) represent the spatial and

temporal discretization. The superscsript caret (^) means

the Eulerian gridded fields. Common interpolation

Corresponding author address: Peter C. Chu, Naval Ocean Anal-

ysis and Prediction Laboratory, Department of Oceanography,

Naval Postgraduate School, 833 Dyer Road, Monterey, CA 93943.

E-mail: pcchu@nps.edu

JULY 2014 CHU AND FAN 1615

DOI: 10.1175/JTECH-D-13-00204.1

mailto:pcchu@nps.edu


methods can be used to get four-dimensional continuous

velocity field from the gridded field (1a),

v(x, y, z, t)5 [u(x, y, z, t), y(x, y, z, t),w(x, y, z, t)] . (1b)

The position of each fluid particle,R(t)5 [x(t), y(t), z(t)],

is specified in the Lagrangian system. The connection

between the Eulerian and Lagrangian approaches leads

to the ordinary differential equations,

dx(t)

dt
5 u(x, y, z, t),

dy(t)

dt
5 y(x, y, z, t),

dz(t)

dt
5w(x, y, z, t) , (2a)

which determine the trajectory of the particle if the

position is specified at some initial instant in its path

history. Such calculation has also been used as the semi-

Lagrangian scheme in ocean numerical modeling (e.g.,

Chu and Fan 2010). Thus, the interpolation (1b) is the

key in calculating Lagrangian trajectories from gridded

velocity fields. For steady gridded velocity fields, the

analytical solution exists for the Lagrangian trajectory

(2a) inside one grid cell with (1b) a highly truncated

linear interpolation in space (see section 2 for explana-

tion) (Doos 1995; Blanke and Raynaud 1997). Follow-

up research has been extended from steady to unsteady

velocity fields with the Lagrangian trajectories being

calculated from time-varying gridded velocity fields

(Vries and Doos 2001).

Two sources of uncertainty exist in determining the

Lagrangian trajectories from the Eulerian flow field:

(i) the knowledge of the smoothness and (ii) the error in

the integration of the ordinary differential equations

[(2a)]. There is a need to estimate uncertainties due to the

limited knowledge of the Eulerian velocity (see section 2).

To illustrate this point, consider the case that we only

have access to the average of the velocity in a cell. In this

case the trajectories within the cell are straight lines,

called the constant velocity (CV) scheme. With more

knowledge about the Eulerian velocity, for example,

Vries and Doos (2001) used low-order truncation in

spatial interpolation [see (5a) and (5b) in section 2] to

simplify [u(x, y, z, t), y(x, y, z, t)] in (2a) by

dx(t)

dt
5L1(x, t)5a0 1a2t1 (a11a3t)x,

dy(t)

dt
5L2(y, t)5b01b2t1 (b11b3t)y , (2b)

where u depends on (x, t) only and y depends on (y, t)

only. Such a treatment leads to the existence of analyt-

ical solutions. The following coefficients in (2b) vanish

a25a3 5b25b35 0

when the Eulerian flow field is steady. The two functions

in (2b) are represented by

L1(x, t)5L1(x)5a0 1a1x,

L2(y, t)5L2(y)5b0 1b1y . (2c)

In reality, for a 2D Eulerian flow field, the velocity

components u(x, y, t), and y(x, y, t) in (2a) are not nec-

essarily taken as the functions (L1, L2) given by (2b).

Questions arise: What is the Lagrangian trajectory if the

Eulerian velocity components (u, y) depend on (x, y)

[more realistic]? Is there any improvement with such

a change? In other words, what is the improvement for

a steadyEulerian flowfield ifL1(x) is changed into u(x, y)

and L2(y) is changed into y(x, y)? What is the im-

provement for an unsteady Eulerian flow field if L1(x, t)

is changed into u(x, y, t) and L2(y, t) is changed into

y(x, y, t) for an unsteadyEulerian flow field? To show the

accuracy progressivein the calculation of Lagrangian

trajectories, a systematical analysis is presented in this

study for a steady Eulerian flow field and will be pre-

sented in another paper in the near future for an un-

steady Eulerian flow field. Division of steady and

unsteady Eularian flow fields is due to the mathematical

complexity.

The rest of the paper is outlined as follows. Section 2

describes the establishment of continuous velocity inside

a grid cell. Section 3 depicts the calculation of Lagrangian

trajectory from side to side of a grid cell. Section 4 shows

the identification of a starting grid cell. Section 5 de-

scribes the Lagrangian trajectory across the grid cell.

Section 6 introduces the Stommel ocean model for the

evaluation. Section 7 shows the accuracy progressive

from high to no truncation of the two-dimensional in-

terpolation. Section 8 presents the conclusions.

2. Establishment of continuous velocity inside
a gridded cell

For simplicity without loss of generality, a steady-state

two-dimensional gridded data cell is considered. Let the

water particle be located at (called a starting point, not

necessary at the grid point) R0 5 (x0, y0) inside the grid

cell [xi # x0 # xi11, yj # y0 # yj11] and let it move using

the gridded data. Because of spatial variability of the

gridded velocity data, the Lagrangian velocity changes

with time although the Eulerian flow is steady. Let the

velocity be given at the four corner points of the grid cell,

Fi,j, Fi11,j, Fi,j11, Fi11,j11. Here, F represents (u, y). For

a two-dimensional interpolation, the velocities inside the

ij grid cell can be given by the corner points,
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F(x, y)5 a01 a1(x2 xi21)1 a2(y2 yj21)

1 a3(x2 xi21)(y2 yj21) . (3)

Let the Lagrangian drifter travel from (x0, y0) to (x1, y1)

with the travel time of t (Fig. 1), and let the Lagrangian

velocity components u(x, y) and y(x, y) be represented by

u(x, y)2 u(x0, y0)5
u(x1, y1)2 u(x0, y0)

x12 x0
(x2 x0) , (4a)

y(x, y)2 y(x0, y0)5
y(x1, y1)2 y(x0, y0)

y12 y0
(y2 y0) . (4b)

Substitution of (3) into (4a) and (4b) leads to

u(x, y)2u(x0, y0)5
1

x1 2 x0

�
u(x0, y0)

�
12

x1 2 x0
dx

��
12

y1 2 y0
dy

�
1 u(xi11, y0)

x12 x0
dx

�
12

y12 y0
dy

�

1 u(x0, yj11)
�
12

x12 x0
dx

� y12 y0
dy

1u(xi11, yj11)
x12 x0

dx

y1 2 y0
dy

2 u(x0, y0)

�
(x2 x0)

5

8<
:u(xi11, y0)2 u(x0, y0)

dx
1

u(x0, yj11)2 u(x0, y0)

dy

y12 y0
x12 x0

1
y12 y0
dxdy

[u(x0, y0)2 u(xi11, y0)

2 u(x0, yj11)1 u(xi11, yj11)]

9=
;(x2 x0)5

��
Du

Dx

�
0

1

�
Du

Dy

�
0

y12 y0
x12 x0

1
y12 y0
dxdy

�
ui,j

dx

Dx

dy

Dy

2 ui11,j

dx

Dx

dy

Dy
2 ui,j11

dx

Dx

dy

Dy
1 ui11,j11

dx

Dx

dy

Dy

��
(x2 x0)

5

"�
Du

Dx

�
0

1

�
Du

Dy

�
0

y12 y0
x12 x0

1

 
D2u

DxDy

!
0

(y12 y0)

#
(x2 x0) ,

(5a)

y(x, y)2 y(x0, y0)5

"�
Dy

Dy

�
0

1

�
Dy

Dx

�
0

x12 x0
y12 y0

1

 
D2y

DxDy

!
0

(x12 x0)

#
(y2 y0) ,

(5b)

where �
DF

Dx

�
0

5
F(xi11, y0)2F(x0, y0)

dx
,

�
DF

Dy

�
0

5
F(x0, yj11)2F(x0, y0)

dy
,

 
D2F

DxDy

!
0

5
Fi,j 2Fi11,j2Fi,j111Fi11,j11

DxDy
,

dx5 xi112 x0, dy5 yj112 y0

are given from the gridded velocities as well as the

starting velocity [u(x0, y0), y(x0, y0)] with the starting

position (x0, y0). Vries and Doos (2001) only keep the

first term in the bracket of the right-hand side of each

equation in (5a) and (5b), and argued that inclusion of

last two terms was impossible to give a general analytical

solution although it may be important in the case of

strongly curved streamlines.

Equations (5a) and (5b) can be rewritten into a more

general form,

u(x, y)5 u(xo, y0)1Ax(x2 x0),

y(x, y)5 y(xo, y0)1Ay(y2 y0) , (6)

where

Ax5

�
Du

Dx

�
0

1

�
Du

Dy

�
0

y12 y0
x12 x0

1

 
D2u

DxDy

!
0

(y12 y0),

Ay5

�
Dy

Dy

�
0

1

�
Dy

Dx

�
0

x12 x0
y12 y0

1

 
D2y

DxDy

!
0

(x12 x0) .

(7)

Substitution of (6) into (2a) leads to

dx(t)

dt
5 u(x, y)5 u(xo, y0)1Ax(x2 x0) , (8a)

dy(t)

dt
5 y(x, y)5 y(xo, y0)1Ay(y2 y0) , (8b)

which have the following solutions:

x(t)5 x01 u(x0, y0)t,

y(t)5 y01 y(x0, y0)t, if Ax5Ay5 0, (9)
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x(t)5 x01
u(x0, y0)

(Du/Dx)0
(eAx

t 2 1), if Ax 6¼ 0, (10a)

y(t)5 y01
y(x0, y0)

(Dy/Dy)0
(eAy

t 2 1), if Ay 6¼ 0. (10b)

The solutions (9), (10a), and (10b) imply that the La-

grangian drifter nevermoves if the starting velocity equals

zero, that is, u0 5 u(x0, y0) 5 0 and y0 5 y(x0, y0) 5 0.

For a sufficiently short travel time t with the La-

grangian drifter still being inside the ij grid cell, the lo-

cation (x1, y1) can be easily obtained ifAx5 0,Ay5 0, or

(Ax, Ay) are given [i.e., keeping the first term in the

right-hand side of (7)],

x15 x01 u(x0, y0)t,

y15 y01 y(x0, y0)t, if Ax5 0,Ay5 0, (11a)

x15 x01
u(x0, y0)

(Du/Dx)0
(eAx

t 2 1),

y15 y01
y(x0, y0)

(Dy/Dy)0
(eAy

t 2 1), if Ax5

�
Du

Dx

�
0

,

Ay5

�
Dy

Dy

�
0

.

(11b)

Formore general cases [keeping the first two or all terms

in the right-hand side of (7)], the location (x1, y1) satisfies

the following two nonlinear algebraic equations:

x15 x01
u(x0, y0)

(Du/Dx)0
fexp[Ax(x1, y1)]t2 1g , (12a)

y15 y01
y(x0, y0)

(Dy/Dy)0
fexp[Ay(x1, y1)]t2 1g , (12b)

which are solved by the Newton–Raphson iteration

method.

3. Lagrangian trajectory from side to side of a grid
cell

Various truncation of (3) leads to an accuracy in-

crease in calculating the Lagrangian trajectory (inside

the ij grid cell) from the gridded velocities at the four

corners of the ij grid cell. If only the first term in the

right-hand side of (3) is used—that is,Ax 5 0,Ay 5 0—

then the two ordinary differential equations [(8a) and

(8b)] become

dx(t)

dt
5 u(x0, y0),

dy(t)

dt
5 y(x0, y0) , (13)

whose solutions are

x(t)5 x01 u(x0, y0)t, y(t)5 y0 1 y(x0, y0)t , (14)

which is called the CV scheme, since the velocity com-

ponents [u(x0, y0), y(x0, y0)] are constant during the

movement of the Lagarangian drifter inside the ij

grid cell.

If the first two terms in the right-hand side of (3) are

used, that is,

Ax5

�
Du

Dx

�
0

, Ay5

�
Dy

Dy

�
0

, (15)

then the two differential equations [(8a) and (8b)] do

not depend on (x1, y1) and have analytical solutions

(Doos 1995; Blanke and Raynaud 1997; Vries and

Doos 2001),

x(t)5 x01
u(x0, y0)

(Du/Dx)0
(eAx

t 2 1),

y(t)5 y01
y(x0, y0)

(Dy/Dy)0
(eAy

t 2 1). (16)

It is called the linear uncoupled (LUC) method.

If the first three terms in the right-hand side of (3) are

used, that is,

Ax(x1, y1)5

�
Du

Dx

�
0

1

�
Du

Dy

�
0

y12 y0
x12 x0

,

Ay(x1, y1)5

�
Dy

Dy

�
0

1

�
Dy

Dx

�
0

x12 x0
y12 y0

, (17)

then the two differential equations [(8a) and (8b)] de-

pend on (x1, y1), which represents the endpoint of the

trajectory. It is called the linear coupled (LC) scheme,

FIG. 1. Illustration of a Lagrangian trajectory [x(t), y(t)] (dashed

curve) from (x0, y0) to (x1, y1) inside the ij grid cell.
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since the two velocity components [u(x1, y1), y(x1, y1)]

depend on both x1 and y1 linearly. If all the four terms in

the right-hand side of (3) are used, that is,

Ax(x1, y1)5

�
Du

Dx

�
0

1

�
Du

Dy

�
0

y12 y0
x12 x0

1

 
D2u

DxDy

!
0

(y1 2 y0) , (18a)

Ay(x1, y1)5

�
Dy

Dy

�
0

1

�
Dy

Dx

�
0

x12 x0
y12 y0

1

 
D2y

DxDy

!
0

(x12 x0) , (18b)

then the two differential equations [(8a) and (8b)] also

depend on (x1, y1). It is called the nonlinear coupled

(NLC) scheme, since the two velocity components

[u(x1, y1), y(x1, y1)] depend on both x1 and y1 non-

linearly. During the integration of (8a) and (8b), the

location (x1, y1) is determined from solving the two

nonlinear algebraic equations [(12a) and (12b)] using the

Newton–Raphson iteration method.

4. Identification of starting grid cell

Let a Lagrangian trajectory start from the initial lo-

cation (x00, y00). If

xi , x00 , xi11 , (19a)

yj , y00 , yj11 , (19b)

then the point (x00, y00) is located inside the ij grid cell.

As the trajectory hits the side or corner of the initial grid

cell at the location (x0, y0), it is important to determine

which of the next grid cells is for the advance of the

trajectory. The location (x0, y0) is called the starting

point of the next grid cell. The Lagrangian trajectory is

always calculated across the grid cell from (x0, y0) at the

left or right side (Fig. 2), the upper or lower side (Fig. 3),

and the grid point (Fig. 4).

Let Fig. 2 be taken as an example for the illustration,

since Fig. 3 is similar but in the y direction. For u0 6¼ 0

(Fig. 2a), the point (x0, y0) is located at the left (right)

side and will move to the right (left) grid cell if u0 . 0

(u0 , 0). For u0 5 0 and y0 6¼ 0 (Figs. 2b and 2c, re-

spectively), determination of the next grid cell depends

on both signs of [y0, (Du/Dy)0]. Solutions (9), (10a), and
(10b) require one component of (u0, y0) nonzero. For

u05 0, y0 must be nonzero.With y0. 0, the starting point

(x0, y0) is located in the right cell for (Du/Dy)0 . 0 and

in the left cell for (Du/Dy)0 , 0 (Fig. 2b). With y0 , 0,

the starting point (x0, y0) is located in the right cell for

(Du/Dy)0 , 0 and in the left cell for (Du/Dy)0 . 0 (Fig.

2c). For u0 5 0 and y0 5 0, the trajectory stays at (x0, y0)

forever.

For (x0, y0) located at the corner of the grid cell (i.e., at

the grid point such as at x05 xi, y05 yj (Fig. 4), the point

(x0, y0) will move to the upper-right cell for (u0. 0, y0.
0), the upper-left cell for (u0 , 0, y0 . 0), the lower-left

cell for (u0, 0, y0, 0), and the lower-right cell for (u0.
0, y0, 0). With y05 0, the point (x0, y0) will move to the

upper-right cell for [u0. 0, (Dy/Dx)0 . 0], the upper-left

cell for [u0 , 0, (Dy/Dx)0 , 0], the lower-left cell for

[u0, 0, (Dy/Dx)0 . 0], and the lower-right cell for [u0. 0,

(Dy/Dx)0 , 0].With u05 0, the point (x0, y0) will move to

the upper-right cell for [y0 . 0, (Du/Dy)0 . 0], the upper-

left cell for [y0 . 0, (Du/Dy)0 , 0], the lower-left cell for

[y0, 0, (Du/Dy)0 . 0], and the lower-right cell for [y0, 0,

(Du/Dy)0 , 0].

FIG. 2. Determination of the initial grid cell with the initial lo-

cation of the Lagragian trajectory (x0, y0) located at x0 5 xi for

(a) u0 6¼ 0, (b) u0 5 0, y0 . 0, and (c) u0 5 0, y0 , 0.
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5. Lagrangian trajectory across grid cell

The solutions (9), (10a), and (10b) are validwithin a given

grid cell. If (x1, y1) hits the corner point or side of the grid

cell (xb, yb)—that is, (x1 5 xb, y1 5 yb)—then this

ending point (xb, yb) is treated as the starting point for

the next grid cell, and is determined by the travel time

in the x direction,

tx5

8>>><
>>>:

xb 2 x0
u(x0, y0)

, for Ax 5 0,Ay5 0

1

Ax(xb, yb)
ln

"
(xb 2 x0)Ax(xb, yb)

u(x0, y0)
1 1

#
, for Ax 6¼ 0,Ay 6¼ 0

(20a)

and the y direction,

ty5

8>>>><
>>>>:

yb 2 y0
y(x0, y0)

, for Ax5 0,Ay 5 0

1

Ay(xb, yb)
ln

"
(yb 2 y0)Ay(xb, yb)

y(x0, y0)
1 1

#
for Ax 6¼ 0,Ay 6¼ 0

. (20b)

The Lagrangian trajectory hits the corner of the ij grid

cell [i.e., one of the four grid points (xi, yj), (xi11, yj),

(xi11, yj), (xi11, yj11)] if tx 5 ty 5 t. The Lagrangian

trajectory hits the side of the cell if tx 6¼ ty. For tx . ty, it

hits the upper side if y0 . 0 and hits the lower side if

y0 , 0. For tx , ty, it hits the right side if u0 . 0 and hits

the left side if u0 , 0 (Fig. 5).

For the Lagrangian trajectory hitting the cell side,

either xb or yb takes the gridpoint location (one of xi,

xi11, yj, yj11) and the other is obtained from solving an

algebraic equation with the constraint of tx 5 ty,

y(x0, y0)(xb 2 x0)2u(x0, y0)(yb 2 y0)5 0, (21a)

for the CV scheme,

(xb2 x0)Ax(x0, y0)

u(x0, y0)
2

(yb 2 y0)Ay(x0, y0)

y(x0, y0)

5 exp

"
Ax(x0, y0)

Ay(x0, y0)

#
, and (21b)

for the LUC scheme,

FIG. 3. Determination of the initial grid cell with the initial location of the Lagragian trajectory (x0, y0) located at y0 5 yj for (a) y0 6¼ 0,

(b) y0 5 0, u0 . 0, and (c) y0 5 0, u0 , 0.
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Ay(xb, yb) ln

"
(xb 2 x0)Ax(xb, yb)

u(x0, y0)
1 1

#

2Ax(xb, yb) ln

"
(yb2 y0)Ay(xb, yb)

y(x0, y0)
1 1

#
5 0, (21c)

for the LC and NLC schemes. Since one of (xb, yb) is

given, (21a) and (21b) are linear algebraic equations,

which are solved easily and explicitly. However, (21c) is

a nonlinear algebraic equation, which is solved using

the Newton–Raphson method. After (xb, yb) are ob-

tained, the t is determined, and in turn the Lagragian

trajectory is obtained before hitting the grid cell side (or

corner) using (10a) or (10b) for 0, t, t (i.e., dashed

curve in Fig. 1).

It is also noted that during the integration, the velocity

components (u, y) are set to zero under the conditions

u5 0 if
��� u
Dx

���, 10210 s21,

y5 0 if

���� yDy
����, 10210 s21 . (22)

The relative displacement components (jx/Dxj, jy/Dyj)
are rounded with the accuracy of 1029.

6. Stommel ocean model on the f plane

Stommel (1948) designed an ocean model to explain

the westward intensification of wind-driven ocean cur-

rents. Consider a rectangular ocean with the origin of

a Cartesian coordinate system at the southwest corner

(Fig. 6). The x* and y* axes point eastward and north-

ward, respectively. Here, the superscript * denotes di-

mensional variables. The boundaries of the ocean are at

x* 5 0, l and y* 5 0, b. The ocean is considered as

a homogeneous and incompressible layer of constant

depth D when at rest. When currents occur as in the

real ocean, the depth differs from D everywhere by a

small perturbation. Because of the incompressibility,

a streamfunction c* is defined by

u*52
›c*

›y*
, y*5

›c*

›x*
,

where u* and y* are components of the velocity vector in

the x* and y* directions. The surface wind stress is taken

as 2F cos(py/b). The component frictional forces are

taken as 2Ru and 2Ry, where R is the frictional co-

efficient. The Coriolis parameter f is also introduced.

For a constant f, an equation was derived for the

streamfunction c*,

�
›2

›x*2
1

›2

›y*2

�
c*52g sin

�
py*

b

�
, (23)

where g5Fp/(Rb). The rigid boundary conditions are

given by

c(0, y*)5c(l, y*)5c(x*, 0)5c(x*, b)5 0. (24)

The independent and dependent variables are non-

dimensionalized by

x5 x*/l2 0:5, y5 y*/b2 0:5, c5c*p2/(gb2) . (25)

For simplicity without loss of generality, the dimensional

parameters (l, b) are chosen, such as pl/b5 1. The an-

alytical solution of (23) in the nondimensional form is

given by (Fig. 6b)

FIG. 4. Determination of the initial grid cell with the initial location

of the Lagragian trajectory (x0, y0) located at x0 5 xi, y0 5 yj.

FIG. 5. Determination of the side of the grid cell for the Lagrangian

trajectory crossing.
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c(x, y)5 sin(py)

�
12

12 e21

e2 e21
ex2

e2 1

e2 e21
e2x

�
, (26)

with 0# x# 1, 0# y# 1 and the maximum value,

cmax5 12 2
e1/22 e21/2

e2 e21
. (27)

The nondimensional velocity components of the Stom-

mel model (uS, yS) are given by

uS(x, y)52
›c

›y

52p cos(py)

�
12

12 e21

e2 e21
ex 2

e2 1

e2 e21
e2x

�
,

yS(x, y)5
›c

›x
52sin(py)

�
12 e21

e2 e21
ex2

e2 1

e2 e21
e2x

�
.

(28)

7. Accuracy progressive among the four schemes

The nondimensional ocean basin is discretized by

Dx5Dy5 0:02. The velocity components are calculated

at the grid points (ui,j, yi,j) (i5 1, 2, . . . , 51; j51, 2, . . . , 51)

using (28). With the gridded Eulerian velocity fields

(ui,j, yi,j), the continuous velocity fields [u(x, y), y(x, y)] are

obtained using (6)with four differentmethods (CV,LUC,

LC, and NLC). Since the Stommel model on the f plane

is symmetric (Fig. 6), the initial location is selected by

x00 5 0:14, y00 5 0:0, (29)

which is 2.5 times away from the boundary than from the

center of the circulation. Equation (26) shows that the

streamfunction at (x0, y0) is given by

c05c(0:14, 0:0)5 0:1045. (30)

Since the Stommel ocean model has the steady-state

analytical solution, the Lagrangian drifter is supposed

to move along any closed streamline (Fig. 7a), which

means that the Lagrangian trajectory coincides with the

streamline and should be closed. The two differential

equations [(8a) and (8b)] are integrated using the four

schemes (CV, LUC, LC, NLC) for computing Ax(x, y)

and Ay(x, y) with the Lagragian trajectory moving

around the ocean basin up to 100 circles.

First, the analytical streamline (Fig. 7a) is used to

evaluate the accuracies of the CV, LUC, LC, and NLC

schemes (Figs. 7b–e). The Lagrangian trajectory is not

a closed circle using the CV, LUC, and LC schemes:

using the CV scheme, it hits the ocean boundary after

8.375 circles (Fig. 7b); using the LUC scheme, it hits the

ocean boundary after 26 circles (Fig. 7c); using the LC

scheme, it does not hit the ocean boundary after 100

circles (but not a closed streamline with the c value

changing to 0.032 after 100 circles) (Fig. 7d). However,

using the NLC scheme, it is exactly the same as the an-

alytical streamline after 100 circles (c value kept as

0.1045) (Fig. 7e). Since c5 0 at the lateral boundary, the

following criterion

jcj# 1026 (31)

is used to identify the Lagragian trajectory hitting the

lateral boundary.

FIG. 6. Stommel ocean model on the f plane: (a) ocean geometry and (b) streamfunction (m2 s21) (after Stommel 1948).
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FIG. 7. Calculated Lagragian trajectories with the initial location (0.14, 0.00) and c0 5 0.1045 using (a) analytical

solution, (b) CV scheme, (c) LUC scheme, (d) LC scheme, and NLC scheme.
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Second, the initial streamfunction c0 is used to eval-

uate the four methods. The smaller the difference of

the numerical c value against c0, the more accurate the

scheme would be. Figure 8 shows the dependence of the

c value versus the circle of the Lagrangian trajectory

around the ocean basin. The zero value of the stream-

function indicates the ocean boundary. The c value re-

duces from 0.1045 to 0 at the 8.375th (26th) circle using

the CV (LUC) method, and to 0.032 at the 100th circle

using the LC method. The c value stays at 0.1045 after

100th circle using the NLC method.

Third, the relative root-mean-square error (RRMSE)

of the streamfunction is used to evaluate the accuracy,

RRMSE5
jc2caj

ca

, (32)

where ca is the analytical streamfunction. The com-

parison is conducted with three different initial loca-

tions (Table 1) with associated ca values (0.1045,

0.087 52, 0.061 43) (Fig. 9). For the same initial location

(x00, y00), RRMSE increases from 0 to 1.0 in 5–8 circles

using the CV method, it is in 17 circles using the LUC

method, and it increases from 0 to around 0.7 in 100

circles using the LC method. RRMSE keeps near 0 in

100 circles using the NLC scheme (Fig. 10a). For the

same method, RRMSE increases as the initial location

changes toward the boundary (from case 1 to case 3 in

Table 1). To further investigate the performance of the

NLC method, RRMSE (in 1023) is plotted in one circle

for the three initial locations (Fig. 10b). The oscillation

of RRMSE is noted with the largest (smallest) ampli-

tude for case 3 (case 1). The minimum RRMSE values

occur when the trajectory passing four points (0, y2),

(x2, 0), (0, y1), (x1, 0) with either u 5 0 or y 5 0. The

2D calculation becomes a 1D calculation and greatly

decreases the RRMSE.

TheCPU time comparison is based either on the first 5

circles (Table 2) or the first 100 circles (or hitting the

boundary) (Table 3) of the Lagrangian drifter around

the streamline of the Stommel model. Since the Stom-

mel model is steady state, the Lagrangian trajectory

coincides with the Eulerian streamline. The calculated

Lagrangian trajectory has less (more) deviation to the

streamline using a more (less) accurate scheme with

accuracy decreasing from the NLC, LC, and LUC

scheme to the CV scheme (see Fig. 7). Thus, the La-

grangian drifter moves the shortest distance per circle

using the NLC scheme and the longest distance using

the CV method. Except for the CV scheme (consum-

ing the least amount of CPU time—0.0031 s per cir-

cle), for the first 5 circles the NLC scheme consumes

less CPU time per circle (0.034 32 s) than the LUC

scheme (0.065 52 s) and the LC scheme (0.037 44 s)

(Table 2), and up to 100 circles (or hitting the boundary);

the NLC scheme consumes a comparable CPU time

FIG. 8. Temporal evolution of c values of the Lagrangian tra-

jectory calculated with the four schemes. Noted that the time is

represented by the number of circles around the ocean basin.

TABLE 1. Three initial locations and associated analytical ca values.

Case x0 y0 ca value

1 0.14 0.0 0.1045

2 0.24 0.0 0.087 52

3 0.34 0.0 0.061 43

FIG. 9. Streamlines with three different initial locations: (0.14,

0.00) (solid curve, c0 5 0.1045), (0.24, 0.00) (dotted curve, c0 5
0.087 52), and (0.34, 0.00) (dashed curve, c0 5 0.061 43).
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per step (0.000 660 s) as the LUC scheme (0.000 636 s)

and the LC scheme (0.000 064 6 s). The lowest CPU time

per circle and per step using the CV scheme is caused by

the simplest calculation of the Lagrangian trajectory

[i.e., Eq. (9)].

8. Conclusions

1) Two sources of uncertainty in determining the

Lagrangian trajectories from the Eulerian velocity

are identified: (i) the knowledge of the smoothness

and (ii) the error in the integration of the ordinary

differential equations. This study especially shows

the process of establishing a series of accuracy

progress schemes (CV, LUC, LC, NLC) with

different knowledge of smoothness for calculating

Lagrangian trajectory using the gridded velocity field

through different truncations of a two-dimensional

interpolation. All four schemes are within the same

analytical framework using two coefficients (Ax, Ay)

with the time dependence of the Lagrangian tra-

jectory analytical: linear for the CV scheme, and

exponential for the remaining schemes (LUC, LC,

NLC).

2) Accuracy increases with the change of the two

coefficients (Ax, Ay). When Ax 5 Ay 5 0, the

Lagragian velocity components use the starting

velocity (u0, y0) (the CV scheme), and the accuracy

is the lowest. When (Ax,Ay) are truncated at the first

term of the right-hand side in (7), the Lagragian

velocity component u depends on x, and y depends

on y only (the LUC scheme), and the accuracy is the

lower. When (Ax, Ay) are truncated at the first two

terms of the right-hand side in (7), the Lagragian

velocity components (u, y) depend on (x, y) linearly

(the LC scheme), and the accuracy is higher. When

(Ax,Ay) keep all three terms of the right-hand side in

(7), the Lagragian velocity components (u, y) depend

on (x, y) nonlinearly (the NLC scheme), and the

accuracy is at its highest. The Lagrangian trajectory is

obtained explicitly using the CV and LUC schemes,

and implicitly using the LCandNLC schemeswith the

Newton–Raphson iteration method.

FIG. 10. (a) Temporal evolution of RRMSE of the stream-

function of the Lagrangian trajectory calculated with the four

schemes using the four schemes with three different initial lo-

cations. (b) Zoom-in temporal evolution of RRMSE of the

streamfunction of the Lagrangian trajectory calculated with the

NLC scheme (vertical scale is nearly three orders of magnitude

smaller). It is noted that the time is represented by the number of

circles around the ocean basin.

TABLE 2. Comparison of CPU (s) for the first five circles among the

four methods.

CV LUC LC NLC

CPU for five circles 0.0156 0.3276 0.1872 0.1716

CPU per circle 0.0031 0.065 52 0.037 44 0.034 32

TABLE 3. Comparison of CPU (s) for the Lagrangian trajectories either hitting the boundary or up to 100 circles among the four methods.

CV LUC LC NLC

Circles either hitting the boundary or 100 circles 8.375 26 100 100

Total CPU 0.0312 2.8704 8.2057 3.6036

CPU per circle 0.0037 0.1104 0.0821 0.0360

Total steps 1176 4517 12 696 5200

CPU per step 0.000 026 5 0.000 636 0.000 646 0.000 660
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3) The nondimensional (length of 1.0 in both x and y

directions) Stommel ocean model (steady state with

analytical solution) on the f plane is used for the

evaluation. The Lagrangian trajectory is calculated

from the initial location at the distance of 0.14 to the

center of the ocean basin using the four schemes (CV,

LUC, LC, and NLC) from the gridded velocity data

obtained from the analytical Stommel ocean model.

The Lagrangian trajectory is accurately determined

with no deviation from the streamline even after the

Lagrangian drifter is moving around the ocean basin

after 100 circles using the NLC scheme; less accurately

determined with deviation from the streamline using

the LC scheme; inaccurately determined with evident

deviation from the streamline (hitting the ocean

boundary after 26 circles) using the LUC scheme;

and very inaccurately determined with a large de-

viation from the streamline (hitting the ocean bound-

ary after 8.375 circles) using the CV scheme. The CV

scheme consumes the least amount of CPU time. The

NLC scheme consumes a comparable amount of CPU

time as do the LUC and LC schemes.

4) High accuracy with no evident increase in the amount

of CPU time makes the NLC scheme a promising

scheme for calculating Lagrangian trajectory from

gridded velocity data, especially with strongly curved

streamlines.

5) Calculation of Lagrangian trajectories from the 2D

gridded velocity field described here is easy to extend

to the 3D gridded velocity field by changing the 2D

grid cell into the 3D grid volume. For the procedure

identified in section 4, the trajectory starts from

a surface (or grid point) of the grid volume (x0,

y0, z0) rather than a side (or grid point) of the grid

cell (x0, y0), and ends at a surface (or grid point)

(xb, yb, zb) rather than a side (or grid point) of the

grid cell (xb, yb). The starting point for the next grid

volume is determined by equalizing the three travel

times (tx, ty, tz) [similar to (20a), and (20b)],

tx 5 ty 5 tz, which provides two algebraic equations

of (yb, zb) for the CV scheme [similar to (21a)], the

LUC scheme [similar to (21b)], and the LC and

NLC schemes [similar to (21c)]. The two algebraic

equations are solved by the 2D Newton-Raphson

method.

6) The semi-Lagrangian method combines both the

Eulerian and Lagrangian points of view. The fluid

variable is discretized on an Eulerian grid but is

advanced in time using the equation similar to (2a).

The algorithms in the context of calculations of drifter

trajectories (e.g., the CV, LUC, LC, NLC schemes)

can be applied to the semi-Lagrangian methods in

ocean modeling.

7) The limitation of this study is that only an analytical

steady ocean model—that is, the Stommel model—is

used for evaluating the four schemes. In the context

of practical application to the trajectories of drifters

driven by oceanographic fields, it will be useful to

examine the properties of these algorithms in the near

future under somewhat more realistic conditions—for

instance, output from an eddy-resolving ocean model

(i.e., an unsteady Eulerian gridded flow field).
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