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Global data from drifters of the Surface Velocity Program (Niiler, 2001) and tropical cyclones (TCs) from the Joint
Typhoon Warning Center and National Hurricane Center were analyzed to demonstrate strong ocean currents
and their characteristics under various storm intensities in the Northern Hemisphere (NH) and in the Southern
Hemisphere (SH). Mean TC's translation speed (Uh) is faster in the NH (~4.7 m s−1) than in the SH (~4.0 m s−1),
owing to the fact that TCs are more intense in the NH than in the SH. The rightward (leftward) bias of ocean
mixed-layer (OML) velocity occurs in theNH (SH). As a result of this slowerUh and thus a smaller Froude number
in the SH, theflowpatterns in the SHunder the same intensity levels of TCs aremore symmetric relative to the TC
center and the OML velocities are stronger. This study provides the first characterization of the near-surface OML
velocity response to all recorded TCs in the SH from direct velocity measurements.
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1. Introduction

Ocean mixed-layer (OML) velocities under a moving tropical cyclone
(TC) are mainly determined by the wind stress, the storm's translation
speed (Uh), the storm's size (the radius of themaximum tangential veloc-
ity of the storm, R), and the OML depth (Price, 1981, 1983; Price et al.,
1994; Chang et al., 2013, 2014). In-situ observations of current velocities
under TCs were rare and often with a fortuitous nature. The platforms of
measuring upper-ocean response to TCs in the past can be mainly
divided into two types. The first one is by deploying airborne drifting or
profiling instruments, such as expendable current profilers (AXCPs),
electromagnetic-autonomous profiling explorer (EM-APEX) floats, sur-
face drifters or Lagrangian floats (Price et al., 1994; D'Asaro et al., 2007;
Sanford et al., 2011) ahead of a target hurricane. The second method of
observing ocean current response to TCs is by using data collected from
current meter mooring or shore-based high frequency radar during the
passage of hurricanes (Brooks, 1983; Teague et al., 2007; Jaimes and
Shay, 2009; Black and Dickey, 2008). Both methods provide direct
measurements of ocean currents and thermal structure in response to a
moving TC, and the various factors of the ocean thermal structure
which affect this response can be discussed separately.

Among the above-mentioned instruments to detect the typhoon–
ocean interaction, surface drifter has the advantage of being able to
g).
operate under high sea states with a relatively low cost and long dura-
bility. To date, the Global Drifter Program has beenmaintaining a global
5 × 5 degree array of 1250 satellite-tracked surface drifting buoys to
meet the need for an accurate and globally dense set of in-situ observa-
tions of mixed layer currents. The drifter dataset can be incorporated
with the historical typhoon database to obtain the typhoon-induced
near-surface current in different years and at various oceans. We have
studied the strong surface flow in the North Pacific and Taiwan Strait
under the influence of several typhoons using drifters (Chang et al.,
2010, 2014). Chang et al. (2013), on the other hand, have compiled
from all drifter data in the Northwest Pacific over a long period of
time (1985–2009) and obtained a statistical result of spatial distribution
of surface currents relative to the TC's center, and their result compares
favorably with the classical theory of Geisler (1970) and the modeling
results of Price (1983).

TC climatology of the Southern Hemisphere (SH) indicates that
somewhat different characteristics exist between the TCs in the North-
ern Hemisphere (NH) and SH in terms of the storm's translation speed
and intensity (Dowdy et al., 2012). On the other hand, previous mea-
surements of ocean current response in the OML to the TCsweremostly
conducted in the oceans of the NH. Questions arise: Are these results
valid for the Southern Hemisphere (SH)? If not, what are the character-
istics of observed ocean current response under TCs with all intensity-
levels in the SH? What does an average hurricane response look like
in the SH? The goal of this study is to characterize the observed near-
surface currents under TCs with all intensity-levels for the global
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Fig. 2. Dependence of (a) translation speed (Uh), and (b) pair number on maximum
sustained wind speed (VMAX) with the 95% confidence intervals in (a).

Fig. 1. Global TC's locations color coded with Saffir–Simpson Scale from JTWC (1979–2013) and NHC (1979–2013). The magenta boxes are the main TC development regions (see text).
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ocean. Data analysis methods for global drifters under the influence of
TCs similar to Chang et al. (2013) were used in this study. Data and
method will be described in Section 2. Storm characteristics such as
themean and standard deviation of translation speed andmovingdirec-
tion for the NH and SH, deduced from long-term storm's best track data,
will be presented in Section 3. The observed OML current velocities
under TCs and their spatial distribution relative to the storm center
will be described in Section 4, followed by a discussion and concluding
remarks.

2. Data and method

Global TC data with 6-hour temporal resolution were acquired from
the Joint Typhoon Warning Center (JTWC) best track dataset and the
National Hurricane Center (NHC) best track dataset. JTWC provides
the TCs best track data in the SH, North Indian Ocean, and Northwest
Pacific Ocean. NHC provides TCs best track data in the Northeast Pacific
Ocean and North Atlantic Ocean.

Direct velocity measurements in the OML are obtained with
satellite-tracked drifters drogued at a nominal depth of 15 m. Drifter
data were acquired from an enhanced version of the global drifter
dataset maintained at Atlantic Oceanographic andMeteorological Labo-
ratory (AOML; available online at http://www.aoml.noaa.gov/phod/
dac/dacdata.html) (Niiler, 2001). Drifter positions are determined
every few hours, depending on latitudes, by Doppler ranging with the
Argos satellite system. Time series of irregular drifter positions are inter-
polated to a 6-hr interval through Kriging. The estimated accuracy of the
velocity measurements in a 10 m s−1 wind is 10−2 m s−1 (Niiler et al.,
1995). In addition to the measurements from drogued drifters, velocity
data from undrogued drifters are recovered with the calibration
procedure described by Pazan and Niiler (2001) and used in this study.

Atmospheric features are diagnosed from theNCEP/NCARReanalysis
monthly data. NOAA Earth System Research Laboratory (ESRL) (http://
www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.pressure.
html) provides the NCEP/NCAR Reanalysis wind data (2.5° × 2.5° grids)
in the global atmosphere at 17 pressure levels (1000, 925, 850, 700, 600,
500, 400, 300, 250, 200, 150, 100, 70, 50, 30, 20, and 10mb). The ERSST
and reanalysis wind data are jointly used to examine large-scale
regulatory processes of the ocean–atmosphere system for TC activity
in the global domain.

NOAA National Oceanographic Data Center (NODC) provides the
statistical fields of observed profile data interpolated to standard
depth levels (0, 10, 20, 30, 50, 75, 100, 125, 150, 200, 250, 300, 400,
500, 600, 700, 800, 900, 1000, 1100, 1200, 1300, 1400, 1500 m) on
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Fig. 3. Mean wind vectors (below 300 mb; from Earth's surface to a height of about 12 km) from the NCEP/NCAR Reanalysis wind data (1979–2013) during (a) July–October and
(b) December–March. The magenta boxes are the main tropical cyclone development region. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
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1° × 1° grids (World Ocean ATLAS 2009; https://www.nodc.noaa.gov/)
in the global ocean. The statistical field is a set of objectively analyzed
oceanographic fields of in situ temperature, salinity for monthly
compositing periods.

3. Storm's translation speeds in the Northern and Southern
Hemispheres

Fig. 1 shows all storms' locations from JTWC (1979–2013) and NHC
(1979–2013). The locations of TCs are presented in Fig. 1 with various
intensities based on the Saffir–Simpson Scale, such as category-5, -4,
Fig. 4. The number of drifter data (294,693 data points) within 1° ×
-3, -2, -1, tropical storm (TS), and tropical depression (TD). TCs occur
most frequently in the North Pacific, followed by the Indian Ocean,
North Atlantic, and Southwest Pacific. This result is consistent with pre-
vious studies (e.g., Menkes et al., 2012, Lloyd and Vecchi, 2011). Note
that the Northwest Pacific is the region which has the most intense
TCs among all basins, followed by the North Atlantic. The evolution of
TC intensity depends mainly on three factors: its initial intensity, dy-
namic and thermodynamic state of the atmosphere, and heat exchange
with the upper ocean (Emanuel, 1988, 1999, 2005; Lin et al., 2013; Mei
et al., 2015). Fig. 2 shows TC translation speed (Uh) as a function of
maximum sustained wind speed (VMAX) with a 95% confidence
1°grid under all storms (distance b 800 km) during 1979–2012.

https://www.nodc.noaa.gov
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interval. Themean of translation speed is calculated for each bin ofwind
speed.Mei et al. (2012) found a net increase ofUhwith TC category from
global TC data. In this study, themeanUh also correlates closelywith the
maximum sustained wind speed (The correlation coefficient R = 0.96
in the NH and R = 0.94 in the SH). Mean translation speeds range be-
tween 4.6 and 5.3 m s−1, and between 4.0 and 4.5 m s−1 in the NH
and SH, respectively (Fig. 2). In this study, we find that mean Uh for all
recorded TCs in the SH (~4.0 m s−1) is slower than that in the NH
(~4.7 m s−1). This is due to the fact that TCs in the SH are mostly not
very strong, as a result the mean Uh is smaller than that in the NH. TCs
appear frequently during July–October (December–March) in the NH
(SH). Fig. 3 shows the vertically averaged wind vectors (below
Fig. 5.Mean current vectors (m s−1) under (a) category-4 and -5, (b) category-3, (c) category-
sphere. Magenta arrows indicate stormmovement in the positive along-track direction. (For int
version of this article.)
300 mb; from Earth's surface to a height of about 12 km), derived
from NCEP data between 1979 and 2013, in the main TC development
region in the summer of NH (Fig. 3a, during July–October) and SH
(Fig. 3b, during December–March). The Northeast Pacific is the region
which has the strongestmeanwind speed, followed by the North Atlan-
tic, South Indian Ocean, North Indian Ocean, Northwest Pacific and
Southwest Pacific. The mean NCEP wind speed is about 11.1 m s−1 in
theNH and about 8.3m s−1 in the SH. It should be noted that themove-
ment of a TC is not only influenced by steering flow and beta drift effect,
but also by other factors such as cyclone structure. The path of a storm
depends primarily upon the steering flow by the environmental winds
in which it is embedded.
2, (d) category-1 TCs, (e) tropical storm and (f) tropical depression in the Northern Hemi-
erpretation of the references to color in this figure legend, the reader is referred to theweb
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4. Observed OML currents under tropical cyclones in the Northern
and Southern Hemispheres

Generally, TCs move west-to-northwestward in the NH and south-
westward in the SH. In order to obtain statistical characteristics of the
spatial distribution for observed current vectors relative to the TC
center, the Cartesian coordinate is rotated into the storm-coordinate
system with the unit vectors in the along-track and cross-track direc-
tions (Price, 1981; Price, 1983; Chang et al., 2013). The relative locations
and distances (D) between a storm center and a nearby drifter are
estimated at the same UTC time. Fig. 4 shows the number of drifter
data within each cell of 1° × 1° during 1979–2012 under all storms,
with the requirement of D b 800 km. Note that of the total global num-
ber of drifter data (294,693), the Northwest Pacific and North Atlantic
Fig. 6. Mean current vectors (m s−1) under (a) category-4 and -5, (b) category-3, (c) catego
Hemisphere. Magenta arrows indicate storm movement in the negative along-track direction
to the web version of this article.)
have the most data points, followed by the Northeast Pacific, South
Indian, and South Pacific. There are relatively less number of data in
the North Indian. Table 2 lists the number of 6-hourly observations of
drifters in theNHand SH, respectively. Thenumber of drifter data points
in the NH is about four times as many as in the SH. Current vectors
derived from drifters were processed by the ensemble average method
(Centurioni and Niiler, 2003; Centurioni et al., 2004) to show the mean
and standard deviation of velocities for each bin (40 km × 40 km).
Figs. 5 and 6 show spatial distribution of current vectors under various
TC intensity levels in the NH and SH, respectively. Note that the TCs
move in the positive (negative) along-track direction in the NH (SH),
as indicated by the magenta arrows in Figs. 5 and 6. In the NH (SH),
the OML currents under TCs rotate counterclockwise (clockwise).
Strong rightward (leftward) biased currents in the OML can be
ry-2, (d) category-1 TCs, (e) tropical storm and (f) tropical depression in the Southern
. (For interpretation of the references to color in this figure legend, the reader is referred



Table 2
Numbers of data points under category-4 and -5, category-3, category-2, category-1 TCs,
tropical storm and tropical depression in the Northern Hemisphere and Southern
Hemisphere.

Ocean basin Northern Hemisphere Southern Hemisphere

Category-4 &-5 12,951 3979
Category-3 10,392 4119
Category-2 14,484 4432
Category-1 30,552 8531
TS 83,614 18,790
TD 83,719 19,130
Total 235,712 58,981

Table 1
Mean storm's translation speeds (Uh), oceanmixed-layer depths (h), the phase speed of thefirst baroclinicmode (c1), the Froude number (Fr) in the NorthernHemisphere (NH), Southern
Hemisphere (SH), and different basins.

Region NH North Atlantic Northwest Pacific Northeast Pacific North Indian SH South Pacific South Indian

Uh (m s−1) 4.7 4.9 4.8 4.6 3.8 4.0 4.1 4.0
h (m) 40 43 42 34 37 38 37 39
c1 (m s−1) 2.5 2.2 2.8 2.1 2.9 2.7 2.8 2.6
Fr 1.9 2.2 1.7 2.2 1.3 1.5 1.5 1.5
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identified under all storm intensities in the NH (SH). This phenomenon
is more pronounced for more intense TCs, and is less evident as the in-
tensity of TCs decreases. The current field under TCs of various intensity
levels compiled from all oceans in the NH (Fig. 5) is very similar to our
previous results in the Northwest Pacific (Chang et al., 2013). On the
other hand, Fig. 6 provides the first characterization of the near-
surface velocity response in the SH to all recorded TCs in terms of a rel-
atively long time series of direct velocity measurements. Maximum
standard deviations of speeds under the category-4 and -5 TCs (TD) in
the NH and SH are about 0.6 (0.3) and 0.4 (0.2) m s−1, respectively.
These standard deviations of speeds are mainly caused by the effects
of OML depth, storm's translation speeds, storm's size, local background
flow, and Stokes drift (Price, 1983; Price et al., 1994; Chang et al., 2013,
2014). The 6-hourly OML depth, storm'sUh and storm's size vary in time
and space. The local background flow (or eddies of various length
scales) affects the observed current structure and velocity (Gill, 1984)
as well as the ocean mixed-layer depth (e.g. Jullien et al., 2014). The
drifters are drogued at the 15-m depth, which is still in a region of
significant Stokes drift influence. The largest Stokes drift is about
0.5 m s−1 at the ocean surface under a category-4 TC on the right-
hand side of the storm track (Sullivan et al., 2012). The OML cross-
track currents in the storm's wake are mainly due to the wind stress
with the maximum current speed to the right of the storm track at
y = 2R, where R is the radius of the maximum tangential velocity of
the storm (Brooks, 1983). For all TC intensity levels, the distance be-
tween the velocity maximum and storm center is approximately
100 km (~2R, mean R = 47 km from Hsu and Yana (1998)) in the NH
and SH (Figs. 5 and 6). However, it should be noted that the location
of the strongest currents is mainly determined by the translation
speed of the storm, and not always 2R (~100 km) from theory
(D'Asaro et al., 2014). The left-to-right asymmetry in velocity amplitude
depends mainly on the resonant coupling between clockwise-rotating
(counterclockwise-rotating) wind stress and near-inertial currents on
the right (left) side of a storm in the NH (SH), where the strongest
wind stress occurs. The asymmetry of the observed velocity fields also
agrees with the previous studies (Price, 1981; Price et al., 1994; Chu
et al., 2000; Chang et al., 2013). Our new findings are more symmetric
current field in the SH than in the NH, and stronger maximum velocity
occurs in the SH than in the NH (Figs. 5 and 6).

An important linear theory (Geisler, 1970) indicates that inertial-
gravity waves are the dominant feature of the upper ocean if the
translation speed of the storm exceeds the phase speed of the first
baroclinic mode (c1). If the TC is moving at a speed (Uh) more than
a few times the phase speed of the first baroclinic mode (i.e., the
Froude number, Fr = Uh/c1 ≫ 1), the currents in the wake become
more near inertial after the first half inertial period (Chang and
Anthes, 1978; Chang, 1985; Ginis and Sutyrin, 1995). If the translation
speeds are closer to the baroclinic long wave speed (Fr = Uh/c1 ~ 1),
the wake becomes a perturbation on a smooth pattern of upwelling. If
the translation speeds are below c1 (Fr = Uh/c1 b 1), the oceanic
response is a barotropic, geostrophical gyre with upwelling in the
storm's center. To evaluate the near-inertial velocity response over the
NH and SH oceans, c1 can be estimated from a simple two-layer ap-
proach (Jaimes and Shay, 2009), i.e., from the density changes and
layer thicknesses of the OML and the thermocline. In the coastal
ocean, c1 ranges between 0.1 and 0.5 m s−1, whereas in the deep
ocean, phase speeds range between 1 and 3 m s−1 (Steele et al.,
2009). The wave phase speeds of the first baroclinic mode during sum-
mer are estimated from the NODC temperature and density profiles in
the Northwest Pacific (~2.8 m s−1), in the North Atlantic
(~2.2 m s−1), in the Northeast Pacific (~2.1 m s−1), in North Indian
Ocean (~2.9 m s−1), in the Southwest Pacific (~2.8 m s−1), and in
South Indian Ocean (~2.6 m s−1), respectively (Jaimes and Shay,
2009; Chang et al., 2013). In the TCs-rich zone, c1 ranges between 2
and 3 m s−1. Table 1 lists the Uh, c1, and Fr for all basins. Storm's Uh in
the NH (4.7 m s−1) is about 18% greater than that in the SH
(4.0 m s−1). Values of estimated Fr are ~2.2 in the North Atlantic, ~2.2
in the Northeast Pacific, ~1.7 in the Northwest Pacific, ~1.3 in North
Indian Ocean, ~1.7 in the Southwest Pacific, and ~1.5 in South Indian
Ocean. Storm's Fr in the NH (1.9) is about 27% greater than that in the
SH (1.5). Therefore, it is reasonable to infer that the velocity fields in
the SH (NH) have weakly (strongly) left-to-right asymmetric distribu-
tions, as evidenced in Figs. 5 and 6, based on the Geisler's (1970).

On the other hand, the wind-driven velocity in the OML under a
moving TC can be represented by a horizontal velocity scale Us (Price,
1983; Price et al., 1994), i.e.

Us ¼ τR
hUh

ð1Þ

where τ is the surface wind stress, and h is the OML depth. It should be
noted that Eq. (1) is nonlinear. Fig. 7(a) and (b) shows the OML depths
in the summer of NH and SH, respectively, estimated from NODC tem-
perature profiles with an optimal temperature difference of 0.2 °C (de
Boyer Monte'gut et al., 2004). The mean OML depths of main develop-
ment region during summer are ~43 m in the North Atlantic, ~34 m in
the Northeast Pacific, ~42 m in the Northwest Pacific, ~37 m in North
Indian Ocean, ~37 m in the Southwest Pacific, and ~39 m in South
Indian Ocean (Table 1). Overall, themean OML depths of main develop-
ment region during summer in the NH (~40 m) and SH (~38 m) are
similar, as shown in Fig. 7. The estimated OML depths in this study are
close to those in the earlier study (de Boyer Monte'gut et al., 2004).
The TCs act to deepen the climatological OML depth. According to a pre-
vious study (Fu et al., 2014), the averaged OML depth changes under TC
influence are about 20–30 m. There are rarely direct surface wind data
available in theNH and in the SH. Thewind data in TCs from operational
aircraft reconnaissance are exceptional. From available data, mean R is



Fig. 7.Oceanmixed-layer (OML) depths estimated fromNODC temperature profiles, with an optimal temperature difference of 0.2 °C (de BoyerMonte'gut et al., 2004) (a) in theNorthern
Hemisphere (July–October) and (b) the Southern Hemisphere (December–March), respectively.
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about 49.7 km in theNH and about 48.6 km in the SH. They are very sim-
ilar to mean R of 47 km in the earlier study (Hsu and Yana, 1998). The
maximum velocity from drifter measurements in the SH (Fig. 6) is
greater than that in the NH (Fig. 5). Based on Eq. (1) and the estimated
mean values of R (49.7 and 48.6 km), h (40 and 38 m), and Uh (4.7 and
4.0 m s−1) in the NH and SH, it implies that TC's translation speed Uh is
principally responsible for the North/South difference in currents be-
cause the hemispheric difference in Uh (~15%) is more significant than
the other two factors (~2% and ~5%).

5. Summary

Flow patterns of strong currents under various TC intensity levels in
the NH and SH are illustrated comprehensively from large amounts of
drifter data over a long period of time. The rightward (leftward) bias
of OML velocity occurs in the NH (SH). Mean translation speed of all
TCs is slower in the SH than in the NH, but the phase speed of the first
baroclinic mode estimated from NODC mean temperature and salinity
profiles is approximately equal for the SH and NH. As a result, the flow
patterns are more symmetric and OML velocities are stronger in the
SH than in the NH. To the best of our knowledge, the present study
successfully provides a first statistical, spatial characterization of near-
surface velocity response to all recorded TCs in the SH, which is in
agreement with the theoretical prediction. Overall, our results show
what an average hurricane response looks like, nicely complementing
other efforts that highlight the effect of the initial ocean state.
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