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ABSTRACT

Ocean (T, S) data analysis/assimilation, conducted in the three-dimensional physical space, is a generalized

average of purely observed data (data analysis) or of modeled/observed data (data assimilation). Because of

the high nonlinearity of the equation of the state of the seawater and nonuniform vertical distribution of the

observational profile data, false static instability may be generated. A new analytical conserved adjustment

scheme has been developed on the base of conservation of heat, salt, and static stability for the whole water

column with predetermined (T, S) adjustment ratios. A set of well-posed combined linear and nonlinear

algebraic equations has been established and is solved using Newton’s method. This new scheme can be used

for ocean hydrographic data analysis and data assimilation.

1. Introduction

Raw and averaged observational hydrographic data

contain substantial regions with vertical density in-

versions. For example, Jackett and McDougall (1995)

found that the annually averaged field of the ocean atlas

of Levitus (1982) had more than 44% of the casts pos-

sessing static instability at least at one level. Here, the

word ‘‘cast’’’ is used to denote a pair of vertical tem-

perature and salinity profiles. A widely used concept for

static stability E is defined by Lynn and Reid (1968) as

‘‘the individual density gradient by vertical displace-

ment of a water parcel (as opposed to the geometric

density gradient).’’ For discrete samples (Tk, Sk) at

depth zk, k 5 1, 2, . . . , K (k increasing downward), the

density difference between two adjacent levels is taken

after one is adiabatically displaced to the depth of the

other. Computationally, Ek is calculated by
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where r(Sk11, Tk11, zk) is the local potential density of

the lower of the two adjacent levels between zk and zk11,

with respect to the upper of the two adjacent levels zk,

and r is the in situ density to the depth of the upper of

the two adjacent levels zk. The density inversion is de-

fined by the occurrence of the negative value of Ek. The

minimum static stability is represented by Ek 5 Emin. It

is not always possible to reach zero exactly due to the

precision limitations of the temperature and salinity

values used (Locarnini et al. 2006). As a result, the

minimum value for the static stability is given by

E
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where Emin is the reference value for the minimum static

stability, which is user-defined. If static instability occurs

in an observed or averaged hydrographic cast [i.e., (2) is

not satisfied], this profile needs to be adjusted.

The National Oceanographic Data Center (NODC)

uses a local interactive (T, S) separated adjustment method

(Locarnini et al. 2006), which is based on the method

proposed by Jackett and McDougall (1995) with some

modifications, to minimally adjust unstable temperature

and salinity profiles (hereafter referred to as the MA

method)
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After assuming T and S are linear, the adjustment is to

solve the problem:

Minimize Dxk k subject to A � (x 1 Dx) $ E
min

, (3)

where the finite-difference approximation of stability Ek

becomes the inner product of the matrix A and the

profile vector x 1 Dx. Obviously, matrix A depends on

the solution Dx to the minimization problem (3), im-

plying that the constraints in (3) are nonlinear. Usually,

an iteration method is used.

Before deciding which level to change, the values of

›T/›z and ›S/›z, the gradients of temperature and salinity

between two adjacent levels involved in the instability,

are examined. This helps determine if the temperature or

salinity profile, or both, are to be changed to stabilize the

density field. If ›T/›z , 0, ›S/›z , 0, only temperature is

changed; if ›T/›z . 0, ›S/›z . 0, only salinity is changed;

and if ›T/›z , 0, ›S/›z . 0, both temperature and salinity

fields are adjusted with a local linear trend test (Locarnini

et al. 2006). Here, the z axis points upward. The prin-

ciple is to stabilize the hydrographic profiles with mini-

mum adjustment.

The benefit of using the MA method can be easily

identified from comparison between two ocean atlases:

the ocean atlas of Levitus (1982; without MA) and the

World Ocean Atlas 2005 (Locarnini et al. 2006; with

MA). Both atlases consist of annually and monthly av-

eraged vertical profiles of temperature and salinity on

a global 18 3 18 grid at 33 vertical levels. The ocean atlas

of Levitus (1982) has considerable casts possessing static

instability; however, the World Ocean Atlas 2005 con-

tains no profile possessing static instability.

To eliminate the static instability, the MA method does

not require the conservation of heat and salt. Because one

of the ocean’s important roles in the earth’s climate is

heat transport, an adjustment made without taking heat

conservation into account may lead to errors in estimat-

ing the ocean’s impact on global climate change. In this

study, a new conserved scheme is developed to simulta-

neously adjust the temperature and salinity profiles from

(Tk, Sk) to (Tk 1 DTk, Sk 1 DSk). A set of 2K algebraic

(linear and nonlinear) equations are established to get

(DTk, DSK) on the base of heat and salt conservation,

predetermined (DTk /DSK) ratios (or called adjustment

ratios) for all levels, and the removal of static instability

by adjusting Ek to Ek 1 DEk with a combined conserva-

tion and nonuniform increment treatment.

2. Unconserved adjustment

An example as described in appendix B of Locarnini

et al. (2006) is used for illustration. The area chosen for

this example is the 18 latitude–longitude box centered

at 53.58S, 171.58E from Levitus et al. (1998). This is on

the New Zealand Plateau, with a bottom depth below

1000 m and above 1100 m. The month is October, dur-

ing the early austral summer. There is no temperature or

salinity data within the chosen 18 box. Thus, the objec-

tively analyzed values in this 18 box will be dependent on

the seasonal objectively analyzed field and the data in

nearby 18 grid boxes. There is much more temperature

data than salinity data on the New Zealand Plateau for

October. This contributes to six small (on the order of

1022 kg m23) inversions in the local potential density

field calculated from objectively analyzed temperature

and salinity fields (Table 1). After using the MA method,

the original and adjusted profiles fTk, Sk, k 5 1, 2, . . . ,

Kg are as shown in Fig. 1, and the adjusted temperature

and salinity profiles are listed in Table 2. Readers are

referred to appendix B of Locarnini et al. (2006) for

detailed information on the stabilization procedures.

The relative root-mean adjustment (RRMA) using the

MA method can be represented by
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RRMA represents the mean adjustment relative to the

range of a profile. The total heat and salt changes of the

water column within this 18 3 18 grid box are estimated by

DQ 5 Ar
0
c

p

ð0

�H

DT dz, D(salt) 5 A

ð0

�H

DS dz,

where r0 (51028 kg m23) is the characteristic density,

cp (54002 J kg21 K21) is the specific heat for the sea-

water, H 5 1000 m, and A is the area of the grid box,

A 5
p

180
R

� �2

cosu,

where R (56370 km) is the earth’s radius, and u (553.58)

is the latitude of the grid box. The temperature and sa-

linity adjustments (DT, DS) are obtained by comparison

between Tables 1 and 2, the heat and salt changes of the

water column for this grid box are calculated by

DQ 5�7.0411 3 1017 J, D(salt) 5�0.5443 3 1010 kg.

Because one of the ocean’s important roles in the earth’s

climate is transporting heat from low to high latitudes,

nontrivial heat and salt losses show that the unconserved
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adjustment may change heat transport and in turn affect

the overturning thermohaline circulation.

3. Stabilization

The stabilization process is divided into three parts: 1)

stability increasing at unstable levels, 2) stability de-

creasing at stable levels, and 3) normalization for con-

servation of stability for the cast. Let static instability

occur at level k1, k2, . . . , ki [i.e., satisfies the inequality

(2)], the static stability Eki
is increased to its marginal

stability value (Eki
*),

E
k

i
* 5 E

min
, (5)

that is, the minimal adjustment with increment of

DE
k

i
5 E

min
� E

k
i
.

Such an increase of stability will be compensated by the

decrease of stability at neighboring levels ki 6 m (m 5 1,

2, . . .) with skipping the unstable levels until reaching

the top and bottom of the profile,
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The static stabilities for the whole profile before and

after the adjustment are calculated by

I 5 �
K

k51
E

k
, I* 5 �

K

k51
E

k
*. (6)

The normalization process is conducted by

E
k
** 5

I

I*
E

k
* (7)

to keep the conservation of the static stability for each

profile. After three stabilization processes, the static

stability is represented by [see Eq. (1)]
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**, k 5 1, 2, . . . , K � 1. (8)

When Emin is specified [see Eq. (5)], the right-hand side

of (8) (i.e., Ek
**) is the known adjustment, which is cal-

culated through (5)–(7). Equation (8) is used to de-

termine the temperature and salinity adjustments at each

depth for given Ek**. The difference between (7) (i.e.,

the direct determination of Ek**) and (8) is that (7)

shows the minimal density adjustment to remove static

instability, and (8) is to calculate the (T, S) adjustment

at each depth.

TABLE 1. Grid box 171.58E, 53.58S Levitus et al. (1998) profiles before stabilization (from Locarnini et al. 2006, Table B1). Here, the

asterisks in the last column indicate the static instability.

k Depth (m) T (8C) S (ppt) r(Sk11, Tk11, zk) (kg m23) r(Sk, Tk, zk) (kg m23) Ek (kg m23)

1 0 7.1667 34.4243 26.9476 26.9423 0.0054

2 10 7.1489 34.4278 26.8982 26.9939 20.0957*

3 20 7.0465 34.2880 26.9529 26.9443 0.0085

4 30 7.0050 34.2914 27.0104 26.9990 0.0114

5 50 6.9686 34.2991 27.0967 27.1028 20.0061*

6 75 7.0604 34.3073 27.2406 27.2120 0.0286

7 100 6.9753 34.3280 27.3892 27.3560 0.0332

8 125 6.9218 34.3604 27.5164 27.5046 0.0117

9 150 6.8919 34.3697 27.6000 27.6316 20.0316*

10 200 6.9363 34.3364 27.8123 27.8302 20.0179*

11 250 7.0962 34.3415 28.0295 28.0421 20.0126*

12 300 7.1622 34.3367 28.2684 28.2593 0.0092

13 400 6.8275 34.2852 28.6664 28.7281 20.0618*

14 500 7.4001 34.3123 29.3699 29.1238 0.2461

15 600 6.2133 34.4022 29.9386 29.8292 0.1094

16 700 5.9186 34.4868 30.5869 30.3978 0.1891

17 800 4.5426 34.4904 31.0754 31.0488 0.0266

18 900 4.1263 34.4558 31.6539 31.5377 0.1162

19 1000 3.3112 34.4755 32.1176
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4. Constraints for temperature and salinity
adjustment

Conservation of heat and salt for the adjustment can

be represented by

ð0

�h

DT dz 5 0,

ð0

�h

DS dz 5 0, (9)

which can be discretized by

FIG. 1. Original (dashed) and adjusted (solid) profiles temperature of Tk, salinity Sk, and static stability Ek at the grid box 53.58S, 171.58E

using the MA method (Locarnini et al. 2006).

TABLE 2. Grid box 53.58S, 171.58E improved Levitus et al. (1998) profiles after stabilization using the MA method (from Locarnini et al.

2006, Table B2).

k Depth (m) T (8C) S (ppt) r(Sk11, Tk11, zk) (kg m23) r(Sk, Tk, zk) (kg m23) Ek (kg m23)

1 0 7.1667 34.3096 26.8521 26.8519 0.0002

2 10 7.1489 34.3063 26.8982 26.8982 0.0000

3 20 7.0465 34.2880 26.9529 26.9443 0.0085

4 30 7.0050 34.2914 27.0042 26.9990 0.0051

5 50 7.0132 34.2991 27.0967 27.0967 0.0000

6 75 7.0604 34.3073 27.2361 27.2120 0.0240

7 100 6.9796 34.3228 27.3513 27.3513 0.0000

8 125 6.9897 34.3243 27.4667 27.4667 0.0000

9 150 7.0242 34.3301 27.5820 27.5820 0.0000

10 200 7.0628 34.3364 27.8123 27.8123 0.0000

11 250 7.0962 34.3415 28.0422 28.0421 0.0000

12 300 7.0748 34.3367 28.2719 28.2719 0.0001

13 400 6.8275 34.2894 28.7314 28.7314 0.0000

14 500 6.9604 34.3123 29.3699 29.1899 0.1799

15 600 6.2133 34.4022 29.9386 29.8292 0.1094

16 700 5.9186 34.4868 30.5869 30.3978 0.1891

17 800 4.5426 34.4904 31.0754 31.0488 0.0266

18 900 4.1263 34.4558 31.6539 31.5377 0.1162

19 1000 3.3112 34.4755 32.1176
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Obviously, we have

�
K

k51
a

k
5 1, a

k
. 0 for k 5 1, 2, . . . , K. (14)

The adjustment ratios gk are used for N 2 1 levels,

DT
k

1 g
k
DS

k
5 0, k 5 1, 2, . . . , K� 1. (15)

Because temperature and salinity corrections affect the

density differently, that is, the increase (decrease) of

temperature (salinity) decreases (increases) the density.

This leads to a positive value of gk. Here, we use the

simplest form,

g
k

5 g [
max(T

k
)�min(T

k
)

max(S
k
)�min(S

k
)

, (16)

to illustrate the basic methodology of this analytical ad-

justment procedure. This ratio may vary with depth. A

large part of the paper by Jackett and McDougall (1995)

was devoted to developing a method to determine gk.

Interested readers are referred to their paper.

Equations (10), (11), (15), and (8) represent a set of

2K algebraic equations for 2K unknowns (DTk, DSk),

k 5 1, 2, . . . , K. Thus, they are closure. Among them, (8)

is nonlinear and (10), (11), and (15) are linear.

5. Example

The same example as described in section 2 is used.

Substitution of fSk, Tk, zkg values from Table 1 into (8),

(10), (11), and (15), and the Newton iteration method

(Kelley 1987, see appendix B) is used to solve the set of

2K algebraic equations. For the hydrographic cast listed

in Table 1, only three iterations are needed to eliminate

the static instability. Tables 3 and 4 list the values of

TABLE 3. Change of (T
k

1 DT
( j)
k ) (8C) at each iteration using the Newton’s method. It is noted that the iteration converges at the

third iteration.

k Depth (m) j 5 0 j 5 1 j 5 2 j 5 3 j 5 4

1 0 7.166 700 7.212 634 7.212 833 7.212 833 7.212 833

2 10 7.148 900 7.289 401 7.289 072 7.289 072 7.289 072

3 20 7.046 500 6.818 173 6.816 828 6.816 828 6.816 828

4 30 7.005 000 6.872 865 6.872 591 6.872 591 6.872 591

5 50 6.968 600 6.888 794 6.888 861 6.888 861 6.888 861

6 75 7.060 400 7.023 494 7.023 712 7.023 712 7.023 712

7 100 6.975 300 6.977 379 6.977 638 6.977 638 6.977 638

8 125 6.921 800 6.965 175 6.965 378 6.965 378 6.965 378

9 150 6.891 900 6.983 992 6.983 997 6.983 997 6.983 997

10 200 6.936 300 6.959 537 6.959 779 6.959 779 6.959 779

11 250 7.096 200 7.125 999 7.126 229 7.126 229 7.126 229

12 300 7.162 200 7.228 075 7.228 205 7.228 205 7.228 205

13 400 6.827 500 6.995 044 6.994 489 6.994 488 6.994 488

14 500 7.400 100 7.229 221 7.228 652 7.228 652 7.228 652

15 600 6.213 300 6.129 374 6.129 400 6.129 400 6.129 400

16 700 5.918 600 5.883 923 5.884 121 5.884 121 5.884 121

17 800 4.542 600 4.542 873 4.543 127 4.543 127 4.543 127

18 900 4.126 300 4.153 784 4.154 020 4.154 020 4.154 020

19 1000 3.311 200 3.362 894 3.363075 3.363 075 3.363 075
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fTk, Skg at the each iteration. They show the high effi-

ciency of this method for elimination of static instability

in the hydrographic cast. Figure 2 shows the original and

adjusted profiles

S
k
, T

k
, E

k

� �

, k 5 1, 2, . . . , K. (17)

The heat and salt are conserved for the whole water

column with the relative root-mean adjustment

RRMA 5 0.0482. (18)

Comparing (18) to (4), we may find that this analytical

conserved adjustment scheme has a smaller RRMA

(0.0482) than the MA method (0.0712).

TABLE 4. Change of (S
k

1 DS
( j)
k ) (ppt) at each iteration using Newton’s method. It is noted that the iteration converges at

the third iteration.

k Depth (m) j 5 0 j 5 1 j 5 2 j 5 3 j 5 4

1 0 34.424 300 34.421 995 34.421 985 34.421 985 34.421 985

2 10 34.427 800 34.420 749 34.420 765 34.420 765 34.420 765

3 20 34.288 000 34.299 459 34.299 526 34.299 526 34.299 526

4 30 34.291 400 34.298 031 34.298 045 34.298 045 34.298 045

5 50 34.299 100 34.303 105 34.303 102 34.303 102 34.303 102

6 75 34.307 300 34.309 152 34.309 141 34.309 141 34.309 141

7 100 34.328 000 34.327 896 34.327 883 34.327 883 34.327 883

8 125 34.360 400 34.358 223 34.358 213 34.358 213 34.358 213

9 150 34.369 600 34.364 978 34.364 978 34.364 978 34.364 978

10 200 34.336 400 34.335 234 34.335 222 34.335 222 34.335 222

11 250 34.341 500 34.340 005 34.339 993 34.339 993 34.339 993

12 300 34.336 700 34.333 394 34.333 388 34.333 388 34.333 388

13 400 34.285 200 34.276 792 34.276 820 34.276 820 34.276 820

14 500 34.312 300 34.320 875 34.320 904 34.320 904 34.320 904

15 600 34.402 200 34.406 412 34.406 410 34.406 410 34.406 410

16 700 34.486 800 34.488 540 34.488 530 34.488 530 34.488 530

17 800 34.490 400 34.490 386 34.490 374 34.490 374 34.490 374

18 900 34.455 800 34.454 421 34.454 409 34.454 409 34.454 409

19 1000 34.475 500 34.472 906 34.472 897 34.472 897 34.472 897

FIG. 2. As in Fig. 1, but using the analytical conserved method proposed in this paper.
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Data assimilation is required in operational ocean

data access and retrieval (Sun 1999). It is to blend the

modeled variable xm with observational data yo (e.g.,

Kalnay 2003; Chu et al. 2004),

x
a

5 x
m

1 W � [y
o
�H(x

m
)], (19)

where xa is the assimilated variable, H is an operator

that provides the model’s theoretical estimate of what

is observed at the observational points, and W is the

weight matrix. The difference among various data as-

similation schemes such as optimal interpolation (e.g.,

Lozano et al. 1996), Kalman filter (e.g., Galanis et al.

2006), and variation methods (e.g., Tang and Kleeman

2004), is the different ways to determine the weight

matrix W. The data assimilation process (19) can be

considered as the average (in a generalized sense) of xm

and yo. In ocean (T, S) data assimilation, the observa-

tional data yo may contain several casts, which are

statically stable. The model profile xm is also statically

stable because convective adjustment (Bryan 1969) is

usually conducted at each time step.

False static stability may be generated after (T, S) data

assimilation [i.e., performing (19)]. For example, 10-day

Jet Propulsion Laboratory (JPL) Estimating the Circu-

lation and Climate of the Ocean (ECCO) (T, S) fields

centered on 31 December 2008 (available online at

http://ecco.jpl.nasa.gov/external/) show that a consider-

able portion (35.32%) of profiles are statically unstable

(Fig. 3). Here, the NODC’s criterion for flagging out

statically unstable profiles,

E
min

5

�0.03 kg m�3 (0 $ z
k

$ �30 m)

�0.02 kg m�3 (�30 m . z
k

$ �400 m)

0 kg m�3 (�400 m . z
k
)

8

>

<

>

:

, (20)

is used. Because such a false static instability is due to

the blending of observational data with the model data,

it is not a real instability. Use of the convective adjust-

ment scheme may overcorrect the profiles.

To illustrate this, we discuss the existing convective

adjustment schemes in ocean models. The various con-

vective adjustment schemes are based on the same

original idea (e.g., Bryan 1969): whenever a water col-

umn is statically unstable, temperature and salinity are

vertically adjusted to make the water column neutrally

stable, with heat and salt conserved in the process. The

adjustment takes an iterative approach. The iteration

continues between all adjacent levels until the static

instability is removed in the whole water column. Be-

cause the adjustment acts on only neighboring points,

the number of iterations required to reach the final

stable state is infinite for a given unstable profile (Smith

1989). In practice, however, the number of iteration is

always finite, and this leads to some residual instability

(Killworth 1989).

FIG. 3. Distribution of statically unstable casts in the JPL-ECCO 10-day data centered on 31 Dec 2008 (available online at http://ecco.jpl.

nasa.gov/external/). The data were produced by a data assimilation system.

1078 J O U R N A L O F A T M O S P H E R I C A N D O C E A N I C T E C H N O L O G Y VOLUME 27



Several algorithms were developed to remove these

residual static instabilities such as the implicit vertical

diffusion scheme (Cox 1984; Killworth 1989) and the

complete adjustment scheme (Yin and Sarachik 1994).

The former tests the static stability between the verti-

cally adjacent levels and, if unstable, the vertical diffu-

sivity is set to a large value (convective diffusivity) to

smooth out the instability. The latter determines the

upper and lower boundaries of each adjusted region

while keeping the instantaneous adjustment within each

unstable region. Yin and Sarachik (1994) showed that

the complete convective adjustment scheme is more

efficient than the implicit vertical diffusion scheme and

guaranteed a complete removal of static instability of a

water column at each time step. For the same example as

described in section 2, the complete convective adjust-

ment scheme removes the static instabilities (Fig. 4) with

the relative root-mean adjustment

RRMA 5 0.2192. (21)

This value is 4.5 times larger than that of (0.0482) using

the analytical adjustment method.

6. Conclusions

A new analytical conserved adjustment scheme is

developed to eliminate the static instability of raw and

averaged observational hydrographic data. This method

adjusts the temperature and salinity profiles fDTk, DSk,

k 5 1, 2, . . . , Kg simultaneously and efficiently on the

basis of three types of constraints: 1) heat and salt con-

servation, 2) predetermined (DTk/DSk) ratios (or called

adjustment ratios) for all levels, and 3) the removal of

static instability by adjusting the static stability with

a combined conservation and nonuniform increment

treatment. With these constraints, a set of 2K combined

linear/nonlinear algebraic equations are established for

fDTk, DSkg. Among them, (K 1 1) algebraic equations

are linear, and (K 2 1) equations are nonlinear. Newton’s

method is used to solve this set of equations. The pro-

posed scheme has very small relative root-mean-square

adjustment compared to the existing methods. More-

over, it has three features: 1) conservation of heat and

salt, 2) removal of static instabilities with small (T, S)

adjustments, and 3) analytical form. With these features,

it can be widely used in ocean (T, S) data analysis. Be-

sides, ocean data assimilation may cause false static

instabilities. Because this instability is not real, com-

monly used convective adjustment schemes may over-

adjust the profiles. Therefore, the proposed analytical

conserved scheme can be used in ocean (T, S) data

assimilation.
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FIG. 4. As in Fig. 1, but using the complete convective adjustment method (Yin and Sarachik 1994).
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APPENDIX A

Validity of the Conservation Constraints

In ocean modeling, all the convective adjustment

schemes for stabilizing (T, S) profiles require heat and

salt conservation (e.g., Yin and Sarachik 1994). In ocean

data analysis, such conservation constraints are also

valid. After quality control procedures, it is reasonable

to assume that ocean observational data c contain ran-

dom error c9,

c 5 ct 1 c9, (A1)

with population mean hc9i 5 0 and standard deviation

se. Here, c denotes (T, S), and ct is the true value at the

same location and time as the observation taken place.

The population mean of (A1) gives

hci5 hcti. (A2)

An observational profile (ck, k 5 1, 2, . . . , K) can be

taken as a sample. Vertical integration of the observa-

tional profile is represented by weighted average [see

(12)],

(c) 5 �
K

k51
a

k
c

k
, (c

t
) 5 �

K

k51
a

k
ct

k, (c9) 5 �
K

k51
a

k
c9

k
.

(A3)

The random errors at different depth c9k are considered

independent. The central limit theorem states that the

linear combination

Y9 5 �
K

k51
a

k
c9

k
(A4)

has a normal distribution with zero mean and variance,

s2
Y9 5 �

K

k51
a2

ks2
e 5 s2

e �
K

k51
a2

k. (A5)

From (14), we have

�
K

k51
a2

k , �
K

k51
a

k
5 1. (A6)

Substitution of (A6) into (A5) leads to

s
Y9

, s
e
, (A7)

which indicates that the error variance of the vertically

integrated observed values c is smaller than that of the

individual observations se. Thus, the conservation con-

straints (10) and (11) guarantee that

(c
adj

) 5 (c
t
) 1 (c9), (A8)

the same smaller error variance of the vertically in-

tegrated observed values.

APPENDIX B

Newton Method

Let the temperature and salinity adjustment be rep-

resented by a 2K-dimensional vector P,

P [

p
1

p
2

p
3

p
4

:
:

:

p
M�1

p
M

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

5

DT
1

DS
1

DT
2

DS
2

:

:

:

DT
K

DS
K

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

, M 5 2K. (B1)

The algebraic Eqs. (10), (11), (15), and (8) [note that we

put (8) at the last] can be represented by

F(P) 5 0, (B2)

where F has the dimension of 2K. The classical Newton

method (Kelley 1987) for approximating a desired so-

lution P to (B2) is formally defined by the iteration

P( j11) 5 P( j) � J�1(P( j))F(P( j)), j 5 0, 1, 2, . . . , (B3)

where P( j) is the jth approximation to the solution of

(B2), J(P( j)) is the Jacobian matrix of F(P) evaluated at

P( j). Inversion of the Jacobian matrix is not performed

in practice; rather (B3) is implemented via solution of

the following system of linear equations at the each

iteration:

J(P( j)) � d( j) 5 b( j), b( j) [�F(P( j)), (B4)

followed by the update

P( j11) 5 P( j) 1 d( j), (B5)

where d( j) is called the Newton direction. The iteration

stops at step J when
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max
k

d
(J)
k

�

�

�

�

�

�
, 10�6 (K for temperature

and ppt for salinity). (B6)

When the set of algebraic equations take the order of

(10), (11), (15), and (8), the Jacobian matrix J(P( j)) with

dimension of M 3 M is represented by

J(P( j)) 5

a
11

a
12

. . . a
1M

a
21

a
22

. . . a
2M

. . . . . . . . . . . .

a
M1

a
M2

. . . a
MM

2

6

6

6

4

3

7

7

7

5

, (B7)

where the M 3 M elements are given in (C1) of ap-

pendix C. The Jacobian matrix (B7) has the following

format with many zero elements:

J(P( j)) 5

* 0 * 0 * 0 . . . . . . * 0

0 * 0 * 0 * . . . . . . 0 *

* * 0 0 0 0 . . . . . . 0 0

* * * * 0 0 . . . . . . 0 0

0 0 * * 0 0 . . . . . . 0 0

0 0 * * * * . . . . . . 0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 0 0 . . . . . . * * 0 0

0 0 0 0 . . . . . . * * * *

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

,

(B8)

where nonzero elements are indicated by asterisks. The

vector b in the right-hand side of (B4) has the following

components:

b
1

5 0, b
2

5 0, b
3

5 0, b
4

5 E
1
**� r(S

1
1 DS

( j)
1 , T

1
1 DT

( j)
1 , z

1
) 1 r(S

2
1 DS

( j)
2 , T

2
1 DT

( j)
2 , z

2
),

b
5

5 0, b
6

5 E
2
**� r(S

2
1 DS

( j)
2 , T

2
1 DT

( j)
2 , z

2
) 1 r(S

3
1 DS

( j)
3 , T

3
1 DT

( j)
3 , z

2
), . . . , b

M�1
5 0,

b
M

5 E
K�1
** � r(S

K�1
1 DS

( j)
K�1, T

K
1 DT

( j)
K�1, z

K�1
) 1 r(S

K
1 DS

( j)
K , T

K
1 DT

( j)
K , z

K�1
). (B9)

It is noted that the well-posed linear algebraic Eq. (A4)

is easily solved with the initial guess,

P(0) 5 0, (B10)

that is,

DT
(0)
k 5 0, DS

(0)
k 5 0, k 5 1, 2, . . . , K. (B11)

With the initial guess (B11), the Newton direction d(0)

is obtained from solving the linear algebraic Eq. (B4).

The vector d(0) is added to the initial guess P(0), which

leads to

P(1) 5 P(0) 1 d(0). (B12)

With P(1), the cast is adjusted to its first iterated

values,

S
(1)
k 5 S

k
1 DS

(1)
k , T

(1)
k 5 T

k
1 DT

(1)
k . (B13)

Substitution of (B12) into (1) gives static stability after

the first iteration E
(1)
k . If

E
(1)
k $ E

min
, k 5 1, 2, . . . , K, (B14)

the adjustment stops. Otherwise, the iteration continues,

that is, the linear algebraic Eq. (B4) is solved after using

P(1) from (B12). Addition of the solution d(1) to P(1)

leads to P(2). If there is no static instability, the adjust-

ment stops. Otherwise, the iteration continues until the

static instability is eliminated.

APPENDIX C

Elements of Jacobian Matrix (B7)

The elements of M 3 M Jacobian matrix (B7) are

given by

a
11

5
Dz

1

2
, a

13
5

Dz
1

1 Dz
2

2
, . . . ,

a
1,M�3

5
Dz

N�2
1 Dz

N�1

2
, a

1,M�1
5

Dz
N�1

2
,

a
12

5 a
14

5 a
16

5 � � � 5 a
1M

5 0,

a
22

5
Dz

1

2
, a

24
5

Dz
1

1 Dz
2

2
, . . . ,

a
2,M�2

5
Dz

N�2
1 Dz

N�1

2
, a

2M
5

Dz
N�1

2

a
21

5 a
23

5 a
25

5 � � � 5 a
2,M�1

5 0,

a
31

5 1, a
32

5 g
1
, a

33
5 a

34
5 a

35
5 � � � 5 a

3M
5 0,
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)

›T
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2
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1
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1
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2
),

a
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