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Operational atmospheric and wave modelling in the California’s coastline and
offshore area with applications to wave energy monitoring and assessment
George Galanisa, Menas Kafatosb, Peter C. Chuc, Nikolaos Hatzopoulosb, Evgenia Papageorgiou a and
Aristotelis Liakatas a

aHellenic Naval Academy, Mathematical Modeling and Applications Laboratory, Hatzikiriakion, Piraeus, Greece; bSchmid College of Science,
Chapman University, Orange, CA, USA; cDepartment of Oceanography, Graduate School of Engineering & Applied Science, Naval Postgraduate
School, Monterey, CA, USA

ABSTRACT
A new high-resolution operational atmospheric/wave forecasting system for the west coastline of
the US, focusing especially to the California near and offshore area, is presented in this work. The
new system is the result of the collaboration between two US and one European Universities. It
consists of two state-of-the-art numerical prediction models (Regional Atmospheric Modeling
System and WAve Model) supported by a new optimisation statistical module for the bias
reduction and local adaptation of the results based on non-linear Kalman filtering and Bayesian
statistics. The presented system has been evaluated against a wide number of National Data
Buoy Center buoys records with very promising results. Moreover, applications to wave energy
site assessment are presented revealing areas of the California coastline with increased power
potential appropriate for wave power plants installation.
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1. Introduction

In the last decade, Numerical modelling has been proved
an excellent alternative to observations for environ-
mental parameters especially over sea regions where
the available atmospheric and wave observation net-
works are not as dense as over land areas. Several types
of modelling systems have been proposed targeting not
only to the support of operational environmental fore-
casting (Papadopoulos et al. 2002; Zodiatis et al. 2003,
2008; Papadopoulos and Katsafados 2009, Galanis et al.
2012) but also to important applications, including
renewable energy assessment and monitoring (Louka
et al. 2008; Defne et al. 2009; Iglesias and Carballo
2009, 2010; Iglesias et al. 2009; Rusu and Soares 2012;
Akpınar and Kömürcü 2013; Zodiatis et al. 2014,
2015); pollution monitoring and prevention (Janeiro
et al. 2012); desert dust studies (Nickovic et al. 2001;
Balis et al. 2006; Spyrou et al. 2010); air-quality model-
ling (Astitha et al. 2005).

In this work, a new operational forecasting system
developed jointly by the Naval Ocean Analysis and Pre-
diction Laboratory of the US Naval Postgraduate School,
the Center of Excellence in Earth Systems Modeling &
Observations of the Schmid College of Science & Tech-
nology, Chapman University, California and the

Mathematical Modeling Laboratory of the Naval Acad-
emy of Greece is proposed for covering the west coastline
and offshore regions of the US with special emphasis to
the California sea area. This system consists of two state-
of-the-art numerical models, namely the Regional
Atmospheric Modeling System (RAMS) (Kallos and
Lagouvardos 1997; Mavromatidis and Kallos 2002; Cot-
ton et al. 2003) and the third-generation WAve Model
(WAM) (WAMDIG 1988; Komen et al. 1994; Bidlot
et al. 2007), operating, through a sequence of nested
domains, at a high-resolution mode reaching a horizon-
tal grid of 2 km in the finer domain. The numerical wind
and wave prediction models are supported by an optim-
isation statistical module based on Kalman filters and
Bayesian inference able to detect and reduce potential
discrepancies of the initial model outputs due to local
peculiarities or other bias generating issues (Galanis
and Anadranistakis 2002; Galanis et al. 2006, 2009,
2011; Louka et al. 2008; Pelland et al. 2011).

The three components of the system are coupled,
leading to an integrated operational tool able to credibly
forecast in detail, and at a very high-resolution mode,
critical atmospheric and wave parameters, as an evalu-
ation study against offshore National Data Buoy Center
(NDBC) buoys over the west coast line of the US proves.

© 2017 Institute of Marine Engineering, Science & Technology

CONTACT George Galanis ggalanis@mg.uoa.gr Hellenic Naval Academy, Mathematical Modeling and Applications Laboratory, Hatzikiriakion, Piraeus
18539, Greece

JOURNAL OF OPERATIONAL OCEANOGRAPHY, 2017
https://doi.org/10.1080/1755876X.2017.1349640

http://crossmark.crossref.org/dialog/?doi=10.1080/1755876X.2017.1349640&domain=pdf
http://orcid.org/0000-0002-8968-3228
http://orcid.org/0000-0003-4006-8504
mailto:ggalanis@mg.uoa.gr
http://www.tandfonline.com


The obtained results are utilised towards a detailed
study of the wave energy potential over the west coastline
of the US, providing information for sea areas that
favour the development of wave energy platforms spot-
ting, at the same time, possible constraints due to poten-
tial extreme weather events impact. In this way, a new
integrated system is provided to the research and techni-
cal community of environmental modelling, proposing
also a potentially helpful tool for decision-makers on
renewable energy monitoring and exploitation, able to
support site assessment studies for a ‘clean’ form of
energy that is available plentiful in California due to
the local wave climatology.

2. Models and methodology

2.1. Atmospheric modelling

The RAMS (version 4.3.0 for the current work) is an
advanced state-of-the-art numerical code, developed at
Colorado State University and Mission Research Inc/
ASTeR Division. It combines a non-hydrostatic cloud
microphysical process algorithm and a hydrostatic
mesoscale model making the system able to simulate
atmospheric phenomena with resolution ranging from
tens of kilometres to a few metres with a surface parame-
terisation scheme utilising information on land-use and
soil texture at subgrid scale.

RAMS is well parallelised, avoiding the use of global
physical or numerical routines. It is utilised today for
operational and research purposes by a wide number
of leading institutes worldwide. A general description
of the model capacities and developments can be found
in Cotton et al. (2003); Kallos and Lagouvardos (1997)
and Mavromatidis and Kallos (2002).

The model has been employed with two-way interac-
tive nesting option for any number of grids. The system
developed at the Center of Excellence in Earth Systems
Modeling & Observations in Chapman University con-
sists of a sequel of three domains presented in detail in
Table 1. The first covers the major South West coastline
of the US at a horizontal resolution of 24 km, the second
is focusing to the California region at 6 km and a third
high-resolution (2 km) nested domain is covering the

greater LA region (Figure 1). In the vertical, RAMS inte-
grates at 32 levels.

It is of importance here to briefly discuss the local cli-
mate of the study area. Climate features of the Southern
California are classified as belonging to the Mediterra-
nean Dry Summer Subtropical climatic type, with a
cool summer regime. Temperatures, along the maritime
fringe, are controlled by the sea. The warm month aver-
age is below 72°F, while the cold month average is above
50°F. Precipitation is strongly concentrated in winter,
with average annual values in the vicinity of 15 inches
(Dailey et al. 1974).

California state waters extend from the shoreline to
three nautical miles offshore, and this nearshore area is
advantageous for renewable energy technology appli-
cations due to logistical and economic reasons (Harvey
and Nelson 2008). The oceanographic features of Southern
California occur due to its location, the eastern boundary
of the North Pacific Ocean. The surface water seaward of
the offshore islands moves south with the eastern bound-
ary current, the California Current. A southerly current
flows north below the Californian Current, and a southerly
surface countercurrent occurs landward of the California
Current. Seasonal coastal upwelling, mixed semidiurnal
tides and wave motion cause distinct circulation patterns
in the littoral zone (Dailey et al. 1974).

2.2. Wave modelling

The accurate prediction of sea waves over the coastline
and offshore area of California was one of the main
objectives of the presented operational system. As a
result, the choice of a well-established wave model, able

Table 1. The configuration of the three sequel atmospheric
model domains.

Coarse First nest Second nest

Longitude 127.89W to
08.11W

120.99W to
115.01W

120.06W to
117.92W

Latitude 26.54N to
41.69N

31.81N to 36.65N 33.36N to 35.12N

Horizontal
resolution

24 km 6 km 2 km

Figure 1. The domains of the atmospheric model RAMS. The
orange rectangle defines the borders of the first nested domain
covering the southern California area at a horizontal resolution of
6 km while the red one the subsequent finer nested area focus-
ing to the major Los Angeles region at a very high horizontal res-
olution of 2 km.
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to successfully simulate different wave types, was critical.
For these reasons, the third-generation wave model
WAM (WAMDIG 1988; Komen et al. 1994; Bidlot
et al. 2007) was selected as a well-tested and evaluated
model utilised today by a wide number of operational
and research centres worldwide.

WAM is based on the numerical solution of the wave
transport equation explicitly without adopting any
specific shapes or types of the 2d – over frequencies
and directions – wave spectrum:

dF
dt

+ ∂

∂f
(ḟF)+ ∂

∂l
(l̇F)+ ∂

∂u
(u̇F) = S,

where F represents the spectral density with respect to
frequencies ( f ), directions (θ), latitudes (φ) and longi-
tudes (λ). The source function S components include
the wind forcing, white capping dissipation and non-lin-
ear transfer.

More precisely, in our study, the ECMWF version,
CY36R4 (Jansen 2000, 2004) was adopted. This version is
enhanced with critical updates, including a new advection
scheme able to take into account contributions from the
corner points (Bidlot et al. 2007), new extreme wave par-
ameters – namely the average maximum wave height and
the corresponding wave period (Mori and Janssen 2006)
based on the determination of the kurtosis of the wave
field (Janssen and Onorato 2007), as well as a new parame-
terisation of shallowwater effects which provides the option
to simulate equally well over offshore deep water areas and
near shore shallow water environments. It should be also
noted that in the wind/wave models utilised in the present

work no data assimilation has been employed. This was
mainly imposed by the version of the wave model adopted,
in which the data assimilation scheme was not fully inte-
grated, and by the operational type of the modelling system
and the data access limitations that prevented them from
being available at the time of system run.

This new version of the wave model has been already
successfully utilised and evaluated in previous studies
(Bidlot et al. 2007; Galanis et al. 2011, 2012; Bidlot
2012; Emmanouil et al. 2012, 2016; Zodiatis et al.
2015). A detailed evaluation for the presented oper-
ational system also follows in the next sections.

The wave model was operated on a sequel of three
domains covering the whole west coast of the US and
then focusing on the California offshore area, as depicted
in Figure 2.

The first nested domain (red rectangle in Figure 2)
takes boundary conditions from a global version of the
wave model that operates at a horizontal resolution of
0.5° forced by the Global Forecast System (GFS) atmos-
pheric model. In this way all the necessary swell infor-
mation that affects the region of interest is taken into
account. WAM runs at a horizontal resolution of 0.1 ×
0.1° in the ‘red’ area, while the wave spectra are discre-
tised to 30 frequencies (range 0.0417–0.6626 Hz logar-
ithmically spaced) and 24 directions (equally spaced).
In this way, swell waves up to 24 s can be successfully
simulated covering any possible wave conditions in the
east part of the Pacific Ocean and being at the same
time in accordance with the limit of wave buoys utilising
accelerometers. Wind forcing in this domain is also

Figure 2. The domains of the wave model WAM. The red rectangle defines the borders of the first nested domain covering the Eastern
part of the Pacific Ocean and the West US coastline at a horizontal resolution of 0.1° while the green one the subsequent nested region
focusing to the SW US coastline at a very high horizontal resolution of 0.01667°.
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provided by GFS in conjunction with the RAMS atmos-
pheric model.

A similar configuration has been also adopted in the
second, finest nested domain – the green one in Figure 2
– where a high horizontal resolution of 0.01667 × 0.01667°
has been adopted. The wind forcing here is obtained by
the finest available domain of the atmospheric model
RAMS described in the previous subsection. In areas that
are not covered by RAMS, wind forcing from the National
Centers for Environmental Prediction GFS model is utilised
for driving the wave model as presented in Table 2. In the
boundary areas between the two atmospheric models, a
merging system is employed in order to smooth possible
gradients, which, in any case, are not likely since the two
atmospheric models are not independent: GFS provides
boundary and lateral conditions to RAMS.

This is a one-way coupled system where the atmos-
pheric model outputs are used as forcing for the wave
model. It should be noted, however, that the atmospheric
system, apart from the necessary input for the wave sys-
tem, supports as a standalone system the operational
atmospheric forecast provided by the Schmid College
of Science, Chapman University.

Bathymetric data were obtained from US National
Geophysical Data Center’s (NGDC) ETOPO-1 data set
providing a 1 arc-minute gridded information.

It is worth to notice at this point that although the
basic parameter integrated by the wave model is the 2d
wave spectrum F(f , u, w, l), as defined above, the main
necessary parameters for applications, including renew-
able energy activities discussed in Section 4 of our
study, are the significant wave height Hs and the mean
wave period Te. Both can be obtained by the moments
of the 2d wave spectrum:

Hs = 4
����
m0

√
, Te = m−1

m0
,

where

mn =
∫2p
0

∫1
0
f nF(f , u) df du, n = −1, 0, 1.

2.3. A hybrid Bayesian–Kalman filter post
processing

The numerical atmospheric–wave model presented in
the previous subsections is followed up by an advanced
post-processing system that supports the local adap-
tation of the direct model outputs. Such systems are
indispensable parts in today’s integrated operational
forecasting platforms since they can contribute in well-
known shortcomings of numerical models. The latter,
when exploited for local forecasts, usually exhibit sys-
tematic or more complicated types of discrepancies
especially when focusing to near-surface or surface par-
ameters: wind speed and wave heights are particularly
exposed to such type of problems as a result of contribut-
ing factors; smoothing in landscape characteristics, cer-
tain parameterisation, sub-scale phenomena, lateral
and boundary condition problems can be listed among
them (see e.g. Janjic 1994; Rao et al. 1997; Galanis and
Anadranistakis 2002; Kalnay 2002; Mass et al. 2002;
Emmanouil et al. 2006; Galanis et al. 2006, 2009, 2011;
Louka et al. 2008; Stathopoulos et al. 2013).

In the presented integrated operational system, a
Bayesian–Kalman-based post-process model has been
chosen. The latter has been proved able to almost
eliminate systematic biases from the direct model out-
puts but also to critically reduce the error variability
and the associated forecasting uncertainty. More pre-
cisely, the model bias yt is estimated by means of a
non-linear polynomial based on the direct model out-
put mt that results to the observation equation of the
Kalman filter:

yt = x0,t + x1,t ·mt + x2,t ·m2
t + · · · + xn,t ·mn

t + vt ,

where the weights xi,t form the state vector
xt = [x0,t x1,t x2,t . . . xn,t] of the filter, satisfying the cor-
responding system equation:

xt = xt−1 + wt.

The optimum degree of the employed polynomial
depends on the specific parameter as well as on the

Table 2. The configuration of the wave model WAM.
Wave model WAM, ECMWF version CY36R4

Area covered Global East Pacific SW US offshore and coastline
Lat range: 80S–80N Lat range: 15N–60N Lat range: 25N–45N
Lon range: 180W–180E Lon range: 180W–90W Lon range: 130W–110W

Horizontal resolution 0.5 × 0.5° 0.1 × 0.1° 0.01667 × 0.01667°
Frequencies 30 (range 0.0417–0.6626 Hz

logarithmically spaced)
30 (range 0.0417–0.6626 Hz
logarithmically spaced)

30 (range 0.0417–0.6626 Hz logarithmically
spaced)

Directions 24 (equally spaced) 24 (equally spaced) 24 (equally spaced)
Time step 300 s 150 s 50 s
Wind forcing GFS atmospheric model GFS and RAMS atmospheric models GFS and RAMS atmospheric models
Wind forcing time step 6 h 1 h 1 h
Bathymetry US-NGDC ETOPO1 data set 0.01667 × .001667°
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time and space under study. More information and
applications of the classical Kalman filter theory can be
found in Kalman (1960); Kalman and Bucy (1961); Kal-
nay (2002); Crochet (2004); Galanis et al. (2006, 2009,
2011); Louka et al. (2008); Pelland et al. (2011) and
Stathopoulos et al. (2013).

The remaining non-systematic errors vt and wt are
elaborated by a follow-up linear Bayesian model. In par-
ticular, two approaches are adopted based on the opti-
mum distribution fitted to the parameter under study
which, in the vast majority of the study cases (see for
example Ferreira and Soares 1999, Galanis et al. 2012),
is the Normal, the Weibull or the Lognormal (LN)
distribution.

In the former case, the probability density functions of
non-systematic part of the error vt and the correspond-
ing observations ot are the Gaussians N(0, s2

v) and
N(om, s2

o), respectively. On the other hand, for the con-
ditional pdfs of the Kalman filter outputs kt, the Bayesian
theory (Box and Tiao 1992; Bernardo and Smith 2000)
gives that

P(kt|ot) = N(ot , s
2
v),

P(ot|kt)/ P(kt|ot)P(ot),

P(ot|kt)/ e−(kt−ot)
2/2s2

n e−(ot−om)
2/2s2

o ⇒ P(ot|kt)
� N(m, s2),

where

m = kt
1
s2
v
+ om

1
s2
o

( )
/

1
s2
v
+ 1
s2
o

( )
and

s = 1
s2
v
+ 1
s2
o

( )
.

Based on this, the final forecast provided by means of
the maximum a posteriori estimator is

ôt = argmax P(ot|kt).

On the other hand, when the data under study are
better described by a skewed distribution – like many
times is noticed for wind speed (see for example
Zodiatis et al. 2014; Emmanouil et al. 2016), then the
Weibull distribution is employed under the following
assumptions for the corresponding pdfs of the non-sys-
tematic part of the error vt and the observations ot:
P(ot) = W(a, b), P(vt) = N(0, s2).

The posterior distributions take then the following
form:

P(ot|kt)

= (1/
������
2ps2

√
) e−(kt−ot)

2/2s2
(a/b)(ot/b)

(a−1) e−(ot/b)
a�

(1/
������
2ps2

√
) e−(kt−ot)

2/2s2 (a/b)(ot/b)
(a−1) e−(ot/b)

a
dot

⇒ P(ot|kt) = e−(kt−ot)
2/2s2

o(a−1)
t e−(ot/b)

a�
e−(kt−ot)

2/2s2o(a−1)
t e−(ot/b)

a
dot

.

and the final forecast is given by the corresponding pos-
terior mean

E(ot) =
�
e−(kt−ot)

2/2s2
oat e

−(ot/b)
a
dot�

e−(kt−ot)
2/2s2o(a−1)

t e−(ot/b)
a
dot

.

On the other hand, the wave height data are also well
described in many cases by the LN distribution. In this
framework, the probability density function of non-sys-
tematic part of the error vt is the Gaussian N(0, s2),
while the corresponding observations ot are distributed
by LN(om, s2

o).
The posterior distributions then take the following

form:

P(ot|kt) = (1/ot) e−((kt−ot)
2/2s2+( ln ot−om)/2s2

o)�
(1/ot) e−((kt−ot)

2/2s2+(ln ot−om)/2s2
o)dot

,

and the prediction is given by the corresponding pos-
terior mean

E(ot) =
�
e−((kt−ot)

2/2s2+(lnot−om)/2s2
o)dot�

(1/ot) e−((kt−ot)
2/2s2+(lnot−om)/2s2

o)dot
.

For more details on the specific model, the reader is
referred to Galanis et al. (2017), and for the general Baye-
sian modelling theory, to Box and Tiao (1992) and Ber-
nardo and Smith (2000).

3. Evaluation of the operational system

Our main goal in this section is to evaluate the perform-
ance of the integrated atmospheric/wave system focusing
on those parameters that are critical both for the general
performance of themodels and for the estimation of wave
energy potential in the area, presented in Section 4: the
wave height, the wind speed and the peak wave period.

The wind and wave modelled data have been evalu-
ated against the NDBC Stations (Figure 3) for a time
period of five years (2010–2014), in a pseudo-operational
mode: Available observations are compared with model
forecasts over moving 24-h windows.

The validation analysis has been based on the follow-
ing statistical indexes, with obs denoting the observations

JOURNAL OF OPERATIONAL OCEANOGRAPHY 5



and mod the corresponding modelled data, while N
stands for the sample size:

BIAS:
1
N

∑N
i=1

(obsi − modi),

revealing possible systematic deviations of the modelling
system.

Normalized Bias(NBIAS):
1
N

∑N
i=1

obsi − modi
obsi

,

estimating the model discrepancies as a percentage of the
observations. This is an important statistical value for the
general evaluation of the modelling system when taken
into account in conjunction with absolute bias values.

However, for wave production, the absolute bias values
remain more important.

Root Mean Square Error(RMSE):

������������������������∑N
i=1 (obsi − modi)

2

N

√
,

characterising the variability of the error.
Nash–Sutcliffe efficiency coefficient (NS):

NS = 1−
∑N

i=1 (obsi − modi)
2∑N

i=1 (obsi − �O)2
,

where �O denotes the mean value of the observations as a
reference value.

Correlation coefficient (R) between modelled and
recorded values:

R =
∑N

i=1 (modi −mod)(obsi − obs)����������������������������������������������∑N
i=1 (modi −mod)

2·
���������������������∑N

i=1 (obsi − obs)
2

√√ ,

a measure of their linear correlation.
Scatter Index (SI):

SI = RMSE
Observation mean

,

which gives the Root Mean Square Error (RMSE) nor-
malised by the observation mean.

Percentiles of model outputs and observations, which
provide a complete view of the general distribution of the
data.

It is important to mention at this point that the evalu-
ation procedure was taken place after the optimisation
post-process on a pseudo-operational mode. More pre-
cisely, for the day of operational run T0, the post-proces-
sing training period was that of previous days T(−1) to T
(−7). The optimisation system, with the obtained from
the seven previous days’ weights, was then applied to
the modelled/forecasted data of the current and sub-
sequent days of forecasts T0–T3. The observations corre-
sponding to day T0 were afterwards employed only for
evaluation of the system results for day T0, ensuring in
this way that no observation data were used for training
and evaluation simultaneously. This operational cycle
was repeated for the next day of forecast.

It is worth also to notice that the timing of events is
taken into account by the above statistical indexes
since the modelled (modi) and observation (obsi) values
correspond to the same time. Moreover, the obtained
statistics have been estimated over each buoy location
differently.

Beginning the analysis with the significant wave
height, a crucial parameter for the applications and
characteristic for model’s efficiency, the average values

Figure 3. (a) Buoy/meteorological stations used for the evalu-
ation of the operational system and (b) Buoy/meteorological
stations employed in the area of application (California).

6 G. GALANIS ET AL.



of statistical indexes comparing data from all stations
(line 1) and for the California area (line 2) are presented
in Table 3. The results, for both groups, indicate a very
satisfactory general behaviour of the model compared
to observation data. BIAS and NBIAS are significantly
low, proving that the forecasted values of significant
wave height are very close to observations, and RMSE
index illustrates the limited variability. Moreover, the
values of NS and R indexes further confirm this tendency
to reliable predictions, despite the medium linear corre-
lation spotted by the average value of index R. This is
something spotted by previous works too, engaging Kal-
man filters, the utilisation of which may result to a rad-
ical reduction of biases leading, on the other hand, to an
increased phase noise (see for example Galanis et al.
2006, Louka et al. 2008).

Histograms of NBIAS distribution, presented in
Figure 4, point out that the model differentiates from
observations at a rate of less than 10% to the vast
majority of stations, which is more than 80% of them.
The cases with increased percentage of deviation (areas
−60 to −70 and −40 to −30) are in fact critically limited
and cannot be attributed to certain synoptic situations
but rather to model or station outliers. Focusing in the
area between −10% and 0 deviations, it should be
noted that most of the results are at rates lower than 8%.

Additionally, the histogram of RMSE distribution
reveals values less than 0.8 to nearly 90% of stations

under study – a fact underlying the very limited variabil-
ity of the model errors (Figure 5).

On the other hand, the general distribution of mod-
elled and observed wave height data are presented in the
percentiles and scatter diagrams (Figures 6–8) for indica-
tive cases of stations. Slight variations of the model in
comparison to the observations are only recorded.

Trying to spot and analyse some of the cases where
the model presents noticeable deviations, one could
refer to the stations 46047 and 46069, where the model
overestimates the observations, especially the maximum
values (Figure 7).

In particular, in these cases the model overestimates
maximum values with increased variation, overestimates
or underestimates the intermediate values with lower
variations and overestimates or underestimates the mini-
mum values with small variations.

Table 3. Averaged values of statistical indexes for the sig. wave
height.

Statistical indexes values for sign. wave height

BIAS NBIAS (%) RMSE NS R SI (%)

All stations −0.04 −5.30% 0.66 0.39 0.75 28.54
California area −0.02 −5.35% 0.62 0.23 0.68 33.11

Figure 4. Histograms of NBIAS for all stations and zoomed to values between −10% and 0 (sig. wave height).

Figure 5. RMSE histogram for all stations (sig. wave height).

JOURNAL OF OPERATIONAL OCEANOGRAPHY 7



Since extreme values’ estimation is always an
important issue for operational forecasting systems
led us to dig deeper presenting the model discre-
pancy rates on maximum values of wave height, as

estimated by the 95th percentile from all stations
(Table 4).

The model seems to overestimate in most of the cases
(80.9%); however the magnitude of this overestimation is

Figure 6. Percentiles, scatter diagrams and QQ plots for observations and model. NDBC stations 46054 and 46028 (sig. wave height).

Figure 7. Percentiles, scatter diagrams and QQ plots for observations and model. NDBC stations 46047 and 46069 (sig. wave height).
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limited to less than 10% in 55+ % of the cases. Of course,
for an operational forecasting system, it is always prefer-
able to overestimate than underestimate the significant
wave height for extreme wave events and natural
hazards, but it is the opposite for resource assessment.
Therefore, the goal here is an accurate as possible fore-
casting system that could equally support everyday
activities and resource studies.

In general, it is important to note that at 21.6% of the
stations the predictions differentiate less than 2% from
the observations.

Concerning the evaluation of wind speed and direc-
tion, the successful performance of the model is recon-
firmed as the statistical indexes employed prove
(Table 5).

Discrepancies between observations and forecasts are
minimum, as it is indicated by BIAS values. On the other
hand, low variation is shown by RMSE. NS and linear

correlation indexes are also within acceptable limits. As
it is expected, the statistics are improved when including
in the analysis the offshore stations (all stations category)
where the spatial and temporal evolution of wind speed
is much smoother and, therefore, more easily predicted.
The increased NBIAS comparing to the corresponding
value forHs underlines the fact that in a swell-dominated
area, as the one under study, the prediction of winds is
always an issue of increased difficulty.

In Figures 9 and 10, representative cases of the wind
speed modelled and observed distributions are displayed.

It is worth noticing at this point that the atmospheric
model captures almost perfectly the wind direction in
cases where a specific pattern of wind behaviour is
present.

Finally, peak wave period forecasts are evaluated
against observations from NDBC buoys. In all cases
where noticeable deviations emerged the hybrid Baye-
sian–Kalman filter presented in previous sections is acti-
vated. The main results, for the whole area covered by
the operational system and the major California area,
are summarised in Table 6.

The nature of this parameter makes it extremely
spatially sensitive a fact that, at least partly, explains

Figure 8. Percentiles, scatter diagrams and QQ plots for observations and model. NDBC stations 46025 and 46086 (sig. wave height).

Table 4. Analysis of the cases where the wave model differentiates significant wave heights.
Rate of discrepancy (model – observations) −40% to −20% −10% to −2% −2% to 0 0 to 2% 2% to 10% 10 to 20% 20 to 30%
Percentage of stations 5.4% 2.7% 10.8% 10.8% 45.8% 21.6% 2.7%

Table 5. Averaged values of statistical indexes for wind speed.
Statistical indexes values for wind speed

BIAS NBIAS (%) RMSE NS R SI (%)

All stations 0.07 −15.12 2.33 0.46 0.77 37.73
California area 0.29 −18.46 3.06 0.09 0.50 44.74
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the low linear correlation with modelled values. The
other statistical indexes however remain at satisfactory
levels.

It should be noted that differences and variation
between observations and final forecasted values are
kept at a desirable level.

As it is displayed in the above representative
figures (Figure 11), the model is quite accurate in

the mid values of peak period while slightly overesti-
mating lower extremes and underestimating highest
values.

The successful evaluation of the wave period pre-
sented, in addition to that of significant wave height,
supports quite strongly the well performance of the
model over both windwave and swell components of
the waves. For the specific area of study, however, it
is quite clear that the swell component is the domi-
nant one.

4. Applications on wave energy estimation

The operational system presented in the previous sec-
tions is being applied for the estimation of a rising

Figure 9. Percentiles, scatter diagrams and QQ plots for observations and model. NDBC stations 46069 and 46086 (wind speed).

Figure 10. Wind rose diagrams for observations and model. NDBC stations 46069 and 46086 (wind direction).

Table 6. Averaged values of statistical indexes for peak wave
period.

Statistical indexes values for peak wave period

BIAS NBIAS (%) RMSE NS R SI (%)

All stations 0.05 −7.00 2.94 0.01 0.32 28.18
California area 0.17 −6.23 3.40 −0.03 0.31 29.18
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renewable energy source in the California coastline:
the wave energy. Apart from the general discussion
on renewable resources for energy production,
which is receiving increased attention the last years
within the new framework posed by the global econ-
omic crisis and the security problems concerning the
nuclear energy, ocean waves is a source of special
interest. This is particularly true for the west coastline
of the US due to the continuous wave circulation in
Pacific Ocean. California is an even more advan-
tageous case since the wave energy is available closer
to the shore, making it cheaper to install and main-
tain. It should be also noted that California’s energy
needs are increasing annually at a percentage of
1.25 while only a limited portion of the electricity is
obtained from renewable sources.

There are a number of critical advantages of
this type of renewable energy comparing to other
sources such as the wind power and the photovoltaic
potential:

. It is easily adopted to the general grid due to its lim-
ited variability.

. Wave power can be produced even in the absence of
local winds by exploiting the swell component of the
waves.

. Ecological damages or consequences appear negligible
(Harvey and Nelson 2008).

Despite these advantages, the exploitation of ocean
wave energy still takes the very first steps in US, leaving
space for new investments and opportunities while, at
the same time, it is one of the hottest topics in Europe.

In this work, we present a detailed analysis of the wave
power potential (P) over the South West coastline of the
US as well as of the main environmental parameters that
affect it: the significant wave height (Hs) and the mean
(energy) wave period (Te). More precisely, P can be esti-
mated based on the following formula:

P = r · g2
64p

H2
s Te,

where ρ denotes the water density and g the gravity accel-
eration. In the present study, the wave modelled data
over a period of three years 2012–2015, provided by
the integrated modelling system presented in the pre-
vious sections, have been utilised for the temporal-spatial
analysis of the wave energy potential and the associated
wave parameters. The combination of two state-of-the-
art high-resolution numerical modelling systems sup-
ported by the hybrid optimisation statistical post-process
resulted in credible and detailed data for analysis, keep-
ing however in mind that the time length of the selected
period is rather short comparing to 10+ years that is
commonly utilised to capture interannual variability
and therefore the long-term corresponding results for

Figure 11. Percentiles, scatter diagrams and QQ plots for observations and model. NDBC stations 46006 and 46054 (peak wave period).
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the estimation of this type of variability could be a bit
different.

In Figures 12–19 the spatial distribution of the first
four statistical moments, namely the mean value, the

standard deviation, the skewness and the kurtosis, of
Hs and Te are presented for the coastline of California
over different seasonal intervals. In this way, information
is provided not only for the average behaviour of the

Figure 12. Mean and standard deviation values of the significant wave height and mean wave period for the spring period (March–
May).

Figure 13. Asymmetry (skewness) and kurtosis measures of the significant wave height and mean wave period for the spring period
(March–May).
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parameters under study but also for possible asymme-
tries of the data and the potential impact of extreme
values. It should be noted however that the latter con-
cerns the information that could be obtained by the kur-
tosis (fourth statistical moment) of the data under study

and cannot be considered as a complete extreme value
analysis.

For the spring and summer period, increased (up
to 2.5 m) Hs values are recorded at the western part
of the California islands while shadowing effects

Figure 14. Mean and standard deviation values of the significant wave height and mean wave period for the Summer period (June–
August).

Figure 15. Asymmetry (skewness) and kurtosis measures of the significant wave height and mean wave period for the summer period
(June–August).
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appear at the eastern sides. The main component of
this consists of long travelled swell waves as the elev-
ated mean wave period values (around 9 s) reveal. On
the other hand, mild standard deviations underline

the smooth – with no surprises – wave evolution,
another result of the prevailing swell wave component.
Asymmetry problems are present only near the
coastline.

Figure 16. Mean and standard deviation values of the significant wave height and mean wave period for the autumn period (Septem-
ber–November).

Figure 17. Asymmetry (skewness) and kurtosis measures of the significant wave height and mean wave period for the autumn period
(September–November).
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Increased Hs values ranging between 1 and 3 m are
emerging during autumn and winter months (Figures
18 and 19) while swell waves are prevailing (period

∼10 s). Some hints of asymmetry are present but in
low levels comparing to the expected significant wave
height and period values.

Figure 18.Mean and standard deviation values of the significant wave height and mean wave period for the winter period (December–
February).

Figure 19. Asymmetry (skewness) and kurtosis measures of the significant wave height and mean wave period for the winter period
(December–February).
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These wave characteristics lead to considerable wave
energy potential especially over the western coastline of
the California islands in a yearly basis with values ranging

between 7 and 25 kW/m during the spring and summer
months and reaching 30 kW/mduring themost energetic
autumn-winter period (Figures 20 and 21).

Figure 20. Mean and standard deviation values of wave energy potential for the spring (above) and summer (below) period.

Figure 21. Mean and standard deviation values of wave energy potential for the autumn (above) and winter (below) period.
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The most attractive areas for wave energy investments
seem to be, by far, the western coastlines of California
islands and especially that of Channel and San Nicolas
islands. The wave energy potential in there exceeds
30 kW/m especially during autumn and winter months,
while the prevailing swell waves ensure the availability
of critical wave energy amounts through the whole
year, even in periods with low local winds. Moreover,
the energy estimated data have low values of asymmetry
and kurtosis indices a fact ensuring limited impact of
possible extreme events. It should be noted however
that wave energy technology is not yet in the mature
level of other renewable energy resources and therefore
its economic viability is under question. One of the
advantages of California compared to other locations is
that the wave energy is available closer to the shore, mak-
ing it cheaper to install and maintain. This further
underlines the interest for the California islands spotted
above, where the commercial viability of new wave parks
development could be supported by the proximity of
areas with increased wave energy potential to the land.

5. Conclusions

A new fully operational atmospheric/wave modelling
system for the offshore area of the west coastline of the
US is presented in this work with special emphasis to
the California coastline. This is a result of a joint work
of the Naval Ocean Analysis and Prediction Laboratory
of the US Naval Postgraduate School; the Center of
Excellence in Earth Systems Modeling & Observations
of the Schmid College of Science & Technology, Chap-
man University, Orange, California and the Mathemat-
ical Modeling Laboratory of the Naval Academy of
Greece.

The operational system consists of two state-of-the-
art, widely used numerical models: The atmospheric
model RAMS and the wave model WAM, operating at
a high horizontal resolution mode towards a 2 km grid
in the finest grid of a nested domains sequence. The
numerical models are further supported by a new hybrid
optimisation post-process, based on non-linear Kalman
and Bayesian inference, able to eliminate possible local
systematic biases and to critically reduce forecasts
uncertainty.

The above system has been evaluated over a period of
five years against a wide number of NDBC buoys cover-
ing all the latitude range of the west US coastline and
focusing on three main parameters, selected for their
impact on a number of applications including renewable
energy assessment: the wind speed, significant wave
height and peak wave period. The results obtained
were satisfactory, resulting in very low mean biases of

10−2 magnitude and analogously limited RMSE and nor-
malised bias indices. Moreover, it has been proved that
for the vast majority of the stations used (more than
80%) the overall deviation of the modelled outputs is
less than 10%. Some isolated incidents of elevated discre-
pancies have been recorded for extreme cases estimation,
but even in these cases the deviations where limited to a
range between 2% and 10% for the majority of the evalu-
ation stations.

The proposed operational system is already utilised as
a monitoring and forecasting tool in the greater area of
California but is, furthermore, exploited for a number
of applications, including renewable energy activities.
Such a case is presented in the third part of the current
work focusing to the wave energy potential: the amount
of energy that can be produced by the sea waves over the
California coastline. The latter proves to be an advan-
tageous area for similar applications, being exposed to
long fetch swell waves of the Pacific Ocean that lead to
energy potential amounts exceeding 30 kW/m over hot
spot areas, some of them a lot close to islands, which is
advantageous for installation and maintenance purposes.
Moreover, low corresponding impact from extreme
values is present and the wave energy data are exposed
to limited variability, facts that reveal critical advantages
for wave energy platforms development. In this way,
‘clean’ energy production can be pursued at amounts
even higher than the analogous cases of the Atlantic
European coastline where increased similar activity has
already taken place.
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