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Several major inverse methods (Stommel-Schott method, Wunsch method, and Bernoulli
method) have been successfully developed to quantitatively estimate the geostrophic
velocity at the reference level from hydrographic data. No matter the different appear-
ance, they are based on the same dynamical sophistication: geostrophy, hydrostatic, and
potential density (ρ) conservation (Davis, 1978). The current inverse methods are all
based on two conservation principles: potential density and potential vorticity (q = f∂ρ/
∂z) and require β-turning. Thus, two necessary conditions can be incorporated into any
inverse methods: (1) non-coincidence of potential density and potential vorticity surfaces
and (2) existence of vertical turning of the velocity (β-turning.) This can be done using the
P-Vector, a unit vector in the direction of ∇ ρ × ∇ q (Chu, 1994, 1995). The first necessary
condition becomes the existence of the P-vector, and the second necessary condition leads
to the existence of the P-vector turning in the water column. Along this line, we developed
the P-vector inverse method with a pre-requirement check-up. The method was verified
in this study using the Modular Ocean Model (MOM) from Pacanowski et al. (1991)
version of Bryan-Cox-Semtner ocean general circulation model (OGCM), which is based
on the work of Bryan (1969). The statistically steady solutions of temperature and salinity
from MOM are used as a “no-error data” set for computing absolute geostrophic
velocities by the P-vector inverse method. Circulations are similar between the MOM
statistically steady solutions and the P-vector solutions. Furthermore, the quantitative
analysis shows that this inverse method has capability of picking up the major signal of
the velocity field.
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1.  Introduction
Our understanding of the mid-latitude large-scale ocean

circulation has been greatly benefitted by a remarkable set
of papers by Stommel and collaborators (Stommel and
Schott, 1977; Schott and Stommel, 1978, Beringer and
Stommel, 1980), Wunsch and collaborators (Wunsch, 1978;
Wunsch and Grant 1982), and Killworth (1986). Their work
makes it possible to obtain ocean general circulations from
observations of temperature (T) and salinity (S). The
physical base for calculating geostrophic velocity from
hydrographic data is the thermal wind relation

  

u = u0 + g

fρ0

∂ρ̂
∂y

dz ′
z0

z

∫ , 1( )

  

v = v0 − g

fρ0

∂ρ̂
∂x

dz ′
z0

z

∫ 2( )

where (u, v), (u0, v0) are the geostrophic velocity at any depth
z and at a reference depth z0, 

  ̂

ρ  is the in situ water density,
ρ0 is the characteristic value of the density, and f is the
Coriolis parameter, which is a function of latitude. Here the
Boussinesq approximation has been used. As mentioned by
Olbers et al. (1985), the quantities T, S are relatively easy to
measure, and in contrast to velocity observations, the cli-
matological signal in the T, S fields is less contaminated by
energetic smaller-scale motions induced by eddies and waves.
Equations (1) and (2) indicate that the hydrographic data
only determine the baroclinic geostrophic currents. The
reference velocity (u0, v0) still needs to be determined.

Based on the geostrophy, hydrostatic balance, and
mass conservation, several major inverse techniques, i.e.,
the β-spiral method (Stommel and Schott, 1977; Schott and
Stommel, 1978), the Wunsch method (Wunsch, 1978), and
Bernoulli method (Killworth, 1986) have been successfully
developed to quantify the geostrophic velocity at the reference
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∇ ρ × ∇ q ≠ 0. 6( )

Stommel and Schott (1977) pointed out that because
the horizontal component of velocity rotates with depth in
the open ocean (β-spiral), absolute velocities can be ob-
tained from observations of the density field alone. Since all
the inverse methods are dynamically equivalent, the β-spiral
should be satisfied before using any inverse method. This
leads to the second necessary condition.

Necessary Condition 2:  The velocity (u, v) should have
vertical turning (i.e., the β-spiral) in the water column, i.e.,
the horizontal velocity should change direction with depth

  

u k( ) v k( )

u m( ) v m( ) ≠ 0 7( )

somewhere in the water column. For a given level z = zk, if
we cannot find a level zm such that (7) is satisfied, the inverse
method will fail to get velocity at zk of this water column.

Before using any inverse method, we need to check if
these two necessary conditions are satisfied. If one of them
is not satisfied, we cannot use any inverse method to obtain
the velocity field from the T, S fields for that water column.
The next section shows that a recently proposed P-vector
concept (Chu, 1994, 1995) can bring the two necessary
conditions into the β-spiral method.

3.  P-Vector
Existence of a P-vector (5) implies the satisfaction of

the Necessary Condition 1. This provides the first check
point to see if the potential density surface coincides with the
potential vorticity surface. If the necessary condition 1 is
satisfied, the P-vector lies on the intersection of the potential
density and potential vorticity surfaces (Fig. 1).

The relationship between velocity, V = (u, v, w), and
P =(Px, Py, Pz), is

  

V = r x, y, z( )P 8( )

where r is the proportionality. Applying the thermal wind
relation to any two different depths zk and zm, shown as in
Fig. 2, a set of algebraic equations for determining the
parameter r is obtained

  

r k( )Px
k( ) − r m( )Px

m( ) = ∆ukm

  

9( )

  

r k( )Py
k( ) − r m( )Py

m( ) = ∆vkm

which are two linear algebraic equations for r(k) and r(m). Here
r(i) = r(x, y, zi), and

level (u0, v0). We refer reader to an excellent review paper
on β-spiral method by Olbers et al. (1985). Davis (1978)
pointed out that the β-spiral method and the Wunsch
method, no matter how different in appearance, are based on
the same order of dynamical sophistication and differ from
implicit assumptions about the scales of oceanic variability
and different definitions of the smooth field to which the
dynamical model pertains.

As pointed out by Wunsch and Grant (1982), in de-
termining large-scale circulation from hydrographic data,
we can be reasonably confident on the assumptions of
geostrophic balance, mass conservation, and no major cross-
isopycnal mixing (except water masses are in contact with
the atmosphere). The density of each fluid element would be
conserved, i.e.,

  

V ⋅ ∇ ρ = 0 3( )

where ρ is the potential density. The conservation of potential
vorticity equation (Pedlosky, 1986) can be obtained by
differentiating (3) with respect to z, using the geostrophic
and hydrostatic balance, and including the latitudinal
variation of the Coriolis parameter,

  

V ⋅ ∇ q = 0,    q = f
∂ρ
∂z

. 4( )

Use of f∂ρ/∂z may induce a small but systematic error into
estimation of potential vorticity (Needler, 1986). Equations
(3) and (4) indicate that V is perpendicular to both ∇ ρ and
∇ q, therefore, the velocity V is parallel to ∇ q × ∇ ρ.

Recently, Chu (1994, 1995) proposed using a unit
vector (P-vector)

  

P = ∇ ρ × ∇ q

∇ ρ × ∇ q
5( )

to obtaining North Atlantic ocean circulation from hydro-
graphic data. The results were quite agreeable with obser-
vations. The major purposes of this paper are to demonstrate
the benefit of using P-vector in β-spiral method and to
evaluate the P-vector method using an ocean general cir-
culation model.

2.  Necessary Conditions for the β-Spiral Method
The three-dimensional velocity field can be determined

from the density field unless the potential vorticity and
density surfaces coincide (Stommel and Schott, 1977). This
leads to the first necessary condition for the validity of any
inverse methods.

Necessary Condition 1:  The potential density surface
does not coincide with the potential vorticity surface; i.e.,



Evaluation of P-Vector Method 187

Fig. 2.  Vertical turning of the P-vector: (a) P vector at two different levels, and (b) turning angle between two levels (from Chu, 1995).

  

r k( ) =

∆ukm Px
m( )

∆vkm Py
m( )

Px
k( ) Px

m( )

Py
k( ) Py

m( )

. 12( )

Thus, the P-vector has the second good feature which
is the check-up for the β-turning. Consider the P-vector at
two different levels, z = zk and z = zm (Fig. 2(a)) and use Ph,
Pv to denote the horizontal and vertical components of the P-
vector. The determinant (11) is the sine of the vertical
turning angle between Ph

(k) and Ph
(m) (Fig. 2(b)), i.e.,

  

Px
k( ) Px

m( )

Py
k( ) Py

m( ) = sin α km( ) 13( )

where αkm indicates the β-spiral turning angle between the
two levels zk and zm.

In order to use any inverse method, we should check if
the inequality (11) holds. If (11) is not satisfied, i.e., the
horizontal velocity does not have β-turning,

  

sin α km = 0,    or    Px
m( ) = const,  Py

m( ) = const,

for all m 14( )

all the inverse methods fail. This is the second necessary
condition for checking the β-turning.

  

∆ukm , ∆vkm( ) = g

fρ0

∂ρ̂
∂y

, − ∂ρ̂
∂x







dz ′
zm

zk∫ . 10( )

As soon as r(k) is obtained, the velocity field can be com-
puted by (8).

If the determinant

  

Px
k( ) Px

m( )

Py
k( ) Py

m( ) ≠ 0 11( )

the algebraic equations (9) have definite solutions for r(k)

(m ≠ k):

Fig. 1.  The absolute velocity and the intersection of the surfaces
of potential density and potential vorticity.
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4.  P-Vector Inverse Method
For water columns surviving the two necessary con-

ditions, we may use (12) to compute r(k) for the level zk. There
are (N – 1) sets (m = 1, 2, k – 1, k + 1, ..., N) of Eq. (9) for
calculating r(k). Here, N is the total vertical levels of the
water column. All the (N – 1) sets of equations are com-
patible under the thermal wind constraint and should pro-
vide the same solution. However, due to errors in mea-
surements (instrumentation errors) and computations
(truncation errors), the parameter r(k) may vary with m. We
have developed an optimization scheme to minimize errors.

If the absolute velocity (u(k), v(k)) is known, we may use
the thermal wind relation (10) to obtain the absolute velocity
at any level m,

  

û m( ) = u k( ) + ∆umk ,   v̂ m( ) = v k( ) + ∆vmk ,  

  

ŵ m( ) = − u m( )∂ρ m( ) / ∂x + v m( )∂ρ m( ) / ∂y

∂ρ m( ) / ∂z
. 15( )

The computed [
  ̂

u m( ) , 
  ̂

v m( ) , 
  ̂

w m( ) ] may not be in the same
direction as the P-vector [Px

(m), Py
(m), Pz

(m)] at the level m. If
we assume that at the level m, the P-vector exists

  

∇ ρ × ∇ q

∇ ρ ∇ q
> ε1 16( )

and that the velocity should parallel the vector P(m), an error
can be easily defined by (Fig. 3)

    

Em = V m( )P m( ) − V̂ m( ) = 2sin
1
2
P m( ) , V̂ m( )( )




V m( )

�V m( ) sin P m( ) , V̂ m( )( ), 17( )

here V(m) = |
  ̂

V m( ) |, and (P(m), 
  ̂

V m( )) is the angle between two
vectors P(m) and 

  ̂

V m( ) . The total error of the water column
velocity caused by the uncertainty of (u(k), v(k)) is

  

E = hmEm( )2

m
∑

where hm is the thickness of the m-th layer (see Table 1).
We determine the velocity (u(k), v(k)) such that the total

error E becomes minimum, i.e.,

  

∂E

∂u k( ) = 0,    
∂E

∂v k( ) = 0. 18( )

Substitution of (17) into (18) leads to a 2 × 2 algebraic
equations for determining (u(k), v(k)),

  

A11u
k( ) + A12v k( ) = F1

  

19( )

  

A21u
k( ) + A22v k( ) = F2

where

  

A11 = Σma11
m( ) ,  A12 = Σma12

m( ) ,  A21 = A12 ,  A22 = Σma22
m( ) ,

F1 = −Σm a11
m( )∆umk + a12

m( )∆vmk( ),
F2 = −Σm a21

m( )∆umk + a22
m( )∆vmk( ) 20( )

and

Fig. 3.  Error caused by uncertainty of the velocity at the level k.

Table 1.  Distribution of vertical levels.

Level Depth (m) of T, S Thickness (m)

1 12.5 25.0
2 37.5 25.0
3 70.0 40.0
4 125.0 70.0
5 215.0 110.0
6 370.0 200.0
7 635.0 330.0
8 1025.0 450.0
9 1575.0 650.0

10 2350.0 900.0
11 3250.0 900.0
12 4150.0 900.0
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Fig. 4.  Surface boundary conditions. Temperature and salinity profiles used in Haney-type restoring forcing condition and surface wind
stress.

  

a11
m( ) ≡ Py

m( )( )2
f m( ) ,  a12

m( ) ≡ −Px
m( )Py

m( ) f m( ) ,

a22
m( ) ≡ Px

m( )( )2
f m( ) ,

f m( ) ≡ 1 + ∂ρ m( ) / ∂x

∂ρ m( ) / ∂z








2

+ ∂ρ m( ) / ∂y

∂ρ m( ) / ∂z








2










hm

2 . 21( )

The absolute velocity at the level z = zk can be computed
by

  

u k( ) = F1A22 − F2 A12

F11A22 − F12 A21

,    v k( ) = F2 A11 − F1A21

F11A22 − F12 A21

. 22( )

Substitution of (21) into (20) makes the second necessary
condition (14) into that if

  

A11A22 − A12 A21 = 0 23( )

all the inverse methods fails, In other words, the second
necessary condition can be written as

  

A11A22 − A12 A21 > ε2 24( )

there exists β-turning and we may use inverse method to
obtain velocity fields.

The P-vector inverse method is essentially the β-spiral
method with two necessary conditions. The benefit of using
the P-vector method is to filter out those data points.

Table 2.  Model coefficients.

5.  Modular Ocean Model (MOM)
Any inverse method involves two different kinds of

errors: observational and modeling errors. The best way to
verify the model is to use a no-error data set. Since there is
no such data set, we may use a set of steady state solutions
from a numerical model as a no-error data set. In this study,
we use the steady-state solutions of temperature and salinity
from Pacanowski et al. (1991) version of the Bryan-Cox-
Semtner ocean general circulation model (OGCM), which is
based on the work of Bryan (1987). The model domain
consists of a 60° square box in latitude-longitude space from
10°–70°N and 10°–75°W. Along the western boundary, an
idealized shelf with a structure similar to that in Holland
(1973) is included. The horizontal grid spacing is 2° latitude
by 2° longitude. The model has 12 levels in the vertical, and
the depth distribution is the same as that of Cai (1995) and
are listed in Table 1. Values assigned to the various model
parameters are listed in Table 2. No-slip and insulating

Parameter Symbol Value

Horizontal diffusivity ATH 1 × 10 3 m2s–1

Horizontal viscosity AMH 2 × 10 5 m2s–1

Vertical diffusivity ATV 1 × 10 –4  m2s–1

Vertical viscosity AMV 1 × 10 –4  m2s–1

Characteristic density ρo 1025 kg m –3

Heat capacity Cw 4 × 10 3 J kg –1K–1
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Fig. 5.  The x-dependent bottom topography used in the OGCM.

Fig. 6.  Statistically steady potential density (kg/m3) from the OGCM simulation at different depths: (a) 12.5 m, (b) 37.5 m, (c) 70 m,
(d) 215 m, (e) 1,575 m, and (f) 3,250 m.

boundary conditions are applied at the lateral boundaries.
The model uses the Cox (1987) parameterization to compute
vertical diffusion and convection implicitly. The enhanced
vertical diffusivity in regions of static instability is set at 105

cm2s–1, which is the convective adjustment in the model.
The temperature and salinity of upper-most level are

relax under a Haney (1971) restoration to a zonally uniform
temperature profile:

  

Ta ϕ( ) = 30.0 − 33.0
80.0

ϕ + 4.0 sin
6.283
75.0

ϕ − 5.0( )





25( )

and a salinity profile:
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S ϕ( ) = 35.0 − 1.32
50.0

ϕ + 0.84sin
6.283
55.0

ϕ −15.0( )





26( )

with a relaxation time-scale of 25 days (over a modeled top
mixed 25 m). The model is also subject to the zonal wind
stress of Bryan (1987). Figure 4 shows the surface boundary
conditions. The bottom topography is assumed only depen-
dent on x, and has a staircase-type change west of 64°W and
no change east of 64°W (Fig. 5).

The techniques of Bryan (1987) for acceleration equili-
bration of the model solution are used. This includes using
a longer time step at depth. The acceleration factor increases
from 1 at the surface level to 8 at the bottom level. After 750

surface years (6,000 years at the bottom) the model reaches
a statistically steady state (total kinetic energy reaches
equilibrium).

6.  MOM Model Generated Steady-State Data
The MOM model output includes potential tempera-

ture (θ), salinity (S), and velocity (u, v, w). The statistically
steady potential density field was computed from θ and S
fields. Figure 6 shows the σθ (≡ρ – 1000) fields at different
depths. The most evident features are listed as follows. The
maximum values (29.2–29.3 kg/m3) appear at the high
latitudes (near 70°N) at all depths. The horizontal σθ gradient
reduces as the depths increases. The low σθ water appears at
the equatorial region near surface and stretches northward as

Fig. 7.  Statistically steady potential vorticity from the OGCM simulation at different depths: (a) 12.5 m, (b) 37.5 m, (c) 70 m,
(d) 215 m, (e) 1,575 m, and (f) 3,250 m.
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an anticyclonic gyre occupying the majority of the domain.
In upper levels (12.5 m, 37.5 m, and 70 m), the strongest
negative q center (with a value around –1.4 × 10–6 kg m–4

s–1) is located near the southwest corner (60°–70°W, 20°–
35°N). As depth increases, the magnitude of q-values re-
duces. The strongest negative q center with values around
–2.5 × 10–8 kg m–4s–1 at 1,575 m depth and –2.2 × 10–9 kg
m–4s–1 at 3,250 m depth (2-3 orders of magnitude smaller
than the upper levels), is located near the northeast corner
(20°–10°W, 55°–65°N).

We may verify the MOM ρ, q data in terms of the two
necessary conditions. The vector product of ∇ ρ and ∇ q is
written by

∇ ρ × ∇ q =P |∇ ρ| |∇ q|sinδ

the depth increases. Near the surface (Fig. 6(a)) the σθ
curves are almost zonal except at the western boundary,
where the σθ curves bend towards the north, indicating the
northward movement of low σθ equatorial water. At the
depths of 37.5 m (Fig. 6(b)) and 70 m (Fig. 6(c)), the
northward movement of the equatorial low σθ water be-
comes more evident. At the depth of 215 m (Fig. 6(d)), the
low σθ zone shifts northward. Two centers of low σθ (27.4
kg/m3) are found at the southwest corner (25°N, 74°W) and
at the middle of the eastern boundary. At the deep levels
(Figs. 6(e) and 6(f)), σθ is very uniform. The minimum zone
of σθ is located at around 60°N.

The statistically steady potential vorticity field (q) was
computed from σθ. Figure 7 shows the q (≡f∂σθ/∂z) field at
different depths. The most evident features are listed as
follows. The values of q are either negative or zero. There is

Fig. 8.  Regions with |sinδ| ≤ 10–5 at (a) 370-m, (b) 635-m, (c) 1,025-m, (d) 1,575-m, (e) 2,350-m, and (f) 3,250-m.
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where δ is the intersection angle. Since δ cannot be exactly
zero when computed from data. A small value was taken as
the criterion δc = 10–5. If |δ| ≤ δc, the ρ surface is thought to
be parallel to the q surface. Figure 8 shows the regions at six
different depths where the first necessary condition fails.

7. MOM Generated Statistically Steady-State Veloc-
ity Field
Figure 9 shows the MOM generated statistically steady

horizontal velocities at several depths: (a) 12.5 m, (b) 37.5
m, (c) 70 m, (d) 215 m, (e) 1575 m, (f) 3250 m. The
circulation patterns can be outlined as follows. Westward-
moving equatorial currents are evident in upper levels (z ≥
–215 m) and disappear in the deeper layer (z < –215 m). The

width of the upper layer equatorial current is around 6° in
latitude. When the upper layer equatorial current approaches
the western boundary, it turns direction and becomes the
western boundary current. The maximum velocity of the
western boundary current reaches 13 cm/s. The intermediate
level (1,575 m) and deep level (3,250 m) feature a westward
current originating at the northeast corner. This current turns
southwestward at around 50°W and branches into two
western boundary currents (northward and southward) as
approaching the western boundary. The bifurcation is found
at 40°N for the depth of 1,575 m, and at 60°N for the depth
of 3,250 m. The deep currents are weak (≤2 cm/s).

The velocity spiral can be identified for each grid point
by the plot of Vh of all the depths (Fig. 10). There are 12

Fig. 9.  Statistically steady velocity from the OGCM simulation at different depths: (a) 12.5 m, (b) 37.5 m, (c) 70 m, (d) 215 m, (e) 1,575
m, and (f) 3,250 m.
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Fig. 10.  Velocity spirals of Vh (12 vectors at each grid). Two numbers given at each grid indicate the maximum turning between two
consecutive levels.

vectors at each grid. Coincidence of the vectors means no β-
turning. Two numbers given at each grid indicate the maxi-
mum β-turning between two consecutive levels such as
from 370-m (level 6) to 635-m (level 7) in the sub-tropical
regions (10°–30°N) and from 1025-m (level 8) to 1575-m
(level 9) in the mid- and high-latitudes (north of 40°N). At
some locations, the maximum turning occurs at deeper
levels. Usually, strong vertical turning of the horizontal
velocity indicates a strong baroclinicity.

8. Absolute Velocities Obtained from the P-Vector
Inverse Method Using MOM T, S Output
Taking the statistically steady potential temperature

and salinity fields as no-error data sets, we employed the P-
vector inverse method to obtain the 3-D absolute geostrophic
velocity (uI, vI). Figure 11 shows the vector plots of the
horizontal velocities at several different depths: (a) 12.5 m,
(b) 37.5 m, (c) 70 m, (d) 215 m, (e) 1575 m, (f) 3250 m. The
circulation patterns are very similar to the MOM statistically
steady-state velocity fields in the upper four levels (12.5 m,
37.5 m, 70 m, and 215 m). The circulation patterns can be
outlined as follows. Westward-moving equatorial currents
are evident with a width of 6° in latitude. When the equato-
rial current approaches the western boundary, it turns direc-
tion and become the western boundary current. The current
velocities are similar at the three levels: 12.5 m, 37.5 m, and

70 m, but weaker in the P-vector inverse method. The lower
level (1575 m, and 3250 m) velocity fields are very weak.
The major difference between the MOM and the inverse
solutions is the western boundary flow bifurcation. The
MOM model shows the high latitude westward flow bifur-
cated at 40°N for the depth of 1,575 m, and at 60°N for the
depth of 3,250 m into two western boundary currents (north-
ward and southward). However, the P-vector inverse model
does not show this bifurcation.

9. Comparison between Non-Divergent Portions of
Two Flow Fields
Given that the MOM model flow field derives from

primitive equation dynamics, we don’t expect that the ve-
locity fields from the P-vector method (assuming geostro-
phic dynamics) should match the MOM model velocity
fields. The only valid comparison should be with the
nondivergent portion of the flow field, i.e.,

  

∇ 2ψMOM =
∂ fvMOM( )

∂x
−

∂ fuMOM( )
∂y

,

∇ 2ψ I =
∂ fvI( )

∂x
−

∂ fuI( )
∂y

. 27( )
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We solved the two Poisson Equations in (27) by taking
(uMOM, vMOM), (uI, vI) as forcing functions under the bound-
ary conditions

  

ψMOM Γ = 0,    ψ I Γ = 0 28( )

where Γ represents the lateral boundaries, and n denotes the
outgoing normal direction.

The ψMOM field has the following features (Fig. 12): a
nearly basin-wide anticyclonic gyre in the upper levels (12.5
m, 37.5 m, 70 m, and 215 m) and a nearly basin-wide
cyclonic gyre in the lower levels (1575 m, 3250 m). These
gyres are evident by closed ψMOM contours with a maximum

value for the anticyclonic gyre and with a minimum value
for the cyclonic gyre. Both basin-wide gyres are asymmet-
ric. The center of the gyres (both upper and lower levels) is
towards the west, with a strong western boundary current. In
the upper levels, a weak and narrow cyclonic gyre appears
in the high latitudes (north of 60°N) east of 55°W (south of
Greenland and Iceland.) This weak high latitude cyclonic
gyre reduces its size with depth and becomes an anticyclonic
gyre which stretches westward to the western boundary in
the intermediate level (1,575 m). In the deep level (3,250 m),
the cyclonic gyre fills the whole basin.

The streamfunction ψI (Fig. 13) at the six different
depths shows that the pattern of the two fields are quite
similar: a nearly basin-wide anticyclonic gyre in the upper

Fig. 11.  Absolute velocity fields computed by the P-vector method at different depths: (a) 12.5 m, (b) 37.5 m, (c) 70 m, (d) 215 m,
(e) 1,575 m, and (f) 3,250 m.
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P-vector model stretches from the eastern boundary to the
western boundary; (c) in the intermediate level (1,575 m),
the high latitude anticyclonic gyre by the P-vector model is
located in the eastern part (east of 40°W) rather than stretching
to the western boundary in the MOM model.

Relative difference (Iψ) between two streamfunctions
(ψMOM and ψI) for each level can be depicted by a ratio
between root-mean-square (RMS) difference and standard
deviation of MOM results (

  

σψMOM
),

  

Iψ =

1
M −1

ψMOM − ψ I( )2∑
σψMOM

,

Fig. 12.  Horizontal distributions of ψMOM at different depths: (a) 12.5 m, (b) 37.5 m, (c) 70 m, (d) 215 m, (e) 1,575 m, and
(f) 3,250 m.

levels (12.5 m, 37.5 m, 70 m, and 215 m) and a nearly basin-
wide cyclonic gyre in the lower levels (1575 m, 3250 m).
These gyres are featured by closed ψI contours with a
maximum value for the anticyclonic gyre and with a mini-
mum value for the cyclonic gyre. The center of the basin-
wide gyres (both upper and lower levels) is towards the west,
and has a strong western boundary current. The patterns are
very similar between ψMOM and ψI at all depths. The differ-
ence between ψMOM and ψI are: (a) the nearly basin-wide
gyre is stronger in the MOM model than in this P-vector
model except for the intermediate level (1,575 m), where the
cyclonic gyre obtained by the β-vector model is stronger; (b)
in the upper levels (12.5 m, 37.5 m, 70 m, and 215 m) the
high latitude (north of 60°N) cyclonic gyre obtained by the
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σψMOM
= 1

M −1
ψMOM − ψMOM( )2∑ . 29( )

Here M is the total number of the horizontal grid points. The
numerator and denominator of (29) show the mean differ-
ence between two streamfunctions and the variability of
ψMOM, respectively. The smaller the Iψ, the smaller the dif-
ference between the inverse method and MOM solutions.
Near surface, Iψ is small (≈0.15), increases with depth until
1000 m (level 8) with the maximum value of 0.8, and then
decrease with depth (Fig. 14). In deep levels (z ≤ –2,500 m),
Iψ reduces with depth from 0.3 to 0.2. Near bottom, Iψ is
around 0.2. The maximum value of Iψ may caused by strong
baroclinicity near that level (Fig. 9).

10.  Conclusions
(1) Two necessary conditions were discussed in this

paper for the validity of any inverse method. They are (a)
non-coincidence of potential density and potential vorticity
surfaces; and (b) β-turning. The P-vector concept provides
a logical way of checking these two conditions. Existence of
the P-Vector guarantees the satisfaction of the first neces-
sary condition. Existence of vertical turning in the horizon-
tal P-Vector components, Ph = (Px, Py), guarantees the sat-
isfaction of the second necessary condition.

(2) The P-vector inverse method with pre-required
conditions was evaluated using the MOM model. The statis-
tically steady solutions of temperature and salinity from
MOM are used as a no-error data set for computing absolute
geostrophic velocities by the P-vector inverse method.

Fig. 13.  Horizontal distributions of ψI at different depths: (a) 12.5 m, (b) 37.5 m, (c) 70 m, (d) 215 m, (e) 1,575 m, and (f) 3,250 m.



198 P. C. Chu et al.

Similarity of ψMOM and ψI fields is found at different depths
and confirms that the inverse method has capability of
picking up the major signal of the velocity field.

(3) The introduction of P-vector makes the β-spiral
formulation analytical and simple. However, the P-vector is
calculated by differentiation of potential vorticity which
may suffer from various noises. The continuation of this
study should include the β-spiral method and compare among
P-vector method, β-spiral method, and MOM results.
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