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ABSTRACT

How to reduce the horizontal pressure gradient error is a key issue of using s-coordinate ocean models,
especially of using primitive equation models for coastal regions. The error is caused by the splitting of the
horizontal pressure gradient term into two parts and the subsequent incomplete cancellation of the truncation
errors of those parts. Due to the fact that the higher the order of the difference scheme, the less the truncation
error and the more complicated the computation, a sixth-order difference scheme for the s-coordinate ocean
models is proposed in order to reduce error without increasing complexity of the computation. After the analytical
error estimation, the Semi-spectral Primitive Equation Model is used to demonstrate the benefit of using this
scheme. The stability and accuracy are compared with those of the second-order and fourth-order schemes in
a series of calculations of unforced flow in the vicinity of an isolated seamount. The sixth-order scheme is
shown to have error reductions by factors of 5 compared to the fourth-order difference scheme and by factors
of 50 compared to the second-order difference scheme over a wide range of parameter space as well as a great
parametric domain of numerical stability.

1. Introduction

In shallow-water prediction models the effects of bot-
tom topography must be taken into account. This can
be done by using a terrain-following s-coordinate sys-
tem, where the water column is divided into the same
number of grid cells independent of depth. Let (x*, y*,
z) denote Cartesian coordinates and (x, y, s) sigma co-
ordinates. In most sigma coordinate ocean models the
relationship between the two coordinate systems is

z
x 5 x , y 5 y , s 5 1 1 2 , (1)* * H(x, y)

where z and s increase vertically upward such that z 5
0, s 5 1 at the surface and z 5 2H and s 5 21 at
the bottom; H 5 H(x, y) is the bottom topography.

We restrict our attention to two dimensions (x, s) for
simplicity. Horizontal gradients in the z- and s-coor-
dinates are related by

]p ]p ]H 1 ]p
5 1 (1 2 s) . (2)

]x ]x ]x H ]s*

Most ocean models are hydrostatic balanced; that is,

]p
5 2rg, (3)

]z
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where g is the acceleration due to gravity and r is the
density of the fluid. Substitution of (3) into (2) and
use of

] 2 ]
5

]z H ]s

yield

]p ]p 1 ]H
5 2 (1 2 s)rg , (4)

]x ]x 2 ]x*

which is used for computing the horizontal pressure
gradient.

A problem has long been recognized in computing
the horizontal pressure gradient in the s-coordinate sys-
tem (e.g., Gary 1973; Haney 1991; Mellor et al. 1994;
McCalpin 1994) the horizontal pressure gradient be-
comes a difference between two terms, which leads to
a large truncation error at steep topography. We refer
the reader to a comprehensive review by Haney (1991).
Mellor et al. (1994) obtained an error estimation scheme
and showed that the pressure gradient error is advec-
tively eliminated after a long time integration. McCalpin
(1994) employed a fourth-order difference scheme to
eliminate the pressure gradient error by a factor of
10–20. Following McCalpin’s path, we propose a sixth-
order difference scheme for a further reduction of pres-
sure gradient error.

2. Second-, fourth-, and sixth-order schemes

In ocean models, the most common spatial difference
scheme used to approximate the first derivative is a two



SEPTEMBER 1997 2065N O T E S A N D C O R R E S P O N D E N C E

point, centered, second-order staggered scheme such as
the C-grid scheme (Hadivogel et al. 1991) and the
B-grid scheme (Robinson 1993):

3]p p 2 p 1 ] pi11/2 i21/2 2ø 2 D
31 2 1 2]x D 24 ]x

i i

r 1 ri21/2 i11/2 2r 5 1 O(D ), (5)i 2
where D is the grid spacing. The truncation error of this
scheme is O(D2).

For the fourth-order C-grid scheme,

]p p 2 27p 1 27p 2 pi23/2 i21/2 i11/2 i13/2ø1 2]x 24D
i

53 ] p
41 D

51 2640 ]x
i

9 1
r 5 (r 1 r ) 2 (r 1 r )i i21/2 i11/2 i23/2 i13/216 16

41 O(D ) ; (6)

the truncation error is O(D4). Comparing (6) with (5),
the second-order difference, the error ratio between the
fourth-order and second-order schemes is estimated by

5 53 ] p ] p
5 51 2 1 2640 ]x ]x

i i
2 2r 5 D 5 0.1125 D . (7)4,2

3 31 ] p ] p* * * *
3 31 2 1 224 ]x ]x

i i

Since the truncation error decreases with the increase
of the order of the difference scheme, it might be ben-
eficial to use an even higher-order difference scheme.
Thus, we propose a sixth-order difference scheme

7]p 29p 1 125p 2 2250p 1 2250p 2 125p 1 9p 5 ] pi25/2 i23/2 i21/2 i11/2 i13/2 i15/2 6ø 2 D ,
71 2 1 2]x 1920D 7168 ]x

i i

75 25 3
6r 5 (r 1 r ) 2 (r 1 r ) 1 (r 1 r ) 1 O(D ) (8)i i21/2 i11/2 i23/2 i13/2 i25/2 i15/2128 256 256

to compute the horizontal pressure gradient. For the two
points nearest to the boundary, we use the lower-order
schemes (taking one-side boundary as an example),

]p p 2 p3/2 1/2ø ,1 2]x D
1

]p p 2 27p 1 27p 2 p1/2 3/2 5/2 7/2ø ,1 2]x 24D
2

r 1 r1/2 3/2r ø ,1 2

9 1
r ø (r 1 r ) 2 (r 1 r ).2 3/2 5/2 1/2 7/216 16

Comparing (8) with (6), the error ratio between the
sixth-order and fourth-order schemes is estimated by

7 75 ] p ] p
7 71 2 1 27168 ]x ]x

i i
2 2r 5 D 5 0.1488 D . (9)6,4

5 53 ] p ] p* * * *
5 51 2 1 2640 ]x ]x

i i

3. Seamount test case

a. Model description

Suppose a seamount located inside a periodic f-plane
( f0 5 1024 s21) channel with two solid, free-slip bound-
aries along constant y. Unforced flow over a seamount
in the presence of resting, level isopycnals is an ideal
test case for the assessment of pressure gradient errors
in simulating stratified flow over topography. The flow
is assumed to be reentrant (periodic) in the alongchannel
coordinate (i.e., x axis). We use this seamount case of
the Semi-spectral Primitive Equation Model (SPEM)
version 3.9 to test the new difference scheme. The reader
is referred to the original reference (Haidvogel et al.
1991) and the SPEM 3.9 User’s Manuel (Hedstrom
1995) for datailed information. In the horizontal direc-
tions the model uses the C-grid and the second-order
finite difference discretization except for the horizontal
pressure gradient for which the user has a choice of
either second-order or fourth-order difference discreti-
zation (McCalpin 1994). In the vertical direction the
model uses a boundary-fitted s-coordinate system. The
discretization is by spectral collocation using Cheby-
shev polynomials. Our model configuration is similar
to that of Beckmann and Haidvogel (1993) and Mc-
Calpin (1994). The time step and grid size used here
are
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FIG. 1. The seamount geometry.

Dt 5 675 s, Dx 5 Dy 5 5 km.

b. Topography

The domain is a periodic channel, 320 km long and
320 km wide. The channel walls are solid (no normal
flow) with free-slip viscous boundary conditions. The
channel has a far-field depth hmax and in the center in-
cludes an isolated Gaussian-shape seamount with a
width L and an amplitude hs (Fig. 1),

2 2(x 2x ) 1 (y 2 y )0 0h(x, y) 5 h 2 h exp 2 , (10)max s 2[ ]L

where (x0, y0) are the longitude and latitude of the sea-
mount center. The far-field depth (hmax) is fixed as 5000
m. But the seamount amplitude (hs) changes from 500
to 4500 m, and the lateral scale of the seamount (L)
varies from 6 to 40 km for the study.

c. Density field

Suppose that the background fluid is at rest and with
an exponentially stratified mean density

z
r̄(z) 5 28 2 2 exp , (11)1 2Hr

where z is the vertical coordinate, and Hr 5 1000 m.
Here a constant density, 1000 kg m23, has been sub-
tracted for error reduction. When a density disturbance

5 was introduced initially,r9 r̂ exp(z/Hr)i

1 ,r 5 r̄(z) r9i i (12)

the fluid was slightly less stably stratified than the ref-
erence field for each computation. Here is called ther̂
density anomaly. The larger the , the less stable ther̂
fluid will be. In this study, varies from 0.1 to 1 kg m23.r̂

Following Beckmann and Haidvogel (1993) and
McCalpin (1994), we subtract the mean density field

before integrating the density field to obtain pres-r̄(z)
sure from the hydrostatic equation.

d. Lateral viscosity

Ideally, the new difference scheme should be tested
with no lateral diffusion of density. This is due to the
fact that the density diffusion along s surfaces generates
horizontal gradients wherever the s surfaces are not flat,
and then produces horizontal pressure gradients that
drive currents in much the same way as the pressure
gradient errors (McCalpin 1994). Unfortunately, the ab-
sence of the horizontal diffusion keeps the small-scale
pressure disturbances generated by topographic-scale
density advection and the induced small-scale velocity
fields, which in turn cause the computational instability
problem. Thus, some lateral viscosity on s surfaces is
required in the momentum equations to maintain sta-
bility. A constant coefficient (AH) biharmonic formu-
lation is used here for the lateral viscosity, which varies
from 1010 to 108 m4 s21 in this study.

4. Standard case

a. Model parameters

In this section, we assess the sixth-order scheme (8)
by the cumulative effects of the pressure gradient errors.
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FIG. 2. Instantaneous error pattern after 5 days of integration for the unforced (exponential stratification) experiment with sixth-order
difference scheme: (a) u, (b) y, (c) w, and (d) mass transport streamfunction. Here u, y, w are evaluated at the slice (facing upchannel)
through the center of the seamount.

A variety of configuration were used for the test. These
will be described in next section. At first, we set up a
standard test case to compare errors among three dif-
ferent (second, fourth, and sixth) schemes:

L 5 40 km, h 5 4500 m,s

23 10 4 21r̂ 5 0.2 kg m , A 5 10 m s . (13)H

The SPEM3.9 standard was integrated for 20 days for

the standard test case using ordinary and compact
fourth- and sixth-order difference schemes for comput-
ing horizontal pressure gradient. Figure 2 displays errors
in the streamfunction and velocity fields after perform-
ing 5 days of integration using the sixth-order scheme.
The mass transport streamfunction has a large-scale
eight-lobe pattern centered on the seamount. This sym-
metric structure can be found in all the fields. After 5
days of integration, the model generates spurious cur-
rents of O(0.001 cm s21).
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FIG. 3. Peak error velocity for the second-, fourth-, and sixth-order
schemes.

TABLE 1. Ratios of CPU time and various errors between the
second-order and the fourth (sixth)-order schemes.

Ratio CPU V1 V2 PG1 PG2

2nd/4th
2nd/6th

0.9020
0.9087

8.873
44.643

10.111
46.083

11.682
76.336

14.306
81.301

b. Temporal variations of peak error velocity

Owing to a very large number of calculations per-
formed, we discuss the results exclusively in terms of
the maximum absolute value of the spurious velocity
(called peak error velocity) generated by the pressure
gradient errors. Figure 3 shows the time evolution of
the peak error velocity for the first 20 days of integration
with the second-, fourth-, and sixth-order schemes. The
peak error velocity fluctuates rapidly during the first few
days integration. After the 5 days of integration, the
peak error velocity shows the decaying inertial oscil-
lation superimposed on mean values: 0.4 cm s21 (the
second order), 0.042 cm s21 (the fourth order), and 0.01
cm s21 (the sixth order). The steady approach of the
peak error velocities to these values for the three
schemes indicates the stability of the computation. Fur-
thermore, the time-mean peak error velocity for the sec-
ond-order case is roughly 40–50 times that of the sixth-
order case.

c. Performance of the second-, fourth-, and
sixth-order schemes

Feasibility of using the sixth-order scheme is twofold:
1) drastic error reduction and 2) no drastic CPU time
increase. We use four quantities to compare the errors:
the maximum peak error velocity during the 10-day in-
tegration (V1), the averaged peak error velocity during
the 5–10 day integration (V2), the maximum peak error
pressure gradient during the 10-day integration (PG1),
and averaged peak error pressure gradient during the 5–
10 day integration (PG2). Here V1 (or PG1) indicates the
maximum error during the geostrophic adjustment stage,
and V2 (or PG2) shows the mean error after the adjust-
ment. Usually, V1 . V2, and PG1 . PG2. The perfor-

mance of each scheme is listed in Table 1. Both V1 and
V2 reduce their magnitude by factors around 10 from
the second-order scheme to the fourth-order scheme (V1

from 7.4 3 1021 to 8.17 3 1022 cm s21, V2 from 4.61
3 1021 to 4.43 3 1022 cm s21), and by factors around
5 from the fourth-order scheme to the sixth-order
scheme (V1 from 8.17 3 1022 to 1.61 3 1022 cm s21,
V2 from 4.43 3 1022 to 9.75 3 1023 cm s21). The
pressure gradient error reduces even more when the
high-order schemes are used: PG1 reduces from 9.7 3
1021 to 8.3 3 1022 N m23 from the second-order
scheme to the fourth-order scheme (a factor of 11.7)
and from 8.3 3 1022 to 1.27 3 1022 N m23 from the
fourth-order scheme to the sixth-order scheme (a factor
of 6.5). PG2 reduces from 7.1 3 1023 to 4.96 3 1024

N m23 from the second-order scheme to the fourth-
order scheme (a factor of 14.3) and from 4.96 3 1024

to 8.75 3 1025 N m23 from the fourth-order scheme
to the sixth-order scheme (a factor of 5.7). The CPU
time increases 10% from the second-order to fourth-
order and sixth-order scheme. Notice that there is no
CPU increase from the fourth-order to the sixth-order
scheme, which shows the great potential of using the
sixth-order scheme.

5. Sensitivity studies

We performed various sensitivity study to show the
dependence of model results on the four parameters list-
ed in (13). For each sensitivity study, we vary only one
parameter and then integrate the model for 10 days using
the second-, fourth-, and sixth-order schemes, respec-
tively.

a. Seamount width

Seamount widths (L) of 40, 20, 15, 12, and 10 km
were used. A summary of V1 and V2 after 10 days of
integration for each case is presented in Fig. 4. The
seamount with L larger than 10 km can be resolved by
the grid spacing used here (5 km). The figure clearly
shows a great improvement of using high-order
schemes. This improvement enhances as L increases. At
L 5 10 km, V1 reduces by a factor of 1.45 from the
second-order scheme to the fourth-order scheme and a
factor of 1.18 from the fourth-order scheme to the sixth-
order scheme. At L 5 40 km, V1 reduces by a factor of
9.06 from the second-order scheme to the fourth-order
scheme and a factor of 5.08 from the fourth-order
scheme to the sixth-order scheme. Similar reduction of
V2 was found (Fig. 4) from the second-order scheme to
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FIG. 4. Sensitivity of error on the seamount horizontal scale for the
second-, fourth-, and sixth-order schemes: (a) V1 and (b) V2.

FIG. 5. Sensitivity of error on the seamount amplitude for the sec-
ond-, fourth-, and sixth-order schemes: (a) V1 and (b) V2.

the fourth-order scheme, and from the fourth-order
scheme to the sixth-order scheme.

b. Seamount amplitude

Seamount amplitudes (hs) of 4500, 4000, 3500, 3000,
2000, 1000, and 500 m were used. A summary of V1

and V2 after 10 days of integration for each case is
presented in Fig. 5. The figure clearly shows a great
improvement using high-order schemes. This improve-
ment enhances as hs increases. At hs 5 500 m (i.e., a
small seamount with a slope of 0.0125), V1 reduces by
a factor of 2.55 from the second-order scheme to the
fourth-order scheme and a factor of 1.10 from the
fourth-order scheme to the sixth-order scheme. At hs 5
4500 m (i.e., a large seamount with a slope of 0.1125),
V1 reduces by a factor of 9.06 from the second-order
scheme to the fourth-order scheme and of 5.08 from the
fourth-order scheme to the sixth-order scheme. Similar
reduction of V2 was found (Fig. 5) from the second-

order scheme to the fourth-order scheme, and from the
fourth-order scheme to the sixth-order scheme.

c. Density anomaly

Density anomalies ( ) of 1, 0.8, 0.6, 0.4, 0.2, and 0.1r̂
kg m23 were used. A summary of V1 and V2 after 10
days of integration for each case is presented in Fig. 6.
The figure clearly shows a great improvement using
high-order schemes. This improvement is not sensitive
to the change of . At 5 0.1 kg m23 (i.e., a smallr̂ r̂
density anomaly), V1 reduces by a factor of 9.05 from
the second-order scheme to the fourth-order scheme and
a factor of 5.08 from the fourth-order scheme to the
sixth-order scheme. At 5 1 kg m23 (i.e., a large densityr̂
anomaly), V1 reduces by a factor of 9.10 from the sec-
ond-order scheme to the fourth-order scheme and of
5.07 from the fourth-order scheme to the sixth-order
scheme. Similar reduction of V2 was found (Fig. 6) from
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FIG. 6. Sensitivity of error on the density anomaly for the second-,
fourth-, and sixth-order schemes: (a) V1 and (b) V2.

TABLE 2. Sensitivity of V1 (cm s21) on AH for the second-, fourth-,
and sixth-order schemes.

Scheme

AH (m4 s21)

108 109 1010

2nd
4th
6th

8.994 3 1021

9.782 3 1022

1.919 3 1022

8.696 3 1021

9.527 3 1022

1.869 3 1022

7.399 3 1021

8.171 3 1022

1.610 3 1022

TABLE 3. Sensitivity of V2 (cm s21) on AH for the second-, fourth-,
and sixth-order schemes.

Scheme

AH (m4 s21)

108 109 1010

2nd
4th
6th

5.364 3 1021

4.819 3 1022

9.333 3 1023

5.120 3 1021

4.681 3 1022

8.503 3 1023

4.613 3 1021

4.431 3 1022

9.748 3 1023

the second-order scheme to the fourth-order scheme, and
from the fourth-order scheme to the sixth-order scheme.

d. Horizontal viscosity

Horizontal viscosities (AH) of 1010, 109, and 108 m4

s21 were used. A summary of V1 and V2 after 10 days
of integration for each case is presented in Tables 2 and
3, which clearly shows a great improvement using high-
order schemes. This improvement is not very sensitive
to the change of AH. At AH 5 1010 m4 s21, V1 reduces
by a factor of 9.06 from the second-order scheme to the
fourth-order scheme and a factor of 5.08 from the
fourth-order scheme to the sixth-order scheme. At AH

5 108 m4 s21, V1 reduces by a factor of 9.19 from the
second-order scheme to the fourth-order scheme and of
5.10 from the fourth-order scheme to the sixth-order
scheme. Similar reduction of V2 was found (Table 3)
from the second-order scheme to the fourth-order
scheme, and from the fourth-order scheme to the sixth-
order scheme.

6. Conclusions

1) The s-coordinate, pressure gradient error depends
on the choice of difference schemes. By choosing an
optimal scheme, we may reduce the error a great deal
without increasing the horizontal resolution. Analytical
analysis shows that the truncation error of the fourth-
order scheme may be 1–2 orders of magnitude smaller
than the second-order scheme, and the truncation error
of the sixth-order scheme may be 1–2 orders of mag-
nitude smaller than the fourth-order scheme.

2) The SPEM Version 3.9 is used to demonstrate the
benefit of using the sixth-order scheme. A series of cal-
culations of unforced flow in the vicinity of an isolated
seamount are performed. The results show that the sixth-
order scheme has error reductions by factors of 5 com-
pared to the fourth-order difference scheme, and by fac-
tors of 50 compared to the second-order difference
scheme over a wide range of parameter space as well
as a great parametric domain of numerical stability.

3) Using the sixth-order scheme does not require
much more CPU time. Taking SPEM3.9 as an example,
the CPU time for the sixth-order scheme is almost the
same as for the fourth-order scheme, and 10% more
than for the second-order scheme.

4) Since the fourth-order different scheme has error
reductions by factors of 10 compared to the second-
order difference scheme, there is no real advantage to
going to a higher-order scheme if the bottom topography
is not too complicated. The need for more accuracy will
go up with increasingly complex bottom topography on
small scales, so one might expect that future demand
for accuracy will increase as models strive for more
realism.
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