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[1] A new concept, valid prediction period (VPP), is presented here to evaluate ocean
(or atmospheric) model predictability. VPP is defined as the time period when the
prediction error first exceeds a predetermined criterion (i.e., the tolerance level). It depends
not only on the instantaneous error growth but also on the noise level, the initial error, and
the tolerance level. The model predictability skill is then represented by a single scalar,
VPP. The longer the VPP, the higher the model predictability skill is. A theoretical
framework on the basis of the backward Fokker-Planck equation is developed to
determine the mean and variance of VPP. A one-dimensional stochastic dynamical system
[Nicolis, 1992] is taken as an example to illustrate the benefits of using VPP for model
evaluation. INDEX TERMS: 4263 Oceanography: General: Ocean prediction; 4255 Oceanography:

General: Numerical modeling; 3367 Meteorology and Atmospheric Dynamics: Theoretical modeling;

KEYWORDS: backward Fokker-Planck equation, instantaneous error, Lorenz system, predictability, tolerance

level, valid prediction period

1. Introduction

[2] A practical question is commonly asked: How long is
an ocean (or atmospheric) model valid once being integrated
from its initial state, or what is the model valid prediction
period (VPP)? To answer this question, uncertainty in ocean
(or atmospheric) prediction should be investigated. It is
widely recognized that the uncertainty can be traced back
to three factors [Lorenz, 1969, 1984]: (1) measurement
errors, (2) model errors such as discretization and uncertain
model parameters, and (3) chaotic dynamics. The measure-
ment errors cause uncertainty in initial and/or boundary
conditions [e.g., Jiang and Malanotte-Rizzoli, 1999]. The
discretization causes small-scale ‘‘subgrid’’ processes to be
either discarded or parameterized. The chaotic dynamics
may trigger a subsequent amplification of small errors
through a complex response.
[3] The three factors cause prediction error. For example,

an experiment on the Lorenz system was recently performed
[Chu, 1999] through perturbing initial and boundary con-
ditions by the same small relative error (10�4). The vertical
boundary condition error is transferred into the parameter
error after turning the Saltzman model [Saltzman, 1962] into
the Lorenz model [Lorenz, 1963] using a variable transform.
The relative error is defined by the ratio between the rms error
and rms of the three components. The Lorenz system has a
growing period and an oscillation period. With the standard
parameter values as used by Lorenz [1963], the growing
period takes place as the nondimensional time from 0 to 22;
and the oscillation period occurs as the nondimensional time
from 22. During the growing period the relative error
increases from 0 to an evident value larger than 1 for both
initial and boundary uncertainties. During the oscillation

period the relative error oscillates between two evident
values: 4.5 and 0.1 for the initial uncertainty and 5.0 and
0.2 for the boundary uncertainty.
[4] Currently, some timescale (e.g., e-folding scale) is

computed from the instantaneous error (defined as the
difference between the prediction and reality) growth to
represent the model VPP. Using instantaneous error (IE),
model evaluation becomes stability analysis on small-ampli-
tude errors in terms of either the leading (largest) Lyapunov
exponent [e.g., Lorenz, 1969] or calculated from the leading
singular vectors [e.g., Farrell and Ioannou, 1996a, 1996b].
The faster the IE grows, the shorter the e-folding scale is
and, in turn, the shorter the VPP is.
[5] For finite amplitude IE, however, the linear stability

analysis becomes invalid. The statistical analysis of the IE
(both small-amplitude and finite amplitude) growth [Ehren-
dorfer, 1994a, 1994b; Nicolis, 1992], the information the-
oretical principles for the predictability power [Schneider
and Griffies, 1999], and the ensembles for forecast skill
identification [Toth et al., 2001] become useful.
[6] The probabilistic properties of IE are described using

the probability density function (PDF) satisfying the Liou-
ville equation or the Fokker-Plank equation. Nicolis [1992]
investigated the properties of the IE growth using a simple
low-order model (projection of Lorenz system into most
unstable manifold) with stochastic forcing. A large number
of numerical experiments were performed to assess the
relative importance of average and random elements in
the IE growth.
[7] Although familiar and well understood, the IE growth

rate is not the only factor to determine VPP. Other factors,
such as the initial error and tolerance level of prediction error,
should also be considered. The tolerance level of prediction
error is defined as the maximum allowable forecast error. For
the same IE growth rate the higher the tolerance level or the
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smaller the initial error, the longer the model VPP is. The
lower the tolerance level or the larger the initial error, the
shorter the model VPP is. Thus the model VPP is defined as
the time period when the prediction error first exceeds a
predetermined criterion (i.e., the tolerance level e). The
model predictability is then represented by a scalar VPP.
The longer the VPP, the higher the model predictability is. In
this study we develop a theoretical framework for model
predictability evaluation using VPP and illustrate the useful-
ness and special features of VPP. The outline of this paper is
depicted as follows. Description of prediction error of deter-
ministic and stochastic models is given in section 2. Estimate
of VPP is given in section 3. Determination of VPP for a one-
dimensional stochastic dynamic system is discussed in sec-
tion 4. The conclusions are presented in section 5.

2. Prediction Error

2.1. Dynamic Law

[8] Let x(t) = [x(1)(t), x(2)(t), . . ., x(n)(t)] be the full set of
variables characterizing the dynamics of the ocean (or
atmosphere) in a certain level of description. Let the
dynamic law be given by

dx

dt
¼ fðx; tÞ; ð1Þ

where f is a functional. Deterministic (oceanic or
atmospheric) prediction is to find the solution of
equation (1) with an initial condition

xðt0Þ ¼ x0; ð2Þ

where x0 is an initial value of x.
[9] With a linear stochastic forcing q(t)x, equation (1)

becomes

dx

dt
¼ fðx; tÞ þ qðtÞðxÞ: ð3Þ

Here q(t) is assumed to be a random variable with zero
mean,

hqðtÞi ¼ 0; ð4Þ

and pulse-type variance

< qðtÞ qðt0Þ >¼ q2dðt � t 0Þ; ð5Þ

where the bracket < > is defined as the ensemble mean over
realizations generated by the stochastic forcing, d is the
Delta function, and q2 is the intensity of the stochastic
forcing.

2.2. Model Error

[10] Let y(t) = [y(1)(t), y(2)(t), . . ., y(n)(t)] be the estimate
of x(t) using the prediction model equation (1) or equation
(3) with an initial condition

yðt0Þ ¼ y0: ð6Þ

The prediction error vector is defined by

z ¼ x� y;

at any time t (>t0), and the initial error vector is defined by

z0 ¼ x0 � y0:

If the components [x(1)(t), x(2)(t), . . ., x(n)(t)] are not equally
important in terms of prediction, the uncertainty of model
prediction can be measured by the rms error

JðzÞ ¼ hz 0Wzi; ð7Þ

where W is the diagonal weight matrix, the superscript t
denotes the transpose operator, and the bracket represents
the ensemble average over realizations generated by
stochastic forcing, uncertain initial conditions, and uncertain
model parameters.

3. VPP

3.1. Indirect Estimate From IE Growth Rate

[11] Traditionally, the stability analysis is used to inves-
tigate the small-amplitude error dynamics due to the initial
condition error,

zðt0Þ ¼ z0; t ¼ t0; ð8Þ

with the IE growth rate and the corresponding e-folding
timescale as the measures of the model predictability skill. It
is reasonable to assume linear error dynamics for small-
amplitude errors,

fðz; tÞ ¼ AðtÞz: ð9Þ

The first Lyapunov exponent is defined as

l ¼ lim
t!1

sup
lnðk�ðt; t0ÞkÞ

t
; ð10Þ

where �(t, t0) is calculated by [Coddington and Levinson,
1995]

�ðt; t0Þ ¼ Iþ
Z t

t0

AðsÞdsþ
Z t

t0

AðrÞdr
Zr

t0

AðsÞdsþ . . . ;

where I is the unit matrix. Usually, the e-folding scale
relating to the IE growth rate (or the Lyapunov exponent) is
used to represent VPP.

3.2. Direct Calculation

[12] When state errors grow to finite amplitudes, the linear
assumption equation (9) is no longer applicable, and the
nonlinear effect should be considered. However, the predic-
tion error cannot be less than the noise level (minimum limit)
xnoise and greater than the tolerance level (maximum limit) e.
The ratio between the maximum and minimum limits is
usually large:

z1 ¼ e=xnoise >> 1; ð11Þ

in ocean models. Thus the rms error of prediction is
bounded by the two limits

x2noise � JðzÞ � e2: ð12Þ
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Two ellipsoids, Se and, Sx are defined by

JðzÞ ¼ e2 J ðzÞ ¼ x2noise;

with y(t) as the center (Figure 1).
[13] VPP, represented by a time period (t � t0) at which z

(the error) goes out of the ellipsoid Se(t), is a random
variable, whose conditional PDF P t � t0ð Þ z0j½ � satisfies the
backward Fokker-Planck equation [Pontryagin et al. 1962;
Gardiner, 1983; Ivanov et al., 1994]

@P

@t
� fðz0; tÞ½ � @P

@z0
� 1

2
q2z20

@2P

@z0@z0
¼ 0: ð13Þ

To solve equation (13), one initial condition and two
boundary conditions (with respect to z0) are needed. Since
the initial error z0 is always less than the given tolerance
level (i.e., always inside the ellipsoid Se(t)), the conditional
PDF of VPP at t0 is given by

P½ð0Þjz0� ¼ 1: ð14Þ

If the initial error z0 reache the tolerance level (i.e., z0 hits
the boundary of Se(t0)), the model loses prediction
capability initially:

P½ðt � t0Þ j z0� ¼ 0 at Jðz0Þ ¼ e2; ð15aÞ

which is the absorbing-type boundary condition. If the
initial error reaches the noise level (i.e., z0 hits the boundary
of Se(t0)), the boundary condition becomes [Gardiner, 1983]

@P½ðt � t0Þ j z0�
@z

ð jÞ
0

¼ 0; Jðz0Þ ¼ x2noise; ð15bÞ

which is the reflecting boundary condition.

[14] The kth moment (k = 1, 2, . . .) of VPP is calculated
using PDF:

tk ðz0Þ ¼ k

Z1
t0

P½ðt � t0Þ j z0� ðt � t0Þk�1
dt; k ¼ 1; . . . ;1:

ð16Þ

The mean and variance of VPP can be calculated from the
first two moments

hti ¼ t1 ð17aÞ

hdt2i ¼ t2 � t21; ð17bÞ

where the bracket denotes the average overrealizations.

3.3. Autonomous Dynamical System

[15] The predictability is usually time-dependent in ocean
(or atmospheric) systems [Toth et al., 2001]. Even for an
autonomous dynamical system,

f ¼ fðz0Þ;

the PDF of VPP still varies with time (following the
backward Fokker-Planck equation, equation (13)):

@P

@t
� fðz0Þ

@P

@z0
� 1

2
q2z20

@2P

@z0@z0
¼ 0:

We multiply this equation by (t � t0) and (t � t0)
2, then

integrate with respect to t from t0 to 1 and obtain the mean
VPP equation

fðz0Þ
@t1
@z0

þ q2z20
2

@2t1
@z0@z0

¼ �1 ð18Þ

and the VPP variability equation

fðz0Þ
@t2
@z0

þ q2z20
2

@2t2
@z0@z0

¼ �2t1: ð19Þ

Here the expression

Z1
t0

P½ðt � t0Þ j z0�dt ¼ 1

is used. Both equations (18) and (19) are linear, time-
independent, and second-order differential equations with
the initial error z0 as the only independent variable. Two
boundary conditions for t1 and t2 can be derived from
equations (15a) and (15b),

t1 ¼ 0; t2 ¼ 0; Jðz0Þ ¼ e2; ð20Þ

@t1
@z0

¼ 0;
@t2
@z0

¼ 0; J ðz0Þ ¼ x2noise: ð21Þ

4. Example

4.1. One-Dimensional Stochastic Dynamical System

[16] We use a one-dimensional probabilistic error growth
model [Nicolis, 1992]

Figure 1. Phase space trajectories of model prediction y
(solid curve) and reality x (dotted curve) and error ellipsoid
Se(t) centered at y. The positions of reality and prediction
trajectories at time instances are denoted by asterisks and
open circles, respectively. A valid prediction is represented
by a time period (t� t0) at which the error first goes out of the
ellipsoid Se(t).
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dx
dt

¼ ðsx� gx2Þ þ vðtÞx; 0 � x < 1; ð22Þ

as an example to illustrate the procedure in computing mean
VPP and VPP variability. Here the variable x corresponds to
the positive Lyapunov exponent s, g is the nonnegative
parameter whose properties depend on the underlying
attractor, and v(t)x is the stochastic forcing satisfying the
condition

hvðtÞi ¼ 0; hvðtÞvðt 0Þi ¼ q2dðt � t 0Þ:

Without the stochastic forcing v(t)x the model (22) becomes
the projection of the Lorenz attractor onto the unstable
manifold.

4.2. Equations for the Mean and Variance of VPP

[17] How long is the model (22) valid once being
integrated from the initial state? Or what are the mean
and variance of VPP of equation (22)? To answer these
questions, we should first find the equations depicting the
mean and variance of VPP for equation (22). Applying the
theory described in sections 3.2 and 3.3 to the model (22),
the backward Fokker-Planck equation becomes

@P

@t
� sx0 � gx20
� � @P

@x0
� 1

2
q2

@2P

@x20
¼ 0; ð23Þ

with the initial error x0 bounded by

xnoise � x0 � e:

Figure 2. Contour plots of t1ðx0; xnoise; eÞ versus ðx0; xnoiseÞ for four different values of e (0.01, 0.1, 1,
and 2) using the Nicolis [1992] model with stochastic forcing q2 = 0.2. The contour plot covers the
half domain due to x0 � xnoise.
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Furthermore, equations (18) and (19) become ordinary
differential equations

ðsx0 � gx20Þ
dt1
dx0

þ q2x20
2

d2t1
dx20

¼ �1 ð24Þ

ðsx0 � gx20Þ
dt2
dx0

þ q2x20
2

d2t2
dx20

¼ �2t1; ð25Þ

with the boundary conditions,

t1 ¼ 0; t2 ¼ 0; x0 ¼ e; ð26Þ

dt1
dx0

¼ 0;
dt2
dx0

¼ 0; x0 ¼ xnoise: ð27Þ

4.3. Analytical Solutions

[18] Analytical solutions of equations (24) and (25) with
the boundary conditions (26) and (27) are

t1ðx0; xnoise; eÞ ¼
2

q2

Z1

x0

y
�2s

q2 expð2eg
q2

yÞ

�
Zy

xnoise

x
2s
q2
�2
expð�2eg

q2
xÞdx

2
64

3
75dy ð28Þ

Figure 3. Contour plots of t2ðx0; xnoise; eÞ versus ðx0; xnoiseÞ for four different values of e (0.01, 0.1, 1, and 2)
using the Nicolis [1992] model with stochastic forcing q2 = 0.2. The contour plot covers the half domain
due to x0 � xnoise.
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t2ðx0; xnoise; eÞ ¼
4

q2

Z1

x0

y
�2s

q2 expð2eg
q2

yÞ

�
Zy

xnoise

t1ðxÞx
2s
q2
�2
expð�2eg

q2
xÞdx

2
64

3
75dy ð29Þ

where x0 ¼ x0=e and xnoise ¼ xnoise=e are the nondimensional
initial condition error and noise level scaled by the tolerance
level e, respectively. For given tolerance and noise levels (or
user input) the mean and variance of VPP can be calculated
using equations (28) and (29).

4.4. Dependence of T1 and T2 on ð2X0;
2
Xnoise=EÞ

[19] To investigate the sensitivity of t1 and t2 to
x0; xnoise and e, the same values are used for the param-
eters in the stochastic dynamical system (22) as were
used by Nicolis [1992]:

s ¼ 0:64; g ¼ 0:3; q2 ¼ 0:2: ð30Þ

Figures 2 and 3 show the contour plots of t1ðx0; xnoise; eÞ
and t2ðx0; xnoise; eÞ versus ðx0; xnoiseÞ for four different values
of e (0.01, 0.1, 1, and 2). The following features can be
obtained: (1) For given values of ðx0; xnoiseÞ (i.e., the same
location in the contour plots) both t1 and t2 increase with

Figure 4. Dependence of t1ðx0; xnoise; eÞ on the initial condition error x0 for four different values of e
(0.01, 0.1, 1, and 2) and four different values of random noise xnoise (0.1, 0.2, 0.4, and 0.6) using the
Nicolis [1992] model with stochastic forcing q2 = 0.2.
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the tolerance level e. (2) For a given value of tolerance
level e both t1 and t2 are almost independent on the noise
level xnoise (contours are almost parallel to the horizontal
axis) when the initial error x0 is much larger than the noise
level xnoise. This indicates that the effect of the noise level
xnoise on t1 and t2 becomes evident only when the initial
error x0 is close to the noise level xnoise. (3) For given
values of ðe; xnoiseÞ both t1 and t2 decrease with increasing
initial error x0.
[20] Figures 4 and 5 show the curve plots of t1ðx0; xnoise; eÞ

and t2ðx0; xnoise; eÞ versus x0 for four different values of
tolerance level e (0.01, 0.1, 1, and 2) and four different
values of random noise xnoise (0.1, 0.2, 0.4, and 0.6). The

following features are obtained: (1) t1 and t2 decrease with
increasing x0, which implies that the higher the initial error,
the lower the predictability (or VPP); (2) t1 and t2 decrease
with increasing noise level xnoise, which implies that the
higher the noise level, the lower the predictability (or VPP);
and (3) t1 and t2 increase with the increasing e, which
implies that the higher the tolerance level, the longer the
VPP. Note that the results presented in this section are for a
given value of stochastic forcing (q2 = 0.2) only.

4.5. Dependence of T1 and T2 on Stochastic Forcing q2

[21] To investigate the sensitivity of t1 and t2 to the
strength of the stochastic forcing q2, we use the same

Figure 5. Dependence of t2ðx0; xnoise; eÞ on the initial condition error x0 for four different values of e
(0.01, 0.1, 1, and 2) and four different values of random noise xnoise (0.1, 0.2, 0.4, and 0.6) using the Nicolis
[1992] model with stochastic forcing q2 = 0.2.
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values for the parameters (s = 0.64 and g = 0.3) in
equation (30) as were used by Nicolis [1992], except q2,
which takes values of 0.1, 0.2, and 0.4. Figures 6 and 7
show the curve plots of t1ðx0; xnoise; q2Þ and t2ðx0; xnoise; q2Þ
versus x0 for two tolerance levels e (0.1and 1), two noise
levels xnoise (0.1 and 0.6), and three different values of
q2(0.1, 0.2, and 0.4) representing weak, normal, and
strong stochastic forcing. Two regimes are found: (1) t1
and t2 decrease with increasing q2 for large noise levels
ðxnoise ¼ 0:6Þ, (2) t1 and t2 increase with increasing q2 for
small noise level ðxnoise ¼ 0:1Þ, and (3) both relationships
(increase and decrease of t1 and t2 with increasing q2 are
independent of e. These indicate the existence of stabiliz-
ing and destabilizing regimes of the dynamical system

depending on stochastic forcing. For a small noise level
the stochastic forcing stabilizes the dynamical system and
increases the mean VPP. For a large noise level the
stochastic forcing destabilizes the dynamical system and
decreases the mean VPP.
[22] The two regimes can be identified analytically for

small tolerance level (e! 0). The initial error x0 should also
be small ðx0 eÞ. The solution (28) becomes

lim
e!0

t1ðx0; xnoise; eÞ

¼ 1

s� q2=2
ln

1

x0


 �
� q2

2s� q2
x
2s
q2
�1

noise

1

x0


 �2s
q2
�1

�1

" #( )
ð31Þ

Figure 6. Dependence of t1ðx0; xnoise; q2Þ on the initial condition error x0 for three different values of the
stochastic forcing q2 (0.1, 0.2, and 0.4) using Nicolis model with two different values of e (0.1 and 1) and
two different values of noise level xnoise (0.1 and 0.6).
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The Lyapunov exponent is identified as s � q2/2 for
dynamical system (22) [Has’minskii, 1980]. For a small
noise level ðxnoise ¼ 1Þ the second term in the bracket of the
right-hand of equation (31),

R ¼ � q2

2s� q2
x
2s
q2
�1

noise

1

x0


 �2s
q2
�1

�1

" #
; ð32Þ

is negligible. The solution (31) becomes

lim
e!0

t1ðx0; xnoise; eÞ ¼
1

s� q2=2
ln

1

x0


 �
; ð33Þ

which shows that the stochastic forcing (q 6¼ 0) reduces
the Lyapunov exponent (s�q2/2), stabilizes the dynami-

cal system (22), and in turn, increases the mean VPP.
On the other hand, the initial error x0 reduces the mean
VPP.
[23] For a large noise level xnoise the second term in the

bracket of the right-hand side of equation (31) is not
negligible. For a positive Lyapunov exponent, 2s � q2 > 0,
this term is always negative (see equation (32)). The
absolute value of R increases with increasing q2 (remember
that xnoise < 1 and x0 < 1). Thus the term R destabilizes the
one-dimensional stochastic dynamical system (22) and
reduces the mean VPP.

5. Conclusions

1. The valid prediction period (a single scalar) repre-
sents the model predictability skill. It depends not only on

Figure 7. Dependence of t2ðx0; xnoise; q2Þ on the initial condition error x0 for three different values of the
stochastic forcing q2 (0.1, 0.2, and 0.4) using the Nicolis [1992] model with two different values of e (0.1
and 1) and two different values of noise level xnoise (0.1 and 0.6).
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the instantaneous error growth but also on the noise level,
the tolerance level, and the initial error. A theoretical
framework was developed in this study to determine the
mean (t1) and variability (t2) of the valid prediction
period for a nonlinear stochastic dynamical system. The
probability density function of the valid prediction period
satisfies the backward Fokker-Planck equation. After
solving this equation it is easy to obtain the ensemble
mean and variance of the valid prediction period.
2. Uncertainty in ocean (or atmospheric) models is

caused by measurement errors (initial and/or boundary
condition errors), model discretization, and uncertain model
parameters. This provides motivation for including stochas-
tic forcing in ocean (atmospheric) models. The backward
Fokker-Planck equation can be used for evaluation of ocean
(or atmospheric) model predictability through calculating
the mean valid prediction period.
3. For an autonomous dynamical system, time-inde-

pendent second-order linear differential equations are
derived for t1 and t2 with given boundary conditions.
This is a well-posed problem, and the solutions are easily
obtained.
4. For the Nicolis [1992] model the second-order

ordinary differential equations of t1 and t2 have analytical
solutions, which clearly show the following features: (1)
decrease of t1 and t2 with increasing initial condition error
(or with increasing random noise) and (2) increase of t1 and
t2 with increasing tolerance level e.
5. Both stabilizing and destabilizing regimes are found

in the Nicolis [1992] model depending on the stochastic
forcing. For a small noise level the stochastic forcing
stabilizes the dynamical system and increases the mean
VPP. For a large noise level the stochastic forcing
destabilizes the dynamical system and decreases the mean
VPP.
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