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Abstract. This paper presents an analysis on the space/time statistical thermal structure 
in the Yellow Sea from the Navy's Master Observation Oceanography Data Set during 
1929-1991. This analysis is for the establishment of an Optimum Thermal Interpolation 
System of the Yellow Sea (a shallow sea), for the assimilation of observational data into 
coastal o- coordinate ocean prediction models (e.g., the Princeton Ocean Model), and for 
the design of an optimum observational network. After quality control the data set 
consists of 35,658 profiles. Sea surface temperatures at 50% and 80% water depths are 
presented here as representing the thermal structure of surface, middepth, and near- 
bottom layers. In the Yellow Sea shelf the temporal and spatial signals fluctuate according 
to the Asian monsoon. Variation of surface forcing from winter to summer monsoon 
season causes the change of the thermal structure, including the decorrelation scales. Our 
computation shows that the seasonal variation of the surface horizontal decorrelation scale 
is around 90 km from 158 km in winter to 251 km in summer and the seasonal variation 

of the surface temporal decorrelation scale is around 2.4 days from 14.7 days in winter to 
12.3 days in summer. The temporal decorrelation scale increases with depth in both 
summer (evident) and winter (slight). The near-bottom water (rr - 0.8) has the longest 
temporal scale in summer, which could be directly related to the existence of the Yellow 
Sea Cold Water throughout the summer in the middle of the Yellow Sea. The temporal 
and spatial decorrelation scales obtained in this study are useful for running optimum 
interpolation models and for designing an optimum observational network. The minimum 
sampling density required to detect thermal variability in the Yellow Sea shelf would be 
50-80 km and 4-6 day intervals per temperature measurement with the knowledge that 
the subsurface features will also be adequately sampled. 

1. Introduction 

Various ocean systems such as fronts, eddies, and water 
masses have different temporal and spatial scales. These scales 
feature a system's life span and spatial extent both horizontally 
and vertically. Horizontal scales for temperature fields in deep 
ocean basins have been extensively studied; for example, White 
eta[. [1982] identified spatial correlation scales in the western 
Pacific of about 600 km in the tropics (south of 17.5øN) and 300 
km in the subtropics (north of 17.5øN), while Ozxoy et al. [1989] 
found the spatial scales to be 200-250 km in the Levantine 
Basin of the Mediterranean Sea. 

Temporal and horizontal scales in the continental shelf, and 
especially in the region of fleshwater influence, have been less 
studied. One major reason is that due to great depths the deep 
ocean temperature profiles tend to follow the pattern of mixed 
layer, a thermocline, and a deeper layer slowly decreasing in 
temperature with depth. Shallow water does not consistently 
mimic this pattern. It may range from the classical profile to 
completely isothermal. The coastal water is largely affected by 
bathymetry, river runoff, internal waves, and tides. Therefore 
the temporal and horizontal scales are also under the strong 

influence of these forcing factors and should have different 
vertical structure from the deep water [Wells, 1994]. For deep 
waters the vertical variations of the temporal and horizontal 
scales are usually obtained from the temperature fields at dif- 
ferent depths (e.g., 100, 200, and 300 m from White et al. 
[1982]) or from the sea surface temperature (SST) field and 
the depth of certain temperature (e.g., depth of 20øC from 
Sprintall and Meyers [1991]). Neither scheme is practical for the 
Yellow Sea region because of a single-layer structure appear- 
ing in winter, which makes the depth of certain isotherm non- 
representative for the subsurface thermal fields, and because 
of a strong influence of horizontally varying bathymetry on the 
shallow water, which causes the temperature fields at different 
depths to be nonrepresentative of subsurface fields. For deep 
water these depths are easily determined (Figure la). How- 
ever, for shallow water with a sloping bottom, any chosen 
depths will lead to some areas (hatched area in Figure lb) not 
covered by any submodels. Therefore no climatology can be 
constructed for these areas. In order to solve this problem, we 
use •r surfaces 

• : -z/H (•) 

This paper is not subject to U.S. copyright. Published in 1997 by the 
American Geophysical Union. 

Paper number 96JC03428. 

to build up climatology and statistical structure. Here H is the 
water depth, and z is the vertical coordinate. Midwater prop- 
erties are represented by •r = 0.5, and the near-bottom water 
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Figure 1. Depths for building temperature climatology: (a) 
horizontal levels for deep water, (b) horizontal levels for con- 
tinental shelf, and (c) bottom following levels. 

features are portrayed by o- = 0.8 (Figure lc). The analysis on 
the o- coordinate system is a benefit for initializing popular o- 
coordinate coastal models, such as the Princeton Ocean Model 
[Blumberg and Mellor, 1987]. However, the analysis on the o- 
coordinate system has disadvantage during weakly forced and 
stratified periods. The deeper o- levels will be within the mixed 
layer environment in shoal areas and below the mixed layer in 
the deeper portions of the basin. 

The U.S. Navy's Master Oceanographic Observation Data 
Set (MOODS) has approximately 35,658 profiles (during 
1929-1991) for the Yellow Sea shelf. After climatology has 
been established from these profiles, temperature anomalies 
are computed by subtracting the climatology from the obser- 
vations. An autocorrelation function (ACF) is then defined by 

in the central portion with a maximum depth of 90 m. The 
bottom slopes from 20 m near the China coast to its southern 
boundary, the shelf break, at 150 m. Within 50 km of the 
Korean coastline the average water depth is 20 m. 

The Yellow Sea lies within the Asian monsoon circulation 

area and experiences hot, humid summers and cold, dry win- 
ters. In winter the Yellow Sea is dominated by the cold north- 
erly wind associated with the Siberian high (Figure 3a). The 
wind speed reaches a maximum in February with a value of 35 
m/s near the central portion and of 28 m/s over the whole 
Yellow Sea [Elms, 1990]. The northerly wind bursts create a 
southward sea level gradient that forces bottom water to flow 
northward in spurts along the Yellow Sea trough [Hsueh, 
1988]. The January surface air temperature (SAT) varies from 
0 ø to 8øC in the Yellow Sea (Figure 4a), roughly 2ø-6øC cooler 
than SST. The Yellow Sea surface loses heat to the atmo- 

sphere. The upward buoyancy flux at the air-ocean interface 
(thermal forcing), together with the strong wind stress (me- 
chanical forcing), generates turbulence and mixes the surface 
water with the deeper water. The mixed layer is at its deepest 
(it usually fills the whole water column) during winter owing to 
both convection and wind mixing by the strong northeast mon- 
soon winds. The change of seasons begin in March when the 
surface air temperatures are 5øC warmer than in February. 
Rapid weakening of the Siberian high progresses into April. In 
late April the atmospheric polar front has moved northward 
toward Korea with warm, moist air following behind. Numer- 
ous front-driven events occur, making late April and May 

4O 

1 f• T'(lo)T'(lo + l) dlo (2) •q(l) = • 

where T' is the temperature anomaly, l o denotes the indepen- 
dent space/time vectors defining the location of points in a 
sampling space L, and l is the space/time lag and s 2 is the 
variance. Here r• is computed by paring the anomalies into bins 
depending upon their separation in space/time, l. The values of 
r• will be obtained from calculating the correlation coefficient 
for all the anomaly pairs in each bin which will be constructed 
for the combination of different lags. 

35 

3O 

2. Characteristics of the Yellow Sea 

The Yellow Sea is the middle section of a continental sea 

system (Figure 2). To the north is the Bohai Sea and to the 
south are the East China Sea and the western Pacific beyond. 
It lies between China and the Korea Peninsula and covers an 

area of approximately 295,000 km 2. There are four major rivers 
that flow into it. The Yangtze River is located to the southwest, 
the Yellow River and the Liao River to the north, and the Han 
River to the east. While the Yellow Sea covers a relatively 
large area, it is uniformly shallow. The water depth over most 
of the area is less than 50 m. The deepest water is confined to 
a north-south oriented trench paralleling the Korean coastline 

25 
ll8 •20 •22 •24 •26 

Longitude (E) 

Figure 2. Bottom topography of the Yellow Sea and the sur- 
rounding regions. The data are obtained from the U.S. Naval 
Oceanographic Office DBDB5 world bathymetry database. 
Depths are in meters. 
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highly variable in terms of winds, clouds, and precipitations. 
The Yellow Sea surface quickly transits from winter to spring 
temperatures with an average increase of 10øC. 

In late May and early June the atmospheric low-pressure 
system begins to form in the north of the Yellow Sea and to 
migrate toward the west over Manchuria in late June, setting 
up the southwest monsoon that dominates the summer 
months. The Manchuria Low, associated with the atmospheric 
high-pressure system in the southeast (the Bonin High), pro- 
duces southerly winds carrying warm, moist air over the Yellow 
Sea (Figure 3b). The summer SAT is quite uniform and around 
24ø-26øC (Figure 4b). It is usually 1.5ø-2øC warmer than SST 
[Van Loon, 1984]. The warm air and the strong downward net 
radiation cause downward heat flux and stabilize the upper 
layer of the water and cause the surface mixed layer to shoal. 
Associating with the shallow mixed layer a closed surface cy- 
clonic circulation occurs above the thermocline, which is about 
13 m in August, and may reach a speed of 15 cm/s [Bartz, 1972]. 
Below the thermocline, there is a cold water mass, commonly 
referred to as the Yellow Sea Cold Water (YSCW) mass, that 

(a) 
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Figure 3. Mean atmospheric surface circulations in the vi- 
cinity of the Yellow Sea for (a) February and (b) June [from 
Langhill, 1976]. 
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Figure 4. Mean surface air temperature in the vicinity of the 
Yellow Sea for (a) January and (b) July. 

remains unchanged and nearly motionless throughout the sum- 
mer [Li and Yuan, 1992]. October is the beginning of the 
transition back to winter conditions. The southerly winds have 
weakened, letting the sea surface slope reestablish toward the 
winter pattern again. The SST steadily decreases from October 
to January. 

3. The MOODS Data Set 

The temperature profiles (1929-1991) used for this study 
were taken from MOODS. There are approximately 50,000 
temperature profiles located between 119ø-128øE and 25 ø- 
40øN, which encompass the Yellow Sea and the northern East 
China Sea. The data were screened to restrict the data set to 

those profiles that are located on the continental shelf. This 
reduces the data set to 35,658 profiles (Figure 5). To investi- 
gate the seasonal variation of the temporal and spatial scales, 
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Figure 5. Distribution of MOODS profiles in this study. 

the database was binned into four seasons. The seasons were 

defined according to the convention of the Naval Oceano- 
graphic Ottice for the Yellow Sea. January, February, and 
March constitute winter; April, May, and June constitute 
spring; July, August, and September constitute summer; and 
October, November, and December constitute fall. Table 1 
shows the partition of the data; winter has the least profiles and 
summer has the most. 

The main limitation of the MOODS data is their irregular 
distribution in time and space. Certain periods and areas are 
over sampled, while others lack enough observations to gain 
any meaningful insights. Vertical resolution and data quality 
are also highly variable depending much on instrument type 
and sampling expertise. There is a data sparse area: the eastern 
coastal region of China (Figure 5). The period of 1963-1977 is 
found to have relatively large number profiles, averaging 315 
per season. An example of temporally uneven distribution can 
be seen from Figure 6, which indicates a number of tempera- 
ture observations during January-June 1977. There are fre- 
quent 15-20 day gaps of no observations in the whole Yellow 
Sea. Spatial and temporal irregularities along with the lack of 
data in certain regions must be carefully weighted in order to 
avoid statistically induced variability. Originally, it was hoped 
that there would be sutticient data to compute horizontal and 
temporal decorrelation scales on a yearly basis and to deter- 
mine a trend. After analyzing the location and histogram of the 
data, it was obvious that statistically significant results cannot 
be obtained on a yearly basis. Analysis was done on a mean 
seasonal basis using the data for all years. 

Table 1. Number of Temperature Profiles in the Database 
for Each Season 

Number of 

Season Profiles 

Winter 7391 

Spring 9868 
Summer 9915 
Fall 8484 

4. Establishment of Seasonal Climatology 
Building climatological fields from the MOODS database is 

not a straightforward task, and in shallow water the problems 
are magnified. Most of the problems are related to lack of data. 
Without enough data, individual observations force artificial 
gradients to occur. In addition, the sloping bottom poses dif- 
ficulties with interpolating techniques. If the temperature val- 
ues need to be unbiased, an appropriate background field 
(seasonal climatology) must be subtracted. Three major steps 
were used in establishing the seasonal temperature climatol- 
ogy: (1) binning the data seasonally, (2) interpolating the tem- 
perature profiles into the desired depth, and (3) gridding the 
temperature with the Minimum curvature SPline (MISP) In- 
terpolator algorithm developed at the Naval Oceanographic 
Ottice. This algorithm is similar to the Cubic Spline Interpo- 
lator (e.g., as given by in MATLAB [1992]). During the MISP 
interpolation we apply a low-pass filter to the observed tem- 
perature values at each rr level of interest. That is, the inter- 
polated background temperature at a grid was a weighted 
linear combination of the adjacent measured values at the 
same rr level. The choice of the decay scale for the Gaussian 
weights of the filter was somewhat arbitrary except that we 
wanted it to be much longer than the decorrelation scale of 
ACF. We used a decay scale of 5 ø for the filter weights which 
gave a very smooth background field. 

The mean temperature field at rr = 0 (Figure 7) is more 
uniform horizontally in summer than in winter. The mean 
temperature fields at rr = 0.5 (Figure 8) and rr = 0.8 (Figure 9) 
mimic each other from season to season. The only difference is 
that the temperature reduces near 2øC in summer from rr = 0.5 
to rr = 0.8, representing 12-24 m in depth change (Figure 2). 
The winter subsurface (rr = 0.5, 0.8) mean temperature fields 
closely mirror the mean SST field (single layer). The summer 
subsurface mean temperature fields are quite different from 
the mean SST (multilayer). Furthermore, the summer mean 
SST field is quite uniform horizontally in the Yellow Sea shelf, 
whereas the subsurface temperature fields show a cold core in 
the central bottom of the Yellow Sea, i.e., YSCW. In winter it 
merges with the surface water, but from April to November it 
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Figure 6. Number of temperature profiles in the Yellow Sea 
shelf during January-June 1977. This is typical data density in 
any given 6 months during 1963-1977. 
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Figure 7. Surface (o- = 0) mean temperature field during (a) winter and (b) summer. 

is a distinct water mass with temperature of 4ø-5øC. During 
summer the overlying waters are 10ø-15øC warmer. 

5. Space/Time Sorting 
At present the spatial and temporal scales are important 

input data for the U.S. Navy's Optimum Thermal Interpolation 
System (OTIS) model; that is, the user should provide the 
values of these scales before running the OTIS model. What 
are these values for the Yellow Sea? We should use the most 

extensive MOODS data to obtain these scales. On the basis of 

the bowl-type bathymctry (Figure 2), Guan [1994] suggested 
that thc basin may bc treated as an isolated system. Therefore 
it is reasonable to assume that the temperature ACFs inside 
the Yellow Sea are isotropic; that is, ACFs only depend on the 
distance between two temperature locations. The major reason 
for using horizontal isotropicity here is the data sparseness 
(Table 1). If we do not use this assumption, the number of bins 
becomes very large; for example, it will be 27,000 if each of the 

temporal and spatial (x and y) lags has 30 bins. It is difficult to 
obtain meaningful statistics. 

For each observation at certain cr levels (rr = 0, 0.5, 0.8, ), 
T•; •), find the closest grid point climatological value •'• and 
compute the anomaly 7'((• •' by subtracting •'•) from T(•) , z() , 

i.e., T• •)' = T•} •) - 7'J '•. Every individual anomaly, T• •)', is 
paired with the other data points, •)', within the four sea- 
sons. The temporal and spatial differences or lags are calcu- 
lated between the two anomalies. The anomaly pair (T•} •)', 
•j•)') is then placed in the corresponding temporal (with 
increment A! = 1 day) and spatial (with increment Xr = 1() 
km) lag bin. If the lags are within A/'() (5 km) and At() (0.5 day), 
the corresponding pair is placed into bin (0, 0). If the horizon- 
tal lag is between mar - &r() and mar + At() and the 
temporal lag is between nat - At() and nat + At(), the pair 
is placed into the bin (m, n). The pair-number distributions, 
P(m, n), for the four seasons are depicted in Figure 10. We 
see some uneven distribution in the temporal and spatial bins. 
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Figure 8. Middepth (rr - 0.5) mean temperature field during (a) winter and (b) summer. 
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Figure 9. Near-bottom (rr = 0.8) mean temperature field during (a) winter and (b) summer. 

Almost everywhere, P(m, n) is equal to or more than 500. The 
maximum P(m, n) is located in bins with near 1-2 day tem- 
poral lags and 80-120 km spatial lags. 

Z bin(re,n) rb rr)t •b ø')t 
r/(•)(m, n) = Zbin(m,n)(r(oø')t) 2 (3) 

6. Autocorrelation Functions 
6.1. ACF Estimation 

After the anomaly pairs have been spatially and temporally 
sorted, the ACF value for each bin (m, n) is computed by 

which varies with the spatial and temporal lags (m, n) and 
level rr. Surface ACFs, r/(ø)(m, n), ofboth winter (Figure 11a) 
and summer (Figure 11b) are characterized by decreasing am- 
plitude with longer temporal and spatial lags. 
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Figure 10. The pair-number (in 100) distribution in the (m, n) space for (a) spring, (b) summer, (c) fall, and 
(d) winter. 
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6.2. The t Test for the ACF Estimation 

Equation (3) indicates that the computed ACF in the bin 
(m, n) is in fact the estimation of the correlation coefficient of 
pairs in that bin. A t value for verifying the significance of a 
sample correlation coefficient is given by [Walpole and Myers, 
19891 

t = 

x/1 _ ,/2 
which is a value of the statistic T having a t distribution with 
P - 2 degree of freedom. Using a as the level of significance, 
a criterion */, is obtained 

*/•= x/p_ 2 + t2 • (4) 
The criterion */, has a strong seasonal variation (Figure 12) 
due to the change of pair numbers P(m, n). The criterion 
is much smaller for most bins in summer than in winter. 

When */('•)(m, n) > */,, the estimated ACF is significant 
on the level of a. Since both */('•)(m, n) and */, have seasonal 
variations, the significance of the ACF estimation should also 
change with seasons. The significant surface ACF estimation 
(a = 0.10) is limited to the left lower corner of the (r, r) plane 
with r < 15 day and r < 200 km in winter (Figure 13a) and 
occupies nearly the whole left part of the (r, r) plane with r < 
20 day in summer (Figure 13b). Such a seasonal variability in 
significant ACF estimations leads to a significant difference in 
statistical parameters such as decorrelation scales. 
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Criterion (0.10 significant level) for surface ACF 
estimation' (a) winter and (b) summer. 
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Figure 11. Dependence of surface ACF on spatial and tem- 
poral lags (m, n) for (a) winter and (b) summer. 

6.3. Signal-to-Noise Ratio 

The measured variance s 2 of the thermal fields is separated 
into signal and noise whereby 

2 S 2 = S• 2 q- S n 

The noise variance is brought on from two sources, geophysical 
and instrumentation errors. Here the geophysical error is un- 
resolved thermal variability with scales smaller than the typical 
timescales and space scales between two temperature profiles. 
In this study the unresolved scales are 0.5 day and 5 km. The 
ACF value at the first bin (0, 0) does not represent the corre- 
lation between profiles paired by themselves and therefore 
does not equal 1. Following Sprintall and Meyers [1991], the 
signal-to-noise ratio is computed by 

0) x = -: ' (5) s, i - */(0, 0) 

The larger the A is, the less geophysical error existed. If 
*/(0, 0) = 1, there is no noise, A = 0% and if */(0, 0) = 0, there 

2 
is no signal. If A > 2, the ratio of the signal variance, s•, to the 

2 is greater than 4, which was considered noise variance, Sn, 
quite good conditions by White et al. [1982] and Sprintall and 
Meyers [1991 ]. 

6.4. Temporal Dependence of ACFs 

The temporal dependence of ACF, */('•)(m, n), can be 
easily discussed by */-n curves at several different spatial lags, 
e.g., m - 0 ("no lag"), m = 1 (10-km lag), and m = 15 
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Figure 13. Significant surface ACF estimation on level of 
0.10 for (a) winter and (b) summer. 

(150-km lag). These curves were plotted for different seasons 
and three depths (rr - 0, 0.5, 0.8) in order to see the seasonal 
and vertical variations. The three winter curves, r/( © (0, n), 
r/(•) ( 1, n), and r/(•) ( 15, n), are plotted for the surface, rr = 0 
(Figure 14a), the middepth, rr = 0.5 (Figure 14b), and the near 
bottom, rr = 0.8 (Figure 14c). We notice from Figure 12a that 
,1(ø)(15, n) is significant only if the temporal lag is smaller 
than 10 days (i.e., n < 10). The three summer curves, 
r/( © (0, n), r/(•) (l, n), and r/( © (l 5, n), are plotted for the 
surface, rr = 0 (Figure 15a), the middepth, rr = 0.5 (Figure 
15b), and the near bottom, rr = 0.8 (Figure 15c). 

The ACFs have the following features' 
1. Its temporal variability weakens as the spatial lag in- 

creases and becomes extremely small (near constantly low 
ACF) at the spatial lag m = 15 (150 km) except for the 
summer surface field (Figure 15a), where ACF decreases qua- 
si-linearly with the time lag (dotted line in Figure 15a). 

2. Its vertical variability is quite small during winter 
(Figures 14a, 14b, and 14c) and not so small during summer 
(Figures 15a, 15b, and 15c). This coincides with the single-layer 
structure in winter and the multilayer structure in summer 
(P. C. Chu et al., A feature model for the Yellow Sea shelf 
thermal structure, submitted to Journal of Geophysical Re- 
search, 1996) (hereinafter referred to as Chu et al., submitted 
manuscript, 1996). 

3. During summer the ACF's temporal variability weakens 
with depth. The surface ACF shows a fast reduction with time 
lag n (Figure 15a). The midwater (rr - 0.5) ACF has slower 
reduction than the surface as n increases (Figure 15b). The 

near-bottom (rr = 0.8) ACF fluctuates around certain values 
(0.5 for no spatial lag, 0.28 for 10-km lag, and almost 0 for 150 
km) as n increases (Figure 15c). 

6.5. Spatial Dependence of ACFs 

The spatial dependence of ACF, r•('•)(m, n), can be easily 
discussed by r/-m curves at several different temporal lags, e.g., 
n - 0 ("no lag"), n = 1 (1-day lag), and n = 15 (15-day lag). 
These curves were plotted for different seasons and three 
depths (rr = 0, 0.5, 0.8) in order to see the seasonal and vertical 
variations. The three winter curves, r/('•)(m, 0), r/('•)(m, 1), 
and r/('•)(m, 15), are plotted for the surface, rr = 0 (Figure 
16a), the middepth, rr = 0.5 (Figure 16b), and the near bottom, 
rr = 0.8 (Figure 16c). We notice from Figure 12a that r/(ø)(m, 15) 
is significant only if the spatial lag is smaller than 50 km (i.e., 
m < 5). The three summer curves, r•('•)(m, 0), r•('•)(m, 1), 
and r/('•)(m, 15), are plotted for the surface, rr = 0 (Figure 
17a), the middepth, rr = 0.5 (Figure 17b), and the near bottom, 
rr = 0.8 (Figure 17c). 

The ACFs have the following features' 
1. Its spatial variability weakens as the temporal lag in- 

creases and becomes very small (smaller than 0.2) at the time 
lag n = 15 day except for the summer near-bottom field 
(Figure 17c), where the ACF's horizontal variability at n = 15 
days is quite close to that at n = 0 (no time lag) and n - 1 day 
lag, as shown in Figure 17c. This indicates that during summer 
the tidal effects (on the timescale less or equal than 1 day) are 
important for the Yellow Sea bottom thermal field. 

2. Its vertical variability is quite small during winter (Fig- 
ures 16a, 16b, and 16c) and not so small during summer 
(Figures 17a, 17b, and 17c). This coincides with the single-layer 
structure in winter and the multilayer structure in summer 
(Chu et al., submitted manuscript, 1996). 

3. During summer the ACF's spatial variability strengthens 
with depth. The surface ACF shows a relatively weak reduction 
versus spatial lag (Figure 17a). The midwater (rr = 0.5) ACF 
has a stronger reduction than the surface as the spatial lag 
increases (Figure 17b). The near-bottom (rr - 0.8) ACF has 
the strongest reduction versus spatial lag (Figure 17c). 

7. Temporal and Spatial Decorrelation Scales 
7.1. The Gaussian Model 

The U.S. Navy's OTIS uses the Gaussian function to fit the 
ACF [Phoebus, 1988; Clancy, 1983] 

•/(•)(m, n) = •/(•)(0, 0) exp [-A2•(mAr) 2- C2•(nA,) 2] (6) 

where •('•)(m, n) denotes the Gaussian fit of the ACF value 
(at level rr) in the bin with the spatial separation m Ar and the 
temporal separation nat. Ar and Ar are increments for the 
space/time separation. A • • and C• • are horizontal and tem- 
poral decorrelation scales at different levels rr. The dominant 
space scales and timescales obtained from r/are important not 
only in determining sampling density but also for the optimum 
interpolation of the observed data. The U.S. Navy's OTIS runs 
everyday and combines real-time data, climatology, and pre- 
dictions from ocean mixed layer models to represent an accu- 
rate picture of the ocean thermal structure on global and 
regional scales [Phoebus, 1988; Clancy, 1983]. Before running 
OTIS, the user should specify temporal and spatial scales A • • 
and C• •, whose values are well determined in deep waters but 
not in continental shelves. Therefore determination of tempo- 
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Figure 14. Winter temporal variation of ACF at different spatial lags: m = 0 (no lag, dash-dotted line), m = 
1 (10-kin lag, solid line), and rn = 15 (150 kin, dotted line) for three levels: (a) surface (or = 0), (b) middepth 
(or = 0.5), and (c) near bottom (or = 0.8). 

ral and spatial decorrelation scales is crucial for the continental 
shelf thermal interpolation. 

7.2. The F Test for the Gaussian Model 

One can test the hypothesis H o that the Gaussian model (6) 
is not significant by merely forming the ratio [Walpole and 
Myers, 1989] 

SSR/k 

f= SSE/(l - k - 1) (7) 
where k = 2, I is the total number of bins in either spatial or 
temporal lags, and 

SSR --- • • [ln q•(•)(m, n) - In r•(•)] 2, 
rn n 

(8) 
SSE -- • • [ln q•(•)(m, n) - In r•(m, n)] 2 

rn n 

denoting a regression sum of squares and a residual mean 
square, respectively. When 

f>f,(k, l- k - 1) 

we reject H o. Here f,(k, I - k - 1) satisfies the F distribu- 
tion with •,• = k, •'2 = I - k - 1, and a confidence level of 
a. The f values for different levels and seasons are listed in 
Table 2. All the values of f exceed the critical value (5.45) of 
the F distribution for 2 and 28 degrees of freedom at a = 0.01. 
Therefore we can confirm that the Gaussian model is reason- 

able for the Yellow Sea thermal ACF. 

7.3. Seasonal Variabilities of the Decorrelation Scales 

The computed ACFs for different seasons and levels (o- = 0, 
0.5, 0.8) were then fitted to a Gaussian function of the form of 
(6) by the regression method, which leads to the spatial and 
temporal decorrelation scales, A • • and Cj •, respectively. Ta- 
ble 3 presents these decorrelation scales and signal-to-noise 
ratios for winter and summer. 

The signal-to-noise ratios for both winter and summer are 
higher than that for the deep waters of the eastern equatorial 
Pacific, which is around 1.0 as reported by Sprintall and Meyers 
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[1991]. This infers that the temperature signal in the Yellow 
Sea shelf is stronger than in the open waters. In both winter 
and summer seasons the largest noise occurs at the midlevel 
(o- = 0.5). This is expected since this is the transition layer 
where both the meteorological and topographic effects occur. 
The signal-to-noise ratio is greater in summer than in winter. 

The vertical variation in temporal and spatial decorrelation 
scales is smaller in winter than in summer. In winter the tem- 

poral scale varies only a half a day and the horizontal scale 
changes only 14 km among three different levels (o- = 0, 0.5, 
0.8). This vertically quasi-uniformity in decorrelation scales 
also represents the winter single-layer structure caused by the 
strong surface forcing. In winter the Yellow Sea shelf experi- 
ences strong mixing due to both strong winds and the upward 
buoyancy flux. With a large part of the Yellow Sea having 
depths less than 50 m, vertical mixing reaches the bottom and 
creates isothermal profiles. Thus decorrelation scales will be 
similar from the surface to the near-bottom (o- = 0.8) water 
column. In summer the temporal scale increases 5 days and the 

horizontal scale decreases 94 km from the surface (o- = 0) to 
the near-bottom (o- = 0.8) waters. This vertically varying de- 
correlation scale also implies the summer multilayer structure. 

Surface horizontal decorrelation scales are almost 100 km 

longer in summer than in winter. This is due to the strong solar 
heating in summer, causing a relatively uniform SST field. 
Surface temporal decorrelation scales are 2.4 days shorter in 
summer than in winter. This might be caused by the shallower 
surface mixed layer in summer (less thermal inertia). Only the 
upper layer water is affected in summer by the atmospheric 
forcing rather than the entire water column as in winter. The 
surface temporal decorrelation scale should be shorter in sum- 
mer than in winter. 

An interesting feature shown in Table 3 is the increase of 
temporal decorrelation scale with depth in both summer (ev- 
ident) and winter (slight). The near-bottom water (o- = 0.8) has 
the longest temporal scale in summer, which could be directly 
related to the existence of the Yellow Sea Cold Water through- 
out the summer in the middle of the Yellow Sea. 
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8. Applications 
8.1. Optimum Interpolation 

Optimum interpolation assigns a weight to each observation 
that accounts for variation in spatial and temporal sampling. 
The interpolated temperature anomaly at the grid point, T•, is 

t t t 

a linear combination of the observed anomalies, T•, T2, , TN 
with weights a•, a2, -.-, a N 

N 

(9) 

The values of the weights, ai(i = 1, 2, ..., N), are found by 
minimizing, in a least squares sense, the difference between the 
interpolated value at the grid node and the true value there and 
obtained from solving the algebraic equations [Gandin, 1965]: 

N 

j 1 

(]o) 

where i = 1, 2, ..., N. Here A is the signal-to-noise ratio, 
is the autocorrelation between locations i and j, and/•c., is the 
autocorrelation between the grid node and location i, 

where (ms, no) and (too,, noi) represent spatial and tem- 
poral separations between locations i and j and between loca- 
tion i and the grid node, respectively. For each grid node 
location, (10) results in a set of N linear algebraic equations to 
be solved for N unknowns, a•, by matrix inversion. In (10) the 
autocorrelations /z o and /z•, and the signal-to-noise ratio A 
have been computed at three levels (rr = 0, 0.5, 0.8) from the 
MOODS data set. Therefore for these levels the N weights 
can be determined by solving (10), and therefore any new 
observations TS, T}, --., T• can be interpolated into any 
grid node G. 

To run the U.S. Navy's OTIS, the temporal and spatial 
decorrelation scalesA• • and C j • should be prescribed [Phoe- 
bus, 1988; Clancy, 1983]. Table 3 provides useful information 
for assigning these values for the Yellow Sea OTIS model. 
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8.2. Observational Network Design 

The temporal and horizontal decorrelation scales are useful 
for an optimal observational network design. As we mentioned 
in section 6.3, the noise comes from instrumental and geo- 
physical errors. Since the instrumental error in expendable 
bathythermograph (XBT) measurements is usually about 0.1øC 
[Barnett and Bernstein, 1980] and is even smaller in conductiv- 
ity-temperature-depth (CTD) measurements, the instrumental 
error is generally neglected against the geophysical error. This 
implies that the curtailment of noise must be accomplished by 
the reduction of geophysical error. This is usually done by 
increasing the sample density. Having determined the statisti- 
cal structure of thermal variability in the Yellow Sea shelf, the 

Table 2. The f Values of the Yellow Sea ACF Estimations 

Winter Summer 

Surface 28.64 12.26 
0.5 26.43 11.71 

0.8 25.01 11.34 

minimum sampling density required to detect thermal variabil- 
ity can now be arbitrated as two or three samples per decor- 
relation scale [Sprintall and Meyers, 1991]. This would mean 
that spatially, any temperature measurement in both summer 
and winter may be conducted at 50-80 km and 4-6 day inter- 
vals with the knowledge that the subsurface features will also 
be adequately sampled. 

Table 3. Seasonal and Vertical Variations of Decorrelation 

Scales 

Season Depth 

Temporal Spatial Signal-to- 
Decorrelation Decorrelation Noise 

Scale, Scale, Ratio 
days km (X) 

Winter 

Summer 

surface 14.7 158 2.06 

50% 14.7 167 1.88 
80% 15.2 172 2.21 

surface 12.3 251 3.0 

50% 15.8 169 2.21 
80% 17.2 157 3.0 
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9. Conclusions 

1. The computation of ACF for ½r levels proposed in this 
paper demonstrates a good capability to obtain the statistical 
structure of the continental shelf thermal field. After the sta- 

tistical structures for several ½r levels were constructed from 

35,658 profiles (1929-1991) on the Yellow Sea shelf from the 
MOODS database, we obtain the temporal and spatial decor- 
relation scales and their seasonal and vertical variations for the 

Yellow Sea shelf thermal fields. These are important for opti- 
mum interpolation; for example, the decorrelation scales are 
crucial for running the U.S. Navy's OTIS model. 

2. The signal-to-noise ratios for both winter and summer 
are quite high. This infers that the temperature signal in the 
Yellow Sea shelf is strong. In both the winter and summer 
seasons the largest noise occurs at the midlevel (or - 0.5). The 
signal-to-noise ratio is greater in summer than in winter. 

3. The vertical variation in temporal and spatial decorre- 
lation scales is smaller in winter than in summer. In winter the 

temporal scale varies only a half a day and the horizontal scale 
changes only 14 km among three different levels (or = 0, 0.5, 
0.8). This vertical quasi-uniformity in decorrelation scales also 
represents the winter single-layer structure caused by the 
strong surface cooling and stirring. In summer the temporal 
scale increases 5 days and the horizontal scale decreases 94 km 
from the surface (rr = 0) to the near-bottom (rr = 0.8) waters. 
This vertically varying decorrelation scale also implies the sum- 
mer multilayer structure. 

4. The seasonal variation in temporal and spatial decorre- 
lation scales has its maximum at the surface, reduces with 
depth to a minimum at midlevel (rr = 0.5), and then enhances 
with depth to the near-bottom level. The surface horizontal 
decorrelation scales are almost 100 km longer in summer than 
in winter. This is due to the strong solar heating in summer, 
causing a relatively uniform SST field. Surface temporal deco- 
rrelation scales are 2.4 days shorter in summer than in winter. 
This might be caused by the shallower surface mixed layer in 
summer (less thermal inertia). 

5. The temporal decorrelation scale increases with depth 
in both summer (evident) and winter (slight). The near-bottom 
water (rr = 0.8) has the longest temporal scale in summer, 
which could be directly related to the existence of the Yellow 
Sea Cold Water (YSCW) throughout the summer in the mid- 
dle of the Yellow Sea. 

6. The temporal and horizontal decorrelation scales are 
useful for designing an optimum observational network. The 
minimum sampling density required to detect thermal variabil- 
ity in the Yellow Sea shelf would be 50-80 km and 4-6 day 
intervals per temperature measurement with the knowledge 
that the subsurface features will also be adequately sampled. 
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