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(CTD) datasets. Among all the methods considered, the 
ELG method yielded the highest skill score and the lowest 
Shannon information entropy (i.e., the lowest uncertainty).
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Maximum curvature · Maximum angle · Optimal linear 
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1 Introduction

Near the ocean surface, intense turbulent mixing driven 
by shear (due to surface wind stress) and convection (due 
to heat loss from the ocean to the atmosphere) leads to a 
layer that is vertically quasi-uniform (i.e., has a near-zero 
vertical gradient) in temperature and density. Depending 
on whether the temperature or the density is being studied, 
this layer is termed the isothermal layer  or the mixed layer, 
respectively. Beneath the isothermal (mixed) layer, there 
is a layer—the thermocline (for temperature) or the pyc-
nocline (for density)—with a strong vertical gradient that 
restricts heat (buoyancy) exchange between the isothermal 
(mixed) layer and the deep layer below the thermocline/
pycnocline (Fig. 1).

The isothermal (mixed) layer provides dynamic–thermo-
dynamic links and mediates the exchange of mass, momen-
tum, and heat between the atmosphere and the ocean; it is 
therefore a influence on the weather and the climate. This 
exchange depends on an important parameter, the isother-
mal layer depth (ILD, HT) [or the mixed layer depth (MLD, 
H)], which determines the heat content and mechani-
cal inertia of the layer. Temporal variability in HT (or H) 
is caused by many processes that occur in the isothermal 

Abstract Two distinct layers usually exist in the upper 
ocean. The first has a near-zero vertical gradient in tem-
perature (or density) from the surface and is called the iso-
thermal layer (or mixed layer). Beneath that is a layer with 
a strong vertical gradient in temperature (or density), called 
the thermocline (or pycnocline). The isothermal layer depth 
(ILD) or mixed layer depth (MLD) for the same profile var-
ies depending on the method used to determine it. Also, 
whether they are subjective or objective, existing methods 
of determining the ILD do not estimate the thermocline 
(pycnocline) gradient. Here, we propose a new exponen-
tial leap-forward gradient (ELG) method of determining 
the ILD that retains the strengths of subjective (simplicity) 
and objective (gradient change) methods and avoids their 
weaknesses (subjective methods are threshold-sensitive and 
objective methods are computationally intensive). This new 
method involves two steps: (1) the estimation of the ther-
mocline gradient Gth for an individual temperature profile, 
and (2) the computation of the vertical gradient by averag-
ing over gradients using exponential leap-forward steps. 
Such averaging can filter out noise in the profile data. Five 
existing methods of determining the ILD (difference, gra-
dient, maximum curvature, maximum angle, and optimal 
linear fitting methods) as well as the proposed ELG method 
were verified using global expendable bathythermograph 
(XBT) temperature and conductivity–temperature–depth 
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(mixed) layer (surface forcing, lateral advection, internal 
waves, etc.); such variability is diurnal, seasonal, and inter-
annual (e.g., Chu 1993; Chu et al. 1990, Chu and Garwood 
1991). Spatial variability in HT (or H) ranges from less than 
20 m in summer to more than 500 m in winter at subpolar 
latitudes (Monterey and Levitus 1997).

Table 1 gives examples of the various methods/criteria 
that have been used to determine the ILD from the temper-
ature profile. A single-gradient (near-zero) concept is often 
used to determine HT. The difference method requires the 
deviation of T from its value at a reference depth (zref) to be 
smaller than a certain fixed threshold value. The threshold 
applied varies from 1.0 °C (Lamb 1984; Rao et al. 1989; 
Obata et al. 1996) to 0.8 °C (Kara et al. 2000), 0.5 °C 
(Wyrtki 1964), 0.2 °C (de Boyer Montegut et al. 2004; Oka 
et al. 2007; Chu and Fan 2010a, b), and 0.1 °C (Sprint-
all and Roemmich 1999). The reference level used varies 
from near to the surface (Wyrtki 1964) to a depth of 10 m 
(de Boyer Montegut et al. 2004; Sprintall and Roemmich 

1999). Kara et al. (2000) claimed that 0.8 °C is the opti-
mal criterion after performing a statistical comparison 
between data in the NOAA National Centers for Environ-
mental Information (NCEI) World Ocean Atlas (WOA) and 
a long-term time series of monthly ocean weather station 
observations.

The gradient method requires ∂T/∂z to be smaller 
than a certain fixed value. This value has varied from 
0.015 °C/m (Defant 1961) to 0.02 °C/m (Wyrtki 1964), and 
≥0.025 °C/m (Lukas and Lindstrom 1991; Chu et al. 2002). 
A dual-gradient (changing from a near-zero to a non-zero 
gradient) concept is also used to determine HT. For exam-
ple, taking the curvature to be largest at −HT (Fig. 1), i.e.,

leads to the maximum curvature method (Chu et al. 1997, 
1999, 2000; Lorbacher et al. 2006). However, as pointed 
out by Chu et al. (1999) and Chu (2006), large errors may 

(1)z = −HT,
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Fig. 1  Characteristics of the mixed layer and thermocline: a temperature profile illustrating the depths z(0.1) and z(0.7); b the vertical gradient 
∂T/∂z and the definition of z1
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occur when using this method with noisy profile data, 
since the curvature method involves calculating the second 
derivative versus depth. Therefore, to improve the curva-
ture method, Chu and Fan (2010a, b, 2011) developed the 
optimal linear fitting (OLF) and maximum angle methods 
to identify HT, which are capable of handling noisy profile 
data. However, these two methods are iterative and not as 
straightforward to use as methods developed previously 
(such as the difference, gradient, and maximum curvature 
methods).

Given this diversity of methods for calculating  HT, 
questions arise. What is the uncertainty in the results given 
by the existing methods/criteria? Can this uncertainty 
be quantified objectively? Is it possible to develop a new 
straightforward method that is capable of handling noisy 
profile data and yields  HT values with low uncertainty? 
The purpose of the study reported in the present paper was 
to answer these questions. The rest of the paper proceeds 
as follows. Section 2 describes the expendable bathyther-
mograph (XBT) dataset (572,504 profiles from 1990 to 
2013) from the Global Temperature and Salinity Profile 
Program (GTSPP) and the conductivity–temperature–depth 
(CTD) dataset (847,560 profiles from 1961 to 2012) from 
the NCEI World Ocean Database (WOD). Section 3 dis-
cusses the uncertainty associated with and the capabilities 
of five existing methods of determining the ILD. Section 4 
presents a new, highly capable exponential leap-forward 
gradient (ELG) method of identifying HT with low uncer-
tainty. Section 5 shows the global seasonal ILD and its 

statistical characteristics (such as its standard deviation, 
skewness, and kurtosis) that were identified by applying 
the ELG method to the combined GTSPP/XBT and WOD/
CTD data. Section 6 shows the dynamical implications of 
those results. Section 7 presents the conclusions of this 
study. Appendices 1, 2, and 3 present MATLAB func-
tions for computing the thermocline gradient, preparing for 
ELG, and determining HT using the ELG scheme, as well 
as an analytical temperature profile “dataset” that can be 
employed to practice the use of the MATLAB functions,

2  Datasets

The WOD/CTD temperature (1961–2012, 847,560 profiles) 
and global GTSPP/XBT (1990–2013, 572,504 profiles) 
datasets were used to evaluate the five most commonly 
used methods [difference, gradient, maximum curvature, 
maximum angle, and optimal linear fitting (OLF)] listed in 
Table 1. The WOD data have been made available to the 
public for many years by the NOAA National Centers for 
Environmental Information (NCEI) through the website 
https://www.nodc.noaa.gov/OC5/WOD/pr_wod.html. The 
primary goals of the GTSPP are to develop and maintain 
a global ocean temperature–salinity resource contain-
ing data that are both up-to-date and of the highest pos-
sible quality, and to make global measurements of ocean 
temperature and salinity quickly and easily accessible to 

(2)T = T(z̃).

Table 1  List of methods of determining the ILD from a temperature profile (note: this is not a complete list)

Source Area Criterion/method −zref Gradient

Sprintall and Roemmich (1999) Pacific ΔT = 0.1 °C 10 m Single

Oka et al. (2007) North Pacific ΔT = 0.2 °C 0 m Single

Thompson (1976) North Pacific ΔT = 0.2 °C 3 m Single

de Boyer Montegut et al. (2004) Global ocean ΔT = 0.2 °C 10 m Single

Obata et al. (1996)
Monterey and Levitus (1997)

Global ocean ΔT = 0.5 °C 0 m Single

Araujo et al. (2011) Southwest tropical Atlantic ΔT = 0.5 °C 0 m Single

Chu et al. (2010) Global ocean ΔT = 0.8 °C 0 m Single

Lamb (1984) Tropical Atlantic ΔT = 1.0 °C 0 m Single

Rao et al. (1989) Indian Ocean ΔT = 1.0 °C 10 m Single

Defant (1961) Atlantic Ocean ∂T/∂z = 0.015 °C/m Single

Wyrtki (1964) East Pacific Ocean ∂T/∂z = 0.02 °C/m Single

Lukas and Lindstrom (1991) Western equatorial Pacific ∂T/∂z = 0.025 °C/m Single

Chu et al. (1997) Yellow Sea Maximum curvature Dual

Chu et al. (1999) Beaufort/Chukchi Sea Maximum curvature Dual

Lorbacher et al. (2006) Global ocean Maximum curvature Dual

Chu and Fan (2011) Western North Atlantic Maximum angle Dual

Chu and Fan (2010a, b) Western North Atlantic Optimal linear fitting Dual

This paper Global ocean Exponential leap-forward gradient (ELG) Dual

https://www.nodc.noaa.gov/OC5/WOD/pr_wod.html
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users (Sun et al. 2010). Both real-time data (transmitted 
over the Global Telecommunications System, GTS) and 
delayed-mode data (received by the NCEI) are acquired 
and incorporated into a continuously managed database. 
The quality control procedures used in GTSPP were devel-
oped by Canada’s Marine Environmental Data Service and 
published through the Intergovernmental Oceanographic 
Commission (IOC) (GTSPP Working Group 2010). Inter-
ested readers are also referred to http://www.iode.org for 
more detailed information. It should be noted that there is a 
fall-rate bias issue with older XBT probes and a pure ther-
mal bias issue with the XBT data (Cheng et al. 2016). The 
GTSPP preserves XBT data, probe type, and fall-rate equa-
tion information (when provided) in the continuously man-
aged database. Two new codes were created to retain depth 
correction information in the GTSPP data. Interested read-
ers are referred to Sun et al. (2009), which can be down-
loaded from http://www.oceanobs09.net/proceedings/cwp/
cwp86/index.php. Both the WOD/CTD and the GTSPP/
XBT profiles are available in various resolutions, ranging 
from high (increments of about 1 m) to low (increments of 
much larger than 10 m).

3  Capabilities of and uncertainty associated 
with the existing methods

3.1  Q index

Let us represent an observational temperature profile from 
z1 down to a depth zK as [T(zk), k = 1, 2, …, K], with 〈T〉 
being the vertical mean. The Q index,

 was proposed by Lorbacher et al. (2006) as a means to 
determine the quality of a determined value of the ILD. 
Here, σ is the standard deviation of [T(zk)]. For a perfect 
determination of the ILD,

which causes Q = 1. When the ILD has been greatly under-
estimated, both HT and 1.5 × HT are smaller than the real 
ILD,

which yields small Q values. For a greatly overestimated 
value of the ILD, both HT and 1.5 × HT are larger than the 
real ILD,

which also yields small Q values. Values for the Q index 
usually lie in the interval [0, 1].

(3)Q = 1−
σ |−HT

σ |−1.5×HT

,

(4)σ |−HT
∼= 0, σ |−1.5HT

= finite positive value,

(5)σ |−HT
∼ σ |−1.5HT

∼ comparable small positive values,

(6)σ |−HT
∼ σ |−1.5HT

∼ comparable finite positive values,

3.2  Skill score and Shannon information entropy

The ILD (or MLD) is well identified if Q ≥ 0.8, uncer-
tainly identified if 0.8 > Q ≥ 0.5, and cannot be identified 
if Q < 0.5 (Lorbacher et al. 2006). For a group of pro-
files (such as a temperature profile dataset), we can cal-
culate the frequency of occurrence of Q values in each of 
these three intervals, i.e., F[Q ≥ 0.8], F[0.8 > Q ≥ 0.5] , 
and F[Q < 0.5]. Increasing the value of F[Q ≥ 0.8] and 
decreasing the value of F[Q < 0.5] improves the quality of 
H determination.

A skill score can be defined as

which represents the overall ability of a given method/cri-
terion to accurately determine H based on a given profile 
dataset. If the Q values are all above 0.8 (HT is well identi-
fied), we have F(Q ≥ 0.8) = 1, which gives S = 1. If the 
Q values are all less than 0.5 (HT cannot be identified), we 
have F(Q < 0.5) = 1, which leads to S = 0. If the Q values 
are between 0.8 and 0.5 (uncertain determination), we have 
F(0.5 ≤ Q < 0.8) = 1, which leads to S = 0.5. The aver-
age of 1 and 0.5 (i.e., 0.75),

can therefore be used as a threshold to identify a capable 
ILD-identification method.

Now let the interval [0, 1] be divided into J subintervals 
of equal size (J = 50 in this work), and let pj be the fre-
quency of occurrence of Q values in the j-th subinterval. 
The Shannon information entropy,  which is commonly 
used to represent uncertainty, is defined as

The larger the Shannon information entropy, the larger 
the uncertainty in HT. The five existing methods listed in 
Table 1 were used to calculate HT from the WOD/CTD 
and GTSPP/XBT data based on various criteria, and the Q 
value, skill score (S), and Shannon information entropy (E) 
were determined in each case (see Table 2).

According to Table 2, the uncertainty associated with 
the subjective methods evidently varies with the data-
set used. The difference method has higher S values for 
GTSPP/XBT (0.65–0.75) than for WOD/CTD (0.43–
0.68) and lower E values for GTSPP/XBT (3.09–3.31) 
than for WOD/CTD (3.29–3.39); it also gives its high-
est S values (0.75, 0.68) and lowest E values (3.09, 3.29) 
with a threshold of 0.2 °C and zref = −10 m when using 
the (GTSPP/XBT, WOD/CTD) datasets. The gradient 
method has higher S values for WOD/CTD (0.72–0.75) 

(7)S =
1

2
{1+ F[Q ≥ 0.8]− F[Q < 0.5]},

(8)S ≥ 0.75,

(9)E = −

J
∑

j=1

pj log2 pj.

http://www.iode.org
http://www.oceanobs09.net/proceedings/cwp/cwp86/index.php
http://www.oceanobs09.net/proceedings/cwp/cwp86/index.php
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than for GTSPP/XBT (0.60–0.70); it also gives its high-
est S values (0.70, 0.75) and lowest E values (3.15, 3.03) 
with a threshold of 0.025 °C/m when using the (GTSPP/
XBT, WOD/CTD) datasets.

The objective methods yield lower uncertainty than 
the subjective methods, except for the maximum curva-
ture method, which has low S values (0.55, 0.41) and high 
E values (3.46, 3.57) for both datasets. This is due to the 
calculation of the second derivative versus depth in this 
method. Excluding the maximum curvature method, the 
uncertainty associated with the objective methods var-
ies slightly with the dataset used, i.e., the maximum angle 
and optimal linear fitting methods have comparably high S 
values for GTSPP/XBT (0.74, 0.80) and WOD/CTD (0.76, 
0.78) and low E values for GTSPP/XBT (3.12, 2.96) and 
WOD/CTD (3.17, 2.85).

4  Exponential leap‑forward gradient (ELG) 
method

The two objective methods (maximum angle and optimal 
linear fitting) have high S values and low E values but are 
computationally intensive since iteration is needed. Here, 
we introduce a new exponential leap-forward gradient 
(ELG) method (i.e., an extended gradient method) of deter-
mining the ILD with a noise-filtering capability. Unlike the 
existing methods discussed above, the ELG involves two 
steps: (a) the estimation of the thermocline gradient (Gth) 
and (b) the determination of the ILD using the near-zero 
gradient method and Gth.

4.1  Thermocline gradient

Usually, ocean profile datasets are noisy near the surface, 
with unrealistically large gradients (Fig. 1). To estimate the 
mixed layer gradient (near-zero) and the thermocline gradient 
(nonzero), it is necessary to determine the depth at which the 
minimum gradient occurs in the near-surface layer (z1), i.e.,

The near-surface layer depth (−20 m) is chosen in such 
a way that it is deeper than any reference levels used in 
the difference method (0, −3 m, −10 m; see Table 1) but 
is not below the thermocline. This approach reduces the 
effect of noise near the ocean surface.

The minimum gradient at z1 is the best representation 
of the mixed-layer gradient. The vertical temperature 
difference from this depth (z1) to the bottom (zb) of the 
profile, Td = T(z1) − T(zb), is the temperature variabil-
ity across the mixed layer, thermocline, and deep layer. 
Since the vertical gradient is strongest in the thermocline 
and weakest in the mixed layer, the main part of the ther-
mocline can be considered to lie roughly between two 
depths, z(0.1) with T(z1) − T(z(0.1)) = 0.1Td and z(0.7) with 
T(z1) − T(z(0.7)) = 0.7Td (Fig. 1).

For temperature profile data that follow the pattern 
shown in Fig. 1a, the thermocline gradient is easily cal-
culated as

(10)

∣

∣

∣

∣
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∣

∣

∣

∣
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= min
z≥−20 m

∣

∣

∣

∣
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∣

∣

∣
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(11)Gth =
T(z(0.1))− T(z(0.7))

z(0.1) − z(0.7)
.

Table 2  Skill scores and 
Shannon information entropies 
of the Q index for various 
methods of identifying the 
ILD using the WOD/CTD 
temperature (1961–2012, 
847,560 profiles) and global 
GTSPP/XBT (1990–2013, 
572,504 profiles) datasets

* The skill score is ≥0.75

Method Criterion −zref (m) SXBT EXBT SCTD ECTD

Difference ΔT = (1) 0.1 °C 10 0.70 3.15 0.68 3.29

(2) 0.2 °C 0 0.73 3.12 0.67 3.32

(3) 0.2 °C 3 0.73 3.13 0.67 3.32

(4) 0.2 °C 10 0.75* 3.09 0.68 3.29

(5) 0.5 °C 0 0.73 3.17 0.58 3.39

(6) 0.8 °C 0 0.69 3.26 0.49 3.45

(7) 0.8 °C 10 0.69 3.26 0.48 3.46

(8) 1.0 °C 0 0.66 3.30 0.44 3.49

(9) 1.0 °C 10 0.65 3.31 0.43 3.49

Gradient ∂T/∂z = (1) 0.015 °C/m 0.60 3.25 0.72 3.03

(2) 0.02 °C/m 0.70 3.19 0.74 3.03

(3) 0.025 °C/m 0.70 3.15 0.75* 3.03

Max curvature 0.55 3.46 0.41 3.57

Max angle 0.74 3.12 0.76* 3.17

OLF 0.80* 2.96 0.78* 2.85

ELG 0.83* 2.88 0.82* 2.81
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For temperature profile data that do not follow the pat-
tern shown in Fig. 1a (i.e., noisy data), Eq. 11 may not 
be representative. The data between z(0.1) and z(0.7) are 
rearranged into [Ti, i = 0, 1, 2, …, I] with [T0 = T(z(0.1)), 
TI = T(z(0.7))]. Vertical gradients are calculated between Ti 
(i = 1, 2, …, I) and T0:

The thermocline gradient (Gth) is estimated by finding 
the median of the above gradients,

If the computed Gth is very small, i.e., 

the thermocline vanishes and the mixed layer extends to the 
bottom of the profile (zb). It should be noted that the gradi-
ent criterion in Eq. 13 is an order of magnitude smaller than 
the most commonly used gradient method listed in Table 1.

4.2  ELG scheme

Let the number of data points between z1 and z(0.7) (Fig. 1) 
be Ng, and let N =

[

log2
(

Ng

)]

, with the bracket indicat-
ing the integer part of the real number inside. N is much 
smaller than Ng. Starting from z1, the (N + 1) exponential 
leap-forward gradients (ELGs) are calculated at depths zk 
[between z1 and z(0.7)] (Fig. 2):

The average value for (N + 1) gradients [D0T(zk), 
D1T(zk), …, DNT(zk)] is computed via

which effectively represents the gradient at depth zk and 
has the ability to filter out noise in the gradient calculation. 
Since G̃(zk) ≈ 0 if zk is in the mixed layer and G̃(zk) = Gth 
if zk is in the thermocline, it is reasonable to use the mid-
point between the two averages to separate the two layers 
(the mixed layer and the thermocline):

This method is called the exponential leap-forward 
gradient (ELG) method, and it yields the highest S val-
ues (SXBT = 0.83, SCTD = 0.82) and lowest E values 
(EXBT = 2.88, ECTD = 2.81) of any of the methods listed 
in Table 2.

Gi =
T(z(0.1))− Ti

z(0.1) − z|Ti
, i = 1, 2, . . . , I .

(12)Gth = median{G1,G2, . . . ,GI }.

(13)Gth ≤ 0.001 ◦C/m,

(14)DnT(zk) =
T(zk)− T(zk+2n)

zk − zk+2n
, n = 0, 1, 2, . . . ,N .

(15)G̃(zk) =

∑N
n=0 DnT(zk)

N + 1
,

(16)G̃(zk)/Gth

{

< 0.5, zk in the mixed layer

≥ 0.5, zk in the thermocline

5  Global ILD dataset

A global HT dataset was created by applying  the ELG 
method to a combination of the GTSPP/XBT (572,504) 
and WOD/CTD (847,560) profile data. The HT data were 
divided into four seasons: (a) January–February–March 
(JFM); (b) April–May–June (AMJ); (c) July–August–
September (JAS); (d) October–November–December 
(OND). To analyze the statistics at any grid point (grid 
resolution: 1° × 1°) during the four seasons (JFM, AMJ, 
JAS, and OND), the HT data in a moving grid box with 
its center at the grid point were considered. For each 
season, the mean (Fig. 3), standard deviation (Fig. 4), 
skewness (Fig. 5), and kurtosis (Fig. 6) of the ILD were 
calculated for two moving box sizes (5° × 5°, 3° × 3°) 
each containing at least five data points. The lack of any 
noticeable difference between the left and right panels in 
Figs. 3, 4, 5, and 6 demonstrates that the calculated sta-
tistical parameters are not sensitive to the box size (either 
5° × 5° or 3° × 3°).

The pattern of the mean HT (Fig. 3) is quite similar 
to that seen in an earlier study (Lorbacher et al. 2006), 
with the most prominent feature occurring throughout the 
year in the equatorial Pacific: negative zonal gradients 
with shallow HT values (<40 m) in the east and deep HT 
values (>100 m) in the west. A broad tongue of shallow 
HT values occurs in the eastern equatorial Pacific dur-
ing the first half of the year (Fig. 3a, b, JFM and AMJ). 
Such negative zonal gradients also occur in the equato-
rial Atlantic Ocean but they are much weaker. Evident 
seasonal variation is observed away from the equatorial 

Fig. 2  Illustration of the exponential leap-forward gradient (ELG) 
technique
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regions: deep (shallow) HT values are usually found in the 
North (South) Pacific and North (South) Atlantic in JFM 
(Fig. 3a) and vice versa in JAS (Fig. 3c). In the north-
western Pacific at around 30°N, a band with HT < 75 m 
appears in the winter (Fig. 3a) and spring (Fig. 3b) from 
the west coast to 150°W, with deeper HT values occur-
ring around that band (Fig. 3a, b, JFM and AMJ). This 
is due to the occurrence of the subtropical front under 
which the mixed layer remains shallow, even in strong 
winds that produce deep mixed layers north and south 
of the front. This band disappears in summer (JAS) and 
fall (OND), when HT < 40 m above about 23°N (Fig. 3c, 
d). In the southeastern Pacific west of Peru, a band with 
HT > 100 m appears in the winter (JAS, Fig. 3c) near to 
23°S, 100–130°W, and in spring (OND, Fig. 3d), albeit 

with a much-reduced size. This band of deep HT dis-
appears in the summer (JFM, Fig. 3a) and fall (AMJ, 
Fig. 3b).

The standard deviation of HT (Fig. 4) shows evident 
horizontal and seasonal variability, with weaker seasonal 
variation observed in the tropics (between 23°S and 
23°N) than outside the tropics (north of 23°N and south 
of 23°S), where large values (>50 m) occur in winter and 
spring (JFM and AMJ in the Northern Hemisphere, JAS 
and OND in the Southern Hemisphere). The standard 
deviation of HT is largest in the Southern Ocean in win-
ter and spring (Fig. 4c, d) due to temporal gaps in the 
data. Once the seasonal thermocline has formed in the 
mid-latitudes, the variability of HT is less than 10 m in 

Fig. 3  Seasonal maps (1° × 1° resolution) of the mean isothermal 
layer depth (in meters, identified by the ELG method) averaged in 
moving 5° × 5° (left panel) and 3° × 3° (right panel) grid boxes and 
evaluated at the centers of the boxes: a January–February–March, b 

April–May–June, c July–August–September, and d October–Novem-
ber–December. White regions have undefined values due to the 
presence of insufficient data points (≤4 points) in the 5° × 5° (or 
3° × 3°) grid box
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summer (JAS for the Northern Hemisphere, Fig. 4c; JFM 
for the Southern Hemisphere, Fig. 4a).

Maps of the skewness of HT (Fig. 5) show more posi-
tive than negative values (prevailing positive skewness). 
The skewness presents weaker seasonal variation in the 
tropics than outside them. Outside the tropics, a vast area 
of high positive skewness (>1.4) occurs in hemispheric 
spring, smaller areas of alternate positive–negative skew-
ness appear in hemispheric fall (Fig. 5b, d), and small 
areas of alternate positive–negative skewness occur in 
winter (JFM) and summer (JAS). In the tropics, alternate 
positive–negative skewness occurs year-round with weak 
seasonal variation.

The kurtosis of HT (Fig. 6) exhibits large values (>6) in 
spring and a band structure along boundary currents such 

as the Kuroshio and Gulf Stream (AMJ, Fig. 6b), as well 
as an eddy-like structure west of Australia at around 30°S 
(OND, Fig. 6d). The kurtosis shows weaker seasonal vari-
ations in the tropics than outside them, where low kurtosis 
(<3.0) occurs in fall and high kurtosis in spring (Fig. 6b, d).

6  Dynamical implications of the statistical 
parameters

Two distinct patterns in the mean, standard deviation, 
skewness, and kurtosis of the ILD are observed: weak 
seasonal variability in the tropics and strong seasonal 
variability outside them. These patterns are related to 
differences between these regions in their mixed-layer 

Fig. 4  Seasonal maps (1° × 1° resolution) of the standard devia-
tion of the isothermal layer depth (in meters, identified by the ELG 
method) calculated in moving 5° × 5° (left panel) and 3° × 3° (right 
panel) grid boxes and evaluated at the centers of the boxes: a Janu-

ary–February–March, b April–May–June, c July–August–September, 
and d October–November–December. White regions have undefined 
values due to the presence of insufficient data points (≤4 points) in 
the 5° × 5° (or 3° × 3°) grid box
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deepening (entrainment) and shallowing regimes, as 
determined by the surface forcing function (e.g., Chu and 
Garwood 1991; Chu 1993):

where w* is the ocean friction velocity (representing the 
surface wind stress), g is the gravitational acceleration, 
α is the thermal expansion coefficient, Q0 is the surface 
heat flux (positive in the downward direction), C1 (≃ 1.0) 
and C2 (≃ 0.2) are tuning parameters, and Λ is the Heavi-
side function of  (C1w

3
∗ − C2αgHTQ0),

(17)F = Λ(C1w
3
∗ − C2αgHTQ0),

(18)Λ =

{

1, if (C1w
3
∗ − C2αgHTQ0) > 0

0, if (C1w
3
∗ − C2αgHTQ0) ≤ 0

When Λ = 1, sufficient turbulent kinetic energy is gen-
erated at the surface (strong surface forcing) to entrain 
water from below into the mixed layer, thus deepen-
ing this layer (entrainment regime). The deepening rate 
is proportional to the surface forcing function F. When 
Λ = 0, the turbulent kinetic energy generated at the sur-
face is insufficient (weak surface forcing) to entrain water 
from below into the mixed layer, causing the depth of this 
layer to decrease (shallowing regime) to the Obukhov 
length scale L,

There is strong seasonal variability in surface forc-
ing in non-tropical regions, with strong heat loss at the 

(19)HT = L =
C1w

3
∗

C2αgQ0
.

Fig. 5  Seasonal maps (1° × 1° resolution) of the skewness of the 
isothermal layer depth (identified by the ELG method) calculated in 
moving 5° × 5° (left panel) and 3° × 3° (right panel) grid boxes and 
evaluated at the centers of the boxes: a January–February–March, b 

April–May–June, c July–August-September, and d October–Novem-
ber–December. White regions have undefined values due to the 
presence of insufficient data points (≤4 points) in the 5° × 5° (or 
3° × 3°) grid box
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surface (Q0 < 0, upward heat flux) in hemispheric win-
ter (i.e., strong surface forcing) and strong heat gain at 
the surface (Q0 > 0, downward heat flux) in hemispheric 
summer (weak surface forcing). Strong surface forc-
ing (large F) deepens the ILD (entrainment regime) 
and leads to a large mean ILD and negative skewness 
(a long tail towards small ILD, i.e., high probability in 
large ILD bins). Weak surface forcing decreases the ILD 
(shallowing regime) and leads to a small mean ILD and 

positive skewness (a long tail towards large ILD, i.e., 
high probability in small ILD bins). During the transi-
tion from winter (summer) to summer (winter), the sur-
face forcing changes, leading to a shift from the deep-
ening (shallowing) to the shallowing (deepening) regime, 
which increases the variability and leads to large stand-
ard deviation and kurtosis values. Tropical regions show 
weak seasonal variability in the surface forcing function, 
and thus present less seasonal variation in the statistical 

Fig. 6  Seasonal maps (1° × 1° resolution) of the kurtosis of the 
isothermal layer depth (identified by the ELG method) calculated in 
moving 5° × 5° (left panel) and 3° × 3° (right panel) grid boxes and 
evaluated at the centers of the boxes: a January–February–March, b 

April–May–June, c July–August–September, and d October–Novem-
ber–December. White regions have undefined values due to the 
presence of insufficient data points (≤4 points) in the 5° × 5° (or 
3° × 3°) grid box
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parameters (mean, standard deviation, skewness, and 
kurtosis of the ILD).

7  Conclusions

We have utilized the skill score and Shannon informa-
tion entropy to evaluate the abilities of five existing 
methods (difference and gradient methods with various 
criteria, maximum curvature, maximum angle, optimal 
linear fitting) to identify the ILD (HT) based on the 
WOD/CTD temperature (1961–2012, 847,560 profiles) 
and global GTSPP/XBT (1990–2013, 572,504 profiles) 
datasets, as well as the uncertainty associated with 
each method. Using 0.75 as the threshold for the skill 
score, the most useful existing methods were found to 
be the difference method with criteria of ΔT = 0.2 °C, 
zref = −10 m for the GTSPP/XBT data, the gradient 
method with a criterion of 0.025 °C/m for the WOD/

CTD data, the maximum angle method for the WOD/
CTD data, and the OLF method for both the GTSPP/
XBT and WOD/CTD datasets.

We also proposed a new exponential leap-forward 
gradient (ELG) scheme for determining HT with low 
uncertainty. Compared with the existing methods men-
tioned above, the ELG scheme yielded a higher skill 
score and lower Shannon information entropy. The 
global HT data obtained by applying the ELG method 
showed strong horizontal and seasonal variability. The 
calculated statistical parameters (the mean, standard 
deviation, skewness, and kurtosis of the ILD) exhib-
ited strong seasonal variability in non-tropical regions, 
with large mean ILD values and negative skewness (a 
long tail towards small ILD, i.e., high probability in 
large ILD bins) in hemispheric winter, small mean ILD 
values and positive skewness (a long tail towards large 
ILD, i.e., high probability in small ILD bins) in hemi-
spheric summer, and large values of standard deviation 

Fig. 7  a Thermal parametric 
model consisting of the iso-
thermal layer, the thermocline, 
and the deep layer. b Discrete 
analytical profile (see Eq. 20) 
corresponding to the parameters 
given in Eq. 21 and the vertical 
resolution given in Eq. 22
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Fig. 8  Comparison of the ILD values given by the various ILD iden-
tification methods when they were applied to the analytical profile 
defined in Eqs. 20–22: a difference method with ΔT = 0.1, 0.2, and 

0.5 °C; b difference method with ΔT = 0.8 and 1.0 °C; c gradient 
method with ∂T/∂z = 0.015, 0.025, 0.05 °C/m; d maximum curvature, 
maximum angle, optimal linear fitting, and ELG methods

Table 3  Determination of ILD (m) from the noiseless analytical profile and from analytical profiles with two levels of Gaussian white noise 
added (0.05, 0.2 °C)

The ILD of the analytical profile was 50 m

Method −zref (m) Isothermal layer depth (m)

From analytical profile with no noise From analytical profiles with white noise

White noise strength: 0.05 °C White noise strength: 0.2 °C

(1) ΔT = 0.1 °C 10 50.1 49.4 12.8

(2) ΔT = 0.2 °C 3 51.2 50.8 37.9

(3) ΔT = 0.2 °C 10 51.2 50.5 16.3

(4) ΔT = 0.5 °C 0 53.3 53.3 53.2

(5) ΔT = 0.8 °C 0 55.3 55.3 55.4

(6) ΔT = 0.8 °C 10 55.3 55.1 54.2

(7) ΔT = 1.0 °C 0 56.7 56.7 57.0

(8) ΔT = 1.0 °C 10 56.7 56.5 56.1

(9) ∂T/∂z = 0.015 °C/m 48.0 4.5 4.5

(10) ∂T/∂z = 0.025 °C/m 48.3 4.5 4.5

(11) ∂T/∂z = 0.05 °C/m 49.2 48.8 4.5

(12) Maximum curvature 50.0 19.0 19.0

(13) Maximum angle 49.0 48.0 35.0

(14) Optimal linear fitting 48.0 50.0 52.0

(15) ELG 50.0 51.0 49.0
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and kurtosis during the transition seasons due to strong 
seasonal variability of the surface forcing function, 
which leads to switching between the deepening and 
shallowing regimes. However, the statistical parameters 
presented weak seasonal variability in tropical regions 
due to weak seasonal variability in the surface forcing 
function. Furthermore, the calculated skewness and kur-
tosis showed non-Gaussian statistics for the ILD in the 
global ocean.

It should be noted that the isothermal (mixed) layer 
is considered to be vertically uniform in temperature 
(density), and the isothermal layer depth is generally 
larger than the mixed layer depth in the subarctic region. 
In other words, the salinity significantly influences the 
MLD in the subarctic region. There are areas where a 
mixed layer forms under the influence of both tempera-
ture and salinity even when there are no isothermal and 
isohaline layers. Therefore, numerous studies have been 

Fig. 9  Comparison of the ILD values given by the various identifica-
tion methods when they were each applied to the analytical profile 
defined in Eqs. 20–22 with added low-level (0.05 °C) Gaussian white 
noise (upper panels) or added high-level (0.2 °C) Gaussian white 
noise (lower panels): a difference method with ΔT = 0.1, 0.2, and 

0.5 °C; b difference method with ΔT = 0.8 and 1.0 °C; c gradient 
method with ∂T/∂z = 0.015, 0.025, 0.05 °C/m; d maximum curvature, 
maximum angle, optimal linear fitting, and ELG methods. Note that 
only one profile with low-level noise (i.e., 1 realization) and one pro-
file with high-level noise (1 realization) was analyzed by each method 
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Fig. 10  Histograms of ILD 
values obtained by applying 
each of the 15 ILD-determi-
nation methods to the 1000 
profiles with added low-level 
(0.05 °C) Gaussian white noises 
(1000 realizations) added to the 
analytical profile (20)-(22). The 
mean and standard deviation of 
HT for each method are listed in 
the corresponding panels
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Fig. 11  Histograms of ILD 
values obtained by applying 
each of the 15 ILD-determi-
nation methods to the 1000 
profiles with added high-level 
(0.2 °C) Gaussian white noises 
(1000 realizations) added to the 
analytical profile (20)-(22). The 
mean and standard deviation of 
HT for each method are listed in 
the corresponding panels
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Fig. 12  Histograms of Q values 
obtained by applying each 
of the 15 ILD-determination 
methods to the 1000 profiles 
with added low-level (0.05 °C) 
Gaussian white noises (1000 
realizations) added to the 
analytical profile (20)-(22). The 
mean and standard deviation of 
Q for each method are listed in 
the corresponding panels
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Fig. 13  Histograms of Q values 
obtained by applying each 
of the 15 ILD-determination 
methods to the 1000 profiles 
with added high-level (0.2 °C) 
Gaussian white noises (1000 
realizations) added to the 
analytical profile (20)-(22). The 
mean and standard deviation of 
Q for each method are listed in 
the corresponding panels
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carried out to determine the MLD using both tempera-
ture and salinity (e.g., the identification of the barrier 
layer in the Sulu and Celebes seas; Chu et al. 2002). 
Thus, determined MLD values should be interpreted 
carefully, taking into account aspects such as differences 

in ocean structure between the tropical, subtropical, and 
subarctic regions.

Acknowledgements The Office of Naval Research and the Naval 
Postgraduate School supported this study. The GTSPP/XBT and 
WOD/CTD profile data were downloaded from the websites http://
www.nodc.noaa.gov/GTSPP/ and http://www.nodc.noaa.gov/OC5/
WOD/pr_wod.html.

Table 4  Values for the mean ILD (m), Q index, and Shannon infor-
mation entropy EQ obtained when 15 ILD-determination methods 
were applied to the 1000 profiles with low-level (0.05 °C) Gaussian 
white noises (1000 realizations) added to the analytical profile (20)-
(22)

Method −zref (m) μH (m) μQ EQ

(1) ΔT = 0.1 °C 10 49.4 0.97 0.73

(2) ΔT = 0.2 °C 3 50.9 0.97 0.01

(3) ΔT = 0.2 °C 10 50.9 0.97 0

(4) ΔT = 0.5 °C 0 53.3 0.92 0.67

(5) ΔT = 0.8 °C 0 55.3 0.89 0.11

(6) ΔT = 0.8 °C 10 55.3 0.88 0.08

(7) ΔT = 1.0 °C 0 56.7 0.86 0.13

(8) ΔT = 1.0 °C 10 56.7 0.86 0.11

(9) ∂T/∂z = 0.015 °C/m 9.6 0.21 2.46

(10) ∂T/∂z = 0.025 °C/m 23.8 0.41 2.94

(11) ∂T/∂z = 0.05 °C/m 48.8 0.97 0.56

(12) Maximum curvature 16.9 0.09 2.01

(13) Maximum angle 48.8 0.98 0.47

(14) Optimal linear fitting 49.9 0.98 0.69

(15) ELG 51.4 0.96 0.57

Table 5  Values for the mean ILD (m), Q indices, and Shannon infor-
mation entropy EQ obtained when 15 ILD-determination methods 
were applied to the 1000 profiles with high-level (0.2 °C) Gaussian 
white noises (1000 realizations) added to the analytical profile (20)-
(22)

Method −zref (m) μH (m) μQ EQ

(1) ΔT = 0.1 °C 10 27.2 0.41 3.05

(2) ΔT = 0.2 °C 3 40.0 0.67 2.25

(3) ΔT = 0.2 °C 10 40.8 0.66 2.37

(4) ΔT = 0.5 °C 0 53.2 0.90 0.94

(5) ΔT = 0.8 °C 0 55.3 0.87 1.05

(6) ΔT = 0.8 °C 10 55.3 0.87 1.01

(7) ΔT = 1.0 °C 0 56.6 0.86 1.13

(8) ΔT = 1.0 °C 10 56.6 0.86 1.11

(9) ∂T/∂z = 0.015 °C/m 5.9 0.05 0.96

(10) ∂T/∂z = 0.025 °C/m 6.3 0.08 1.32

(11) ∂T/∂z = 0.05 °C/m 8.2 0.18 2.17

(12) Maximum curvature 17 0.09 2.00

(13) Maximum angle 42.7 0.71 2.20

(14) OLF 51.6 0.90 1.39

(15) ELG 51.6 0.92 1.27

http://www.nodc.noaa.gov/GTSPP/
http://www.nodc.noaa.gov/GTSPP/
http://www.nodc.noaa.gov/OC5/WOD/pr_wod.html
http://www.nodc.noaa.gov/OC5/WOD/pr_wod.html
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Appendix 1: MATLAB function for computing Gth and preparing for ELG

function [ist,slop17,i17,dep,Var,isteps,I30,flag]=getslop17(dep,Var,TD)
% function [ist,slop17,i17,dep,Var,isteps,I30,flag]=getslop17(dep,Var,TD);
%  Var:  variable (potential density, temperature)
%  TD:   1; density, -1:temperature
%  output:
%  ist: an integer i with  zi = z1 in Eq(2)
%  slop17:  Gth between z(0.1) and z(0.7) in Eq(3)
%  i17:  all integers {k} from  z(0.1) to z(0.7) in Fig. 1
%  dep:  depth (m) >0
%  data pairs (dep, Var) must be removed if diff(dep)<=0 
%  isteps:  N+1 integers 20, 2, …, 2N in Eq(14)
%  flag: 0: normal
% 1: few (<=2) observational points from 10 m to 40 m
% 2: total observational points <=5
% 3: maximum depth <20 m
% 4: starting point with depth deeper than 50 m
% 5: difference above 20 m > different below 20 m
% 6: maximum difference < 1.0oC (temp) or < 0.01 kg/m3 (dens)
% 7: no thermocline
% 8: thermocline gradient is too small (<0.001oC/m)
% 9: two neighboring profiles have big difference (>5oC)

if ~exist('TD','var'), TD=-1; end

slop17=[]; i17=[]; isteps=[]; ist=[]; I30=[]; flag=0;

if max(abs(diff(Var)))>5
flag=9; return;

end

Isteps=2.^(0:6)+1;

%Var=Var(dep>3); dep=dep(dep>3);
ii=find(dep<=800); dep=dep(ii); Var=Var(ii);
ii=find(diff(dep)<=0); 
while(~isempty(ii))

dep(ii)=[]; Var(ii)=[];
ii=find(diff(dep)<=0); 

end
Varr=Var*TD;

% if the data not good and return
if length(dep)<6, flag=2; return; end
if dep(end)<20, flag=3; return; end
if dep(1)>50, flag=4; return; end
max20=max(Varr(dep<20))-min(Varr(dep<20));
maxdeep=max(Varr(dep>20))-min(Varr(dep>20));

if max20>maxdeep, flag=5; return; end

%N=length(dep);

% set the start depth as the minimum slope above 20m depth.M
ii=find(dep<20);
if(length(ii)>2)

slp=abs(diff(Varr(ii))./diff(dep(ii)));
[~,ist]=min(slp);

else
ist=1;

end
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Appendix 2: MATLAB function for determining ILD using the ELG scheme

if((Vist<40 && Vmax<=1) || (Vist>40 && Vmax<=0.01)), ist=[]; flag=6; return; end

i17=(find(Varr(ist:imax)<0.1*Vmax,1,'last'):find(Varr(ist:imax)>=0.7*Vmax,1))+ist-1;

I30=find(Varr(ist:end)>=0.3*Vmax,1)+ist-1;

if(isempty(i17)), ist=[]; flag=7; return; end

n17=length(i17);

isteps=Isteps(Isteps<=n17);
if isteps(end)<32 && isteps(end)~=n17

isteps=cat(2,isteps,n17);
end
Nsp=length(isteps);

vv=Varr(i17(1)+1:end)-Varr(i17(1));
dd=dep(i17(1)+1:end)-dep(i17(1));
ii=find(dd>=2);
if length(ii)>3

slop17=vv(ii)./dd(ii);
else

slop17=vv./dd;
end

slop17=prctile(slop17,50);

if((Vist<40 & slop17<1e-3) | (Vist>=40 & slop17<1e-5)), ist=[]; flag=8; return; end

% Nsp=min(Nsp,5);
% isteps=isteps(1:Nsp)-1;

% update ist
vv=Varr(1:i17(1));
dv=abs(vv-mode(vv)); dv=dv(end:-1:1);
[~,ist]=min(dv); ist=length(dv)+1-ist;

if sum(dep>=10 & dep<=40)<2, flag=1; end

Vist=Varr(ist);
Varr=Varr-Vist;
[Vmax,imax]=max(Varr(ist:end));
imax=imax-1+ist;

% estimate the number of data points in thermocline (pycnocline) 



523Exponential leap-forward gradient scheme for determining the isothermal layer depth from profile data

1 3

Appendix 3: Analytical profile “dataset” for practicing the application of the MATLAB functions

function [mld,Ii,Q,Vmld]=ELGMLDCore(dep,Var,ist,slop17,i17,isteps,TD)
% function [mld,Ii,Q,Vmld]=ELGMLDCore(dep,Var,ist,slop17,i17,isteps,TD);
%  input:
% The input (dep,Var,ist,slop17,i17,isteps) are obtained from the output 
%  of the Matlab function depicted in Appendix A. 
%  TD:  temp:-1,  density: +1

%  output:
% mld:  mixed layer depth (m)
%  Ii:     identification index
%  Q:    qulity index
%  Vmld: variable (temperature, density, …) at the mixed layer depth such as T-H

if ~exist('TD','var'), TD=-1; end
mld=NaN; Q=NaN; Vmld=NaN; Ii=NaN;

Var=TD*Var;

if isempty(ist), return; end
N=length(dep);

refslop=0.5*slop17;
n17=length(i17);

for i=ist:length(dep)-isteps(end)

slops=(Var(i+isteps)-Var(i))./(dep(i+isteps)-dep(i));

if min(slops)>=refslop
mld=dep(i); Vmld=TD*Var(i); 
i15mld=find(dep<=1.5*mld);
i3=i15mld(i15mld<=i+n17);
i1=(1:i)';
A1=sum((Var(i1)-mean(Var(i1))).^2);

i2=i3(i3>i);

if(length(i2)<3), A2=0;
else

p2=polyfit(dep(i2),Var(i2),1);
v2=polyval(p2,dep(i2));
A2=sum((Var(i2)-v2).^2);

end

if(length(i3)>=3)
p3=polyfit(dep(i3),Var(i3),1);
v3=polyval(p3,dep(i3));
A3=sum((Var(i3)-v3).^2)+eps;
Ii=max(-1,1-(A1+A2)/A3);

end

N1=i-1;
i2=find(dep<=1.5*mld);
N2=length(i2)-1;
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An analytical temperature profile “dataset” with regular 
vertical spacing  is provided here as a means to practice 
using the MATLAB functions shown in Appendices 1 and 
2.

Analytical temperature profile “data”

Let us consider a temperature profile [T(zk), k = 1, 2, …, 
K]. Here, k increases downward, with k = 1 at the surface 
(or nearest to the surface) and K being the number of the 
data points in the profile. The ILD (i.e., HT) is determined 
based on the theory that the upper ocean has a layered 
structure (isothermal layer, thermocline, and deep layer) 
(Fig. 7) and that the temperature profile [T(zk), k = 1, 2, 
…, K] can be represented by several parameters repre-
senting the features of the profile (Chu et al. 1997, 1999, 
2000), such as the sea surface temperature (Ts), the ILD, 
the thermocline bottom depth (Hb), the deep layer e-fold-
ing scale (He), the thermocline temperature gradient 
(Gth), and the deep temperature (Td). A simple analytical 
form of a temperature profile is (Chu et al. 2000)

where Tth = Ts − Gth(Hb − HT) is the temperature 
at the thermocline bottom (z = −Hb). Td is the deepest 
ocean depth (5500 m in the NOAA/NECI climatological 
data); for shallow-water regions, this is obviously not a 
real observed value but the value obtained by extrapolat-
ing to the deepest depth (e.g., 5500 m). Any temperature 

(20)T̃(z) =











Ts, (0 ≥ z ≥ −HT)

Ts + Gth(z + HT), (−HT ≥ z ≥ −Hb)

Td + (Tth − Td) exp
�

z+Hb
He

�

, (z < −Hb)

if(N2<=0)
i2=(i:min(i+1,N))';
N2=length(i2)-1;

end
if(N2==0 || N1==0)

return;
end
mu=mean(Var(i1));
A1=std(Var(i1)-mu);
A2=std(Var(i2)-mu)+eps;
if(A2==0), disp([mu,N2]); disp([i2, Var(i2)]); 'RG';  return; end
Q=1-A1/A2;

%        if(Q<=0), Q=NaN; mld=NaN; end
return;

end
end

profile [(T(z1), T(z2), …, T(zK)] is converted into a set 
of seven parameters [Ts, Tth, Td, HT, Hb, He, Gth]. This 
approach has several major benefits: (a) it reduces the 
profile dataset (which is usually large) to a seven-param-
eter dataset; (b) it constructs a climatological temperature 
dataset by first averaging each parameter and then sub-
stituting the seven averaged parameters into Eq. 20; and 
(c) it eliminates any false static instability when calculat-
ing the horizontal (or temporal) averaged vertical profile 
(Chu and Fan 2010a; Wang et al. 2012). In practice, the 
parameters are

and the vertical coordinate z is discretized as follows:

Added noise

White Gaussian noise with a magnitude of 0.05 °C (low 
noise) or 0.2 °C (high noise), generated by MATLAB, 
was added to the discrete analytical profile T(zk) at each 
depth 1000 times, resulting in 1000 temperature profiles. 
When the difference method was applied to these profiles 
with two different criteria, ΔT = 0.2 °C with zref = 0 and 
ΔT = 0.2 °C with zref = −3 m (Thompson 1976), both dif-
ference criteria were found to yield almost the same results.

When applied to the profile without noise, all 15 meth-
ods found HT to be quite close to 50 m (Fig. 8). The HT 
values determined using the difference method with various 
criteria were larger than 50 m: 50.1 m with ΔT = 0.1 °C, 

(21)

HT = 50 m, Hb = 40 m, He = 200 m, Gth

= 0.25
◦
C m

−1
,Ts = 21

◦
C,Td = 2

◦
C,

(22)�z =

{

1.0 m for 0 ≥ z ≥ - 10 m

5.0 m for z < −10m
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51.2 m with ΔT = 0.2 °C, 53.3 m with ΔT = 0.5 °C, 
55.3 m with ΔT = 0.8 °C, and 56.7 m with ΔT = 1.0 °C. 
The ILD was smaller than 50 m when the gradient method 
was used with various criteria: 48.0 m for 0.015 °C/m, 
48.3 m for 0.025 °C/m, and 49.2 m for 0.05 °C/m. An HT 
value of 50.0 m was given by the ELG and maximum cur-
vature methods, 49.0 m by the maximum angle method, 
and 48.0 m by the optimal linear fitting method (Table 3).

Applying each ILD identification method to one of the 
low-noise (0.05 °C) profiles (i.e., to 1 realization) and 
one of the high-noise (0.2 °C) profiles resulted in a wide 
range of HT values (Fig. 9). When the low-noise profile 
was used, the HT identified using the difference method 
was quite close to 50 m with ΔT = 0.1, 0.2, and 0.5 °C, 
and 5–6 m deeper at 55 m with ΔT = 0.8 and 1.0 °C. 
When the gradient method was used, HT was close to 5 m 
for small gradients (0.015, 0.025 °C/m) and close to 50 m 
for a large gradient (0.05 °C/m). HT was 19 m when the 
maximum curvature method was used and around 50 m 
when the maximum angle, OLF, and ELG methods were 
employed. When the high-noise profile was used, the HT 
identified using the difference method was around 56 m 
with ΔT = 0.5, 0.8, and 1.0 °C, 40 m with ΔT = 0.2 °C, 
and 12 m with ΔT = 0.1 °C. When the gradient method 
was used, HT was close to 5 m (for all gradients: 0.015, 
0.025, and 0.05 °C/m); it was 19 m using the maxi-
mum curvature method, 35 m using the maximum angle 
method, 52 m using the optimal linear fitting method, and 
49 m using the ELG method.

Q values were obtained for each method with each 
profile using Eq. 3. Since only one profile (defined by 
Eqs. 20–22)—with or without added noise—was used 
each time, the skill score (Eq. 7) was not calculated.

 Histograms of HT and Q were constructed based on 
the results of applying each of the 15 ILD determination 
methods to the 1000 low-noise profiles (i.e., 1000 realiza-
tions; see Figs. 10, 12) and to the high-noise profile (see 
Figs. 11, 13). The statistical results obtained for the low-
noise profiles are listed in Table 4, and those obtained for 
the high-noise profiles are shown in Table 5.
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