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A three dimensional hydrostatic finite volume ocean model has been developed to
solvetheintegral dynamical equations. Sincethebasic (integral) equations ar e solved
for finite volumes rather than grid points, the flux conservation is easily enforced,
even on arbitrary meshes. Both upwind and high-order combined compact schemes
can beincorporated into the model to increase computational stability and accuracy.
Thismodel usesahighly distorted grid system near theboundary. Thelateral bounda-
riesof each finitevolumeareperpendicular tox and y axesand thetwo vertical bounda-
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riesarenot purely horizontal. Four types of finite volumes are designed to follow the
terrain with four (Type-A), three (Type-B), two (Type-C), and one (Type-D) vertices
in the lower surface. Such a terrain-following grid discretization has superior fea-
turesto z- and o-coordinate systems. The accuracy of this model was tested.

1. Introduction

Four different schemes are available to solve partial
differential equations numerically: (1) spectral or spec-
tral transform, (2) finite difference, (3) finite element, and
(4) finite volume. Because of the lateral boundaries with
complicated shape, the ocean basin is inherently ill-suited
to the spectral technique. The finite element method has
been extensively applied to 2D barotropic problems, such
as tides and storm surge (Foreman et al., 1993; Le
Provost et al., 1994) due to the flexibility in adapting the
grid locally to any desired resolution, but it has not been
applied to 3D baroclinic problems only until recent years
(e.g., Lynch et al., 1996). A principal problem of this
method appears to be the mass conservation. While glo-
bally this conservation is assured, it may not conserve
the mass locally (Kantha and Clayson, 2000).

The finite difference method, which transforms the
partial differential equations into difference equations at
grid points, is commonly used in regional and basin-scale
ocean modeling. Let (X, ¥) and Z represent the horizontal
and vertical directions. Various finite difference models
use different vertical coordinates such as z-coordinate
(e.g., Bryan, 1969), terrain following 0- and S-coordinates
(e.g., Blumberg and Mellor, 1987; Song and Haidvogel,
1994), and isopycnal coordinate (Bleck et al., 1992). The
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solutions of the finite-difference models are valid only at
the grid points. For coastal oceans, the finite-difference
models usually use the terrain following o-coordinate and
have large truncation errors at steep topography that is
caused by horizontal pressure gradient errors. Much work
has been done to improve the accuracy of the o-coordi-
nate finite-difference models (e.g., Mellor et al., 1994;
Chu and Fan, 1997, 1998, 1999, 2000, 2001).

The finite volume method, which transforms the par-
tial differential equations into integral equations at finite
volumes, has not yet become popular in ocean circula-
tion modeling and simulation. However, the conservation
is easily enforced even on arbitrary grids because the in-
tegral equations link the temporal variability of the de-
pendent variables for the volume to the fluxes across the
boundary of that volume (Kobayashi, 1999; Ward, 1999;
Hermeline, 2000; Chen et al., 2003). This leads to a very
flexible volume setup that makes the finite volume method
invaluable, especially in the abrupt topography.

In this paper we present the formulation and prelimi-
nary test of the finite volume ocean model (VOM). In
outline, this paper presents a description of the dynamic
and thermodynamic integral equations in Section 2. A
depiction of the finite volume discretization with crystal
grids, flux computation, and explicit finite volume scheme
is given in Sections 3. The preliminary model test case is
described in Section 4. Comparison between the finite
difference and finite volume methods is discussed in Sec-
tion 5. Section 6 presents the conclusions.
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2. Dynamic and Thermodynamic Integral Equations
Let (X, y) and z be the horizontal and vertical Carte-
sian coordinates with constant unit vectors (&, &) and €,.
The circulation model is established on the base of two
approximations: hydrostatic and anelastic. The anelastic
approximation is to assume that the local time rate of
change in density (p) is small; the continuity equation
may be approximated by (Ogura and Phillips, 1962)

3 (pv)=0. (1)

Here, V = (u, v, W) is the velocity vector and U is the
three-dimensional gradient operator. The momentum
equation is given by

a(pV)
ot

+03 (pil)=-Cpr 3 (U V)+F, (2a)

where p is the pressure, (! is the eddy viscosity. F repre-
sents the Coriolis force and gravity (body forces), and
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Fig. 1. Four types of finite volumes: (a) Type-A with four ver-
tices (SW, NW, SE, NE) of the upper surface away from the
bottom topography, (b) Type-B with one vertex (SW) of
the upper surface at the bottom topography, (c) Type-C with
two vertices (SW and NW) of the upper surface at the bot-
tom topography, and (d) Type-D with three vertices of the
upper surface at the bottom topography with only one ver-
tex (NE) in the water.
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is the momentum flux tensor. Let ( be a scalar represent-
ing temperature, salinity, satisfying the advection-diffu-
sion equation

o(py)
ot

+0 (ovy)=3 (k) w)+F,.  (2b)

where K, and F, are the mixing coefficient and the forc-
ing term for (.

Integration of (1) on a finite volume Q (Fig. 1) leads
to

[oB (pv)da = §. PV + ndr, (3)

and integration of (2a) and (2b) leads to

J’Q¥d§2 +fr PVV e ndl

= —jﬁr pndl +er UOVe ndr+ J’QFdQ,

(4a)

220

dQ +j6|— PYN e ndl = fr KyOy ndi+ J’Q FydQ,
(4b)

where [ is the boundary of Q and n is the unit vector
normal to I (outward positive). The two equations (4a)
and (4b) are quite similar in terms of using the finite vol-
ume method. The only difference is the pressure term,

_fr pndl”" . Equations (4a) and (4b) can be combined into
one equation

J’Qg—(fd9+frq)\/-ndr=fr Ko nd [ Fr AP,

(4¢)

where the scalar @is one of (pu, pv, pY) and

Q=p, K,=l AP, =AR,
®=p, K,=l AP,=AR, (5)
®=pY, K,=Ky OP,=0,



where (AP,, AP)) are the (X, y) components of the pres-
sure gradient force on the volume Q.

For a temporally varying finite volume, the time rate
of change of the volume integrated ¢-value is computed
by

0 G10] 0Q

— Q=¢ —dQ+¢p—. 6

ot qud fQ ot ¢ ot ( )
Substitution of (6) into (4c) leads to

0 0Q
EJ.QWQ_ COE"'TPF W'ndr

=§ Ko0e ndr+ [ FdO- AP, (7a)

which is the basic equation for ¢ (integral @-equation).
Time integration of (7a) from t; to t, gives

[ ¢ty )dQ - I ot )do
= -atg, ¢tV « ndr + atg. k0 ¢{t")+ nar

ot [ Folt)do +aR{E)] + At%p%—?au,

(7b)

where At=t, —t,, and t; S t* <t,. If t* = t,, the scheme is
explicit; if t* =1, , the scheme is implicit. Adjustment of
t* may lead to a high-order temporal discrete scheme.
The last term in the right-hand side of (7b) represents the
temporal volume change due to surface elevation fluc-
tuation.

3. Discretization

3.1 Terrain-following crystal grids
Discretization of VOM in the horizontal directions

x=x(1), y=¥(), (8)

is similar to the z- and O-coordinate systems.
Discretization of VOM in the vertical direction,

z=123,j, k), 9)

varies with the location (i, j, K) and time (t). Let the bot-
tom topography be represented by

zZ= _H(X7 y)7

where H(X, y) is assumed to be a single-value function of
(X, ). Let (g,, &) be the constant unit vectors in the (X, y)
directions.

Four types of finite volumes are constructed. Type-
A (Fig. 1(a)) has four vertical lateral surfaces perpendicu-

lar to e, or &

n,=¢€, Ny==8, (10)
and the lower surface either away or at the ocean bottom.
The four vertices (SW, NW, SE, NE) of the upper surface
are away from the bottom topography. The upper and
lower slanted surfaces are trapezoids. Type-B has one
vertex of the upper surface at the bottom topography (say
vertex SW). Since H(X, y) is a single valued function, it
is all land below the vertex SW. The lower surface of the
finite volume is a triangle (no longer a trapezoid). Such a
volume (Fig. 1(b)) still has four vertical surfaces and two
slanted surfaces (both triangles). Type-C has two verti-
ces of the upper surface at the bottom topography (say
vertices SW and NW). It is all land below the vertices
SW and NW. The lower surface shrinks into a line. The
finite volume has two slanted surfaces and three vertical
surfaces with two surfaces perpendicular to n, and one
surface perpendicular to n, (Fig. 1(c)). Type-D has three
vertices of the upper surface at the bottom topography
with only one vertex (say NE) in the water. The vertices
NW and SE are at the bottom boundary and the vertex
SW is inside the land (not shown in Fig. 1(d)). The lower
surface shrinks into a point. The finite volume has two
slanted surfaces and two vertical surfaces perpendicular
to n, and ny (Fig. 1(d)). This grid system is called the
crystal grid due to the crystal shape of the finite volumes.
The normal unit vector (ng) on the slanted surfaces of all
the four types of finite volumes is calculated by

o=, - %0 o) [RE L
sTH ox ay ¥V * X EFyE '

The mesh characteristics make the VOM with crys-
tal grid (Fig. 1) superior to the z- and O-coordinate sys-
tems. Figure 2 shows that the discretization of VOM in
the vertical direction differs from both z- and 0-coordi-
nate models. The finite volumes with the crystal grids
have six surfaces for non-boundary volumes and six (or
less) surfaces for boundary volumes. To determine Ny in
a finite volume enclosed by (X;, X;,;) in the X-direction
and by (Y;, Yj;1) in the y-direction, a bi-linear interpola-
tion is used to obtain the S-boundary (i.e., slanted bound-
ary) for that volume,

(11)
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Fig. 2. Comparison among (a) z-coordinate, (b) finite volume,
and (c) o-coordinate systems.

(x=x)(y-v))

(X_Xi+1)(y_y]'+1) N

Ay =2 (=) =vim) (6= xa)(y; - )
. (X_Xi)(y_yj+1) . (X—Xi)(y—y]-)
Y (Xi+1 - X )(Yj Y +1) (Xi+1 - Xi)(yj + —y]-)’
(12)
where

= Z(Xi’yj+1)’
=7 Xi+1syj +1)'

74, = Z(Xi’yj ), 25
5 =17 Xi+1»yj)s 2

Substitution of (12) into (9) determines the unit vector Ng
at the center of the horizontal cell, (X1, Yj112) = [(X +
Xi+1)/2a (y] + yj+1)/2]9

= (cosb,, cosf, cosb,), (13)

where

Zx(Xi+1/2vyj+1/2) Zy(xi+1/27yj +1/2)
cosf, = ———F"——"L cosf, = —————1~

X / 2,2 y 2,2
V1+Z0 42 \/1+zx+zy
1
cosf, = —M
‘ /‘1+zz+2
VT T

and z, = 0Z/0X, z, = 0z/0y. The normal gradient of any
variable @is calculated by

09
—r =0
ong ¢

_ Do
e 8900 s 1
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3.2 Flux computation

The surfaces of a finite volume perpendicular to (n,,
ny, Ny are called the X-, y- and s-boundaries. In basic equa-
tions (4a) and (6), the fluxes across the X-boundary of a
finite volume are computed by

fX= Ix_boundm pV e n,dr = puAyAZ,
f(l;( = Ix-boundaww ) nxdr = (&AyAL

X = 99,
fT .IX boundary (PD(P n dr K a yAZ’

R =plydz, RS =0,

(15)

where the overbar indicates the spatially averaged value
at the boundary surface, (P, P,*) are the two compo-
nents of the horizontal pressure force on the X-boundary.
The fluxes across the y-boundary of a finite volume are
computed by

m = J-y-boundary pV * nydr = pVAXAZ’

- Iy-boundaryw ' nydr = WAXAZ’

0,

y _

fT Iy boundary (pD(P n dr K ay )ﬂz,

Pyy =pAxAz, P} =0, (16)
where (P, Pyy) are the two components of the horizontal

pressure force on the y-boundary. The fluxes across the
S-boundary of a finite volume are computed by

fs=
m IS—boundaIy

pVenddr = pEN u%—vg—:{@xmy,

0z
f(l’ s-boundary ¢/ en dr (%N U— - Va_y@my’

a(p g 0 qoaz 0(0 0zl
5=
T Is—boundaquJ a (pEa_Z 0X 0X ay Oy%

pe=-pPpxnz B = —p%AxAy,

17
ox y oy (17)

where (P,5, Pys) are the two components of the horizontal
pressure force on the S-boundary. It is noticed that the
derivatives should be computed by



dp _ d0¢p 0z 5(p

dy & oy 9z oz

ap _ o9

0p _ 0¢_0z op
oX O oxdz’

(18)

where (8¢ dX, 0@ dy, ¢ dz) are computed directly from
the grid point data.

3.3 Explicit scheme
The finite volume scheme for solving continuity
equation (3) at (i, j, K) is

1 . o1
i+ 2 doko £ =5 bk A 5k
.1 . 1 . 1
_fr%'llasl _E’kg-'- fnﬁS’J’k-l-Eg_ frﬁa’Lk_Eg:O (19)

The finite volume scheme for solving the basic equation
(7b) is explicit if t* =1,

- d0a,

:f;S—E,j,kg— f;a+%,j,kg+ fga,j—%,kg
-tk k=S el ke o
~t g -2 ik R 2k - K
+f}’§,j+%,kg— ffa,j,k—%g+ (o k20

20
+F(i, J.K)Q; | i + AP(i, jk+AtE(oa g

)
(20)

where n is the time step. The upper most finite volumes
(k=1) Q;; , change with time when the surface elevation
n varies,

n) n)
@E&g = axay ! g .
at ,j,l at ,j

The finite volumes below the surface Q;; (k> 1) do not
change with time,

n)
? =0, forkz0.
ot «

The horizontal pressure gradient force (AP, AP,) on the
finite volume is computed by

APX:PXXS—I,JKD—PS ,jkg
+Re k- ID—F>S§Jk+ 0 (21)

1.0 o100
=pY -— -pY —
ARy PVS" 2°Ko PVS’]+2’kD

10

+Pyﬂi,k-—g— R’ ’j’k+5D (22)

4. Preliminary Test

4.1 Test strategy

Usually, verification of a new numerical model
should be divided into stages: (1) evaluating its own per-
formance, and (2) identifying its difference from the ex-
isting models. Theoretically, the performance of any nu-
merical ocean model should only be tested against ana-
lytical or known solutions. For coastal ocean, it is hard to
find any analytical solutions. Known solutions are hard
to find. Without atmospheric and lateral forcing, the ocean
that is initially at rest should be at rest forever. Thus, we
have the known solutions for this case,

(23)

The seamount test case (Beckmann and Haidvogel, 1993)
is to use this known solution for model evaluation. Any
nonzero horizontal pressure gradients (or velocities) ob-
tained from the numerical model are considered errors.

Several advanced test cases have been proposed to
identify the model-model difference and the sensitivity
to the choice of (say) advection algorithm, such as gravi-
tational adjustment of density front, residual circulation
over a coastal canyon, combined effects of topography
and stratification (Haidvogel and Beckmann, 1998). The
second stage test should be conducted after the first stage
test. In this paper we present only the first stage evalua-
tion using the seamount test case.

In regional oceanic (or atmospheric) prediction mod-
els, the effects of bottom topography must be taken into
account and usually the terrain-following sigma coordi-
nates should be used to imply the continuous topogra-
phy. In sigma coordinates the water column is divided
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into the same number of grid cells regardless of depth.
Consider 2D problems for mathematical simplification.
Let (X, 2) be the Cartesian coordinates and ( X, 0) be the
sigma coordinates. The conventional relationships be-
tween z- and O-coordinates are given by

o=2"1 (24)

where 1 is the surface elevation. Both z and O increase
vertically upward such that z= ), 0= 0 at the surface and
0 = —1, z = —H at the bottom. The horizontal pressure
gradient becomes a difference between two large terms

H+0§jaH an

which may cause large truncation error at steep topogra-
phy (e.g., Mellor et al., 1994; Chu and Fan, 1997, 1998,
1999, 2000, 2001, 2003). Since the horizontal pressure
gradient error is a key problem in the terrain-following
ocean models, the first step of the VOM test should be
the evaluation of its capability to reduce the horizontal
pressure gradient error.

op _0p _

oX 0X

(25)

4.2 Seamount test case

Suppose a seamount located inside a periodic f-plane
(fy= 10~* s7!) channel with two solid, free-slip bounda-
ries along constant y. Unforced flow over seamount in
the presence of resting, level isopycnals is an ideal test
case for the assessment of pressure gradient errors in simu-
lating stratified flow over topography. The flow is as-
sumed to be re-entrant (periodic) in the along-channel
coordinate (i.e., X-axis). The seamount test case is cho-
sen to test the performance of VOM.

The domain is a periodic channel, 300 km long and
300 km wide. The channel has a far-field depth h,,, an
in the center includes an isolated Gaussian- shape
seamount with a width L and an amplitude ah_,, (Fig. 3),

max

O
3

0 _ 2
—aexpl}(x XO)

L

wa=mwﬁ
B

where (X,, Y,) are the longitude and latitude of the
seamount center. In this study we use

Ny =4500km, L=25km, a=0.9. 27)
Suppose that the background fluid is at rest and with con-

stant salinity (35 ppt) and an exponentially stratified ini-
tial temperature,
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Fig. 3. Seamount geometry.

T(z2)=5+15 exp%ﬁ% (unit: °C) (28)

where Hy = 1000 m. Since the fluid is initially at rest and
the density field is independent of X and Yy, without forc-
ing the velocity and horizontal pressure gradient should
be zero. Any nonzero velocities are computational errors.

4.3 Experiment setting

A o-coordinate finite difference model, the Princeton
Ocean Model (POM, Blumberg and Mellor, 1987), is
implemented for the seamount test case using horizon-
tally varying grids with high resolution over the seamount,

Ojr (M

—8kmD OSSlng—% i=12,..
O Ojp
. Ujm .
Ay). =8 km [ —0.5sin =1,2,...M,,
(&), B HMV% J ’

where M, = My = 64. The VOM with the same physics,
parameterization, and horizontal grids as the POM is also
implemented for the seamount test case. The vertical
cross-sections of the VOM and POM are illustrated in
Figs. 2(b) and (c). The time steps for barotropic and
baroclinic modes are 6 s and 180 s, respectively.

(&%)

(29)

5. Comparison of Finite Difference and Finite Vol-
ume Schemes

5.1 Temporal variations of error volume transport
Both cases are integrated for 20 days for the stand-

ard test. Figure 4 displays errors in the volume transport

streamfunction after performing 20 days of integration
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Fig. 4. Volume transport streamfunction (Sv) at day-20 using
the finite difference and finite volume schemes.

using the finite volume and finite difference schemes. The
volume transport streamfunction has a large-scale eight-
lobe pattern centered on the seamount. The errors in the
volume transport reduce by more than 50% from finite
difference to finite volume schemes. On the 20th day, the
errors in the volume transport varies from —56 to 84 x
107 Sv using the POM and from —28 to 45.5 x 10~ Sv
using the VOM.

5.2 Temporal variations of pressure gradient error

Owing to the very large number of calculations per-
formed, we discuss the results exclusively in terms of the
maximum and spatially averaged absolute values of the
horizontal pressure gradient errors, called the maximum
pressure gradient error (PG,,) and the mean pressure
gradient error (PG,,). Figures 5(a) and (b) show the time
evolution of PG,,,, and PG, for the first 20 days of inte-
gration using the finite difference and finite volume
schemes. Both errors increase with time; however, they
are 10-15 times smaller using the finite volume scheme
than using the finite difference scheme. For example, at
Day-10, PG,,,, = 33.42 x 10 N/m? using the finite dif-
ference scheme and PG,,,, = 2.16 x 10 N/m? using the
finite volume scheme; PG,, = 0.449 x 10~ N/m?® using
the finite difference scheme and PG, = 0.04 x 10~ N/m?
using the finite volume scheme; at Day-20, PG, =
58.41 x 10~ N/m? using the finite difference scheme and
PG, = 4.18 x 10~ N/m? using the finite volume scheme;
PG, =1.596 x 107 N/m? using the finite difference
scheme and PG,, = 0.150 x 10~ N/m? using the finite
volume scheme.

5.3 Temporal variations of error velocity

Owing to the very large number of calculations per-
formed, we discuss the results exclusively in terms of the
maximum and spatially averaged absolute values of the
spurious velocity generated by the pressure gradient er-
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Fig. 5. Comparison between the finite difference and finite
volume schemes on temporal variations of (a) maximum
pressure gradient error (N/m?), (b) mean pressure gradient
error (N/m?), (c) peak error velocity (m/s), and (d) mean
error velocity (m/s).

rors, called the peak error velocity (Vp) and the mean er-
ror velocity (V,,). Figures 5c and 5d show the time evolu-
tion of the mean and peak error velocity for the first 20
days of integration using the finite difference and finite
volume schemes. Both peak and mean error velocities
increase with time; however, they are 4 times smaller
using the finite volume scheme than using the finite dif-
ference scheme. For example, at Day-10, Vp =2.61 cm/s
using the finite difference scheme and V, = 0.57 cm/s
using the finite volume scheme; V,, = 0.054 cm/s using
the finite difference scheme and V,, = 0.015 cm/s using
the finite volume scheme; at Day-20, Vp =4.25 cm/s us-
ing the finite difference scheme and V, = 0.98 cm/s using
the finite volume scheme; V,, = 1.033 cm/s using the fi-
nite difference scheme and V,, = 0.028 cm/s using the
finite volume scheme.

6. Conclusions

(1) A three-dimensional, finite volume ocean cir-
culation model has been developed. The basic equations
are transformed from differential into integral forms us-
ing the hydrostatic and anelastic approximations and
solved for finite volumes (rather than grid points) with
the flux conservation enforced on arbitrary meshes. This
model has great flexibility in establishing model grids.
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(2) This model uses a highly distorted grid system
near the boundary. The lateral boundaries of each finite
volume are perpendicular to X and y axes and the two
vertical boundaries are not purely horizontal. Four types
of finite volumes are designed to follow the terrain with
four (Type-A), three (Type-B), two (Type-C), and one
(Type-D) vertices in the lower surface. Such a terrain-
following grid discretization reveals superior features to
Z- and O-coordinate systems. The accuracy of this model
has been tested.

(3) The seamount test case is the first step in show-
ing the added value of using a finite volume scheme. The
second-order finite volume scheme leads to a drastic er-
ror reduction compared to the second-order finite differ-
ence scheme using POM.

(4) TItis noted that the seamount test case presented
here is preliminary. More cases should be examined in
future to test the difference between VOM and the exist-
ing ocean models using gravitational adjustment of a den-
sity front, residual circulation over a coastal canyon, and
combined effects of topography and stratification.
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