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[1] How to reduce the horizontal pressure gradient error is a key issue in terrain-following
coastal models. The horizontal pressure gradient splits into two parts, and incomplete
cancellation of the truncation errors of those parts cause the error. Use of the finite volume
discretization leads to a conserved scheme for pressure gradient computation that has
better truncation properties with high accuracy. The analytical coastal topography and
seamount test cases are used to evaluate the new scheme. The accuracy of the new scheme
is comparable to the sixth-order combined compact scheme (with an error reduction by a
factor of 70 comparing to the second-order scheme) with mild topography and much
better than the sixth-order combined compact scheme with steep topography. The
computational efficiency of the new scheme is comparable to the second-order difference
scheme. The two characteristics, high accuracy and computational efficiency, make
this scheme useful for the sigma coordinate ocean models. INDEX TERMS: 4255

Oceanography: General: Numerical modeling; 4263 Oceanography: General: Ocean prediction; 4243
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1. Introduction

[2] In regional oceanic (or atmospheric) prediction mod-
els, the effects of bottom topography must be taken into
account and usually the terrain-following sigma coordinates
should be used to imply the continuous topography. In
sigma coordinates the water column is divided into the
same number of grid cells regardless of the depth. Consider
2D problems for mathematical simplification. Let (x, z) be
the Cartesian coordinates and (x̂, s) be the sigma coordi-
nates. The conventional relationships between z and sigma
coordinates are given by

x̂ ¼ x; s ¼ z� h
H þ h

; ð1Þ

where h is the surface elevation. Both z and s increase
vertically upward such that z = h, s = 0 at the surface and
s = �1, z = �H at the bottom. The horizontal pressure
gradient becomes difference between two large terms

@p

@x
¼ @p̂

@x̂
� 1

H þ s
s
@H

@x̂
þ @h

@x

� �
@p̂

@s
; ð2Þ

that may cause large truncation error at steep topography
[e.g., Gary, 1973; Haney, 1991; Mellor et al., 1994;

McCalpin, 1994; Chu and Fan, 1997, 1998, 1999, 2000,
2001; Song, 1998].
[3] Several methods have been suggested to reduce the

truncation errors to acceptable levels: (1) smoothing topog-
raphy [Chu and Fan, 2001], (2) subtracting a mean vertical
density profile before calculating the gradient [Gary, 1973;
Mellor et al., 1994], (3) bringing certain symmetries of the
continuous forms into the discrete level to ensure cancella-
tions of these terms such as the density Jacobian scheme
[e.g., Mellor et al., 1998; Song, 1998; Song and Wright,
1998], (4) increasing numerical accuracy [e.g., McCalpin,
1994; Chu and Fan, 1997, 1998, 1999, 2000, 2001], (5)
changing the grid from a sigma grid to a z level grid before
calculating the horizontal pressure gradient [e.g., Stelling
and van Kester, 1994]. Kliem and Pietrzak [1999] claimed
that the z level based pressure gradient calculation is the
most simple and effective means to reduce the pressure
gradient errors. After comparing to other schemes, Ezer et
al. [2002] show the favorable performance of the latest
polynomial schemes. Recently, Shchepetkin and McWil-
liams [2002] design a pressure gradient algorithm with
splines that achieves more accurate hydrostatic balance
between the two components and that does not lose as
much accuracy with nonuniform vertical grids at relatively
coarse resolution.
[4] Using the finite volume integration approach [Lin,

1997], an extra hydrostatic correction term is added to the
ordinary second-order scheme for reducing the horizontal
pressure gradient error. With the extra term the discretiza-
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tion scheme is called the hydrostatic correction (HC)
scheme. In this study, we describe the physical and math-
ematical bases of the HC scheme and its verification. The
outline of this paper is as follows: Description of the
horizontal gradient in finite volume is given in section 2.
The second-order scheme is given in section 3. Hermit
polynomial integration and hydrostatic correction are
depicted in sections 4 and 5. Error estimation and seamount
test case are given in sections 6 and 7. In section 8, the
conclusions are presented.

2. Horizontal Pressure Gradient in Finite Volume

[5] Let the flow field change in x-z plane only (Figure 1).
A finite volume (trapezoidal cylinder) is considered with the
length of Ly (in the y direction) and the cross section
represented by the shaded region (trapezoid) in Figure 1.
The resultant pressure force (F) acting on the finite volume
is computed as follows:

F ¼ Ly

I
C

pnds ð3Þ

where p is the pressure, C represents the four boundaries; n
denotes the normal unit vector pointing inward; and ds is an
element of the boundary. The contour integral is taken
counterclockwise along the peripheral of the volume
element. The pressure force exerts on the four boundaries
of the finite volume with pw, pe, pu, and pl on the west, east,
upper, and lower sides. The horizontal (Fx) and vertical (Fz)
components of the resultant pressure force are computed by

Fx ¼ �Ly

Z2

1

pldzþ
Z3

2

pedzþ
Z4

3

pudzþ
Z1

4

pwdz

0
@

1
A; ð4Þ

Fz ¼ Ly

Z2

1

pldxþ
Z4

3

pudx

0
@

1
A; ð5Þ

where points 1, 2, 3, and 4 are the four vertices of the finite
volume. The hydrostatic balance is given by

Fz ¼ g�m; ð6Þ

where g is the gravitational acceleration, �m is the mass of
the finite volume. Equation (6) states that the vertical
component of the resultant pressure force acting on the
finite volume exactly balances the total weight of the finite
volume.
[6] For a Boussinesq, hydrostatic ocean model, the pres-

sure field is calculated by

p ¼ patm þ r0ghþ g

Z0

z

r x; z0; tð Þdz0; ð7Þ

where patm is the atmospheric pressure at the ocean surface,
r0 is the characteristic density, and h is the surface elevation.
Substitution of (7) into (5) leads to

Fz ¼ gLy

Z2

1

Z0

z

r x; z0; tð Þdz0dxþ
Z4

3

Z0

z

r x; z0; tð Þdz0dx

0
@

1
A

¼ gLy

Z
�S

Z
r x; z0; tð Þdz0dx ¼ g�m; ð8Þ

where �S is the area of the trapezoid (Figure 1) computed
by

�S ¼ xiþ1 � xið Þ zi;k þ ziþ1;k � zi;kþ1 � ziþ1;kþ1

	 

; zi;k ¼ Hi � sk :

ð9Þ

Equation (8) indicates that the finite volume discretization
guarantees the hydrostatic balance in Boussinesq, hydro-
static ocean models. Using equation (4) the horizontal
pressure gradient is computed by
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� Fx
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¼ � 1
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4
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0
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1
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ð10Þ

which has the flux form (i.e., the conserved scheme). In the
conserved scheme, the pressure gradient for any grid cell is
computed from the summation of pressure exerted on the
four sides of the cell. For the whole domain integration, the
pressure at any grid cell side not at the domain boundary is
used twice with opposite sign (canceling each other). Thus
equation (10) is called the conservation scheme. Finite
difference schemes in the sigma coordinate such as second-
order central difference scheme popularly used in ocean
models as well as the recently developed spline-based
scheme [Shchepetkin and McWilliams, 2002]. Since design
of conservation scheme is a key issue in numerical modeling,
the discretization (equation (10)) may improve the pressure
gradient computation in terrain-following ocean models.

3. Second-Order Scheme

[7] In ocean models with the staggered grid (Figure 1),
velocity is evaluated at the center of the volume and

Figure 1. Finite volume discretization with staggered grid
in a terrain-following coordinate system.
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pressure is put at the four vertices. With given values at
vertices, we have several methods to compute four integra-
tions in the right-hand side of (equation (10)). The mean
value theorem leads to,

Z2

1

pldz ¼ �pl ziþ1;kþ1 � zi;kþ1

	 

;

Z3

2

pedz ¼ �pe ziþ1;k � ziþ1;kþ1

	 

;

Z4

3

pldz ¼ �pu zi;k � ziþ1;k

	 

;

Z1

4

pwdz ¼ �pw zi;kþ1 � zi;k
	 


; ð11Þ

where �pl; �pe; �pu; �pw are the mean values of pressure at the
four sides of the trapezoid. The horizontal pressure gradient
with the finite volume consideration is given by

�p

�x
¼ 1

�S
�pl ziþ1;kþ1 � zi;kþ1

	 

þ �pe ziþ1;k � ziþ1;kþ1

	 
�

þ �pu zi;k � ziþ1;k

	 

þ �pw zi;kþ1 � zi;k

	 
�
; ð12Þ

For the second-order staggered grid, �pl; �pe; �pu; �pw, are taken
as the arithmetic means of pressure at the two vertices,

�pw ’ pi;k þ pi;kþ1

2
; �pe ’

piþ1;k þ piþ1;kþ1

2
;

�pl ’
pi;kþ1 þ piþ1;kþ1

2
�pu ’

pi;k þ piþ1;k

2
:

ð13Þ

Substitution of equation (13) into equation (12) and Use of
equation (1) lead to

�p

�x

� �
i;k

¼

piþ1;kþ1 � pi;k
	 


Hiþ1sk � Hiskþ1ð Þ þ piþ1;k � pi;kþ1

	 

Hisk � Hiþ1skþ1ð Þ

�xi�sk Hi þ Hiþ1ð Þ ;

ð14Þ

where�xi = xi + 1 � xi and�sk = sk � sk + 1. Equation (14)
is the discretization of the horizontal pressure gradient with
the finite volume consideration.
[8] Finite difference schemes are commonly used in sigma

coordinate ocean models. For the sigma coordinate system,

zi;k ¼ Hi � sk ; ð15Þ

the horizontal pressure gradient (2) discretized by the
central difference scheme is

�p

�x

� �
i;k

¼ piþ1;k þ piþ1;kþ1 � pi;k � pi;kþ1

2�xi
� sk þ skþ1

Hi þ Hiþ1

� �

� Hiþ1 � Hi

�xi

� �
pi;k þ piþ1;k � pi;kþ1 � piþ1;kþ1

2�sk

� �

¼
piþ1;kþ1 � pi;k
	 


Hiþ1sk � Hiskþ1ð Þ þ piþ1;k � pi;kþ1

	 

Hisk � Hiþ1skþ1ð Þ

�xi�sk Hi þ Hiþ1ð Þ ;

which is exactly the same as equation (14). Thus the
second-order finite volume scheme is the same as the finite
difference scheme for the staggered grid.

[9] Discretization of pressure integration along the seg-
ments (equation (11)) has two weaknesses: (1) low accuracy
(second-order) and (2) pure mathematical, which means the
physical property of p is not considered. Since most sigma
coordinate ocean models are hydrostatically balanced,

@p

@z
¼ �rg; ð16Þ

one way to increase accuracy is to use Hermit Polynomial.

4. Hermit Polynomial Integration

[10] Suppose p and its directional derivative @p/@l be
given at two vertices of a segment of [l1, l2] of any finite
volume in Figure 1. Let

x ¼ l � l1

�l
; �l � l2 � l1: ð17Þ

x varies in [0, 1]. The integration of p along the segment
from l1 to l2 is given by,

Z l2

l1

p lð Þdl ¼ �l

Z 1

0

Y xð Þdx; ð18Þ

where

Y xð Þ ¼ pl1�1 þ pl2�2 þ�l
@p

@l

� �
l1

�3 þ�l
@p

@l

� �
l2

�4; ð19Þ

is the Hermit polynomial and

�1 ¼ 1� 3x2 þ 2x3; �2 ¼ 3x2 � 2x3;

�3 ¼ x� 2x2 þ x3; �4 ¼ x3 � x2;
ð20Þ

are the four basis functions. Substitution of equations (19)
and (20) into (18) leads to

Z l2

l1

pdl ¼
Z 1

0

Y xð Þdx ¼ �l

2
p1 þ p2ð Þ þ�l2

12

@p

@l

� �
1

� @p

@l

� �
2

� �
:

ð21Þ

5. Hydrostatic Correction

[11] From the hydrostatic balance (equation (16)), the
pressure integration along the two vertical segments of a
finite volume is calculated analytically by (taking east side
in Figure 1 as an example)

Z 3

2

pedz ¼
z3 � z2ð Þ

2
p2 þ p3ð Þ � z3 � z2ð Þ2g

12
r2 � r3ð Þ: ð22Þ

For upper and lower segments of the finite volume (Figure 1),
directional derivative needs to be computed

@p

@l
¼ cosa

@p

@x
þ sina

@p

@z
¼ cosa

@p

@x
� rg sina; ð23Þ
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where a is the angle between the segment and the x axis
(Figure 2). The pressure integration along the upper and
lower segments is calculated by (lower segment as an
example)

Z 2

1

pldz ¼ sina
Z l2

l1

pdl ’ z2 � z1ð Þ
2

p1 þ p2ð Þ � z2 � z1ð Þ2g
12

� r1 � r2ð Þ þ 1

12

@p

@x
j1 �

@p

@x
j2

� �
x1 � x2ð Þ z1 � z2ð Þ:

ð24Þ

Thus integration along the four segments of the finite
volume (Figure 1) is represented by

Z n

m

pdz ’ zn � zmð Þ
2

pm þ pnð Þ � zn � zmð Þ2g
12

rm � rnð Þ

þ 1

12

@p

@x
jm � @p

@x
jn

� �
xm � xnð Þ zm � znð Þ: ð25Þ

In the right-hand side, the first term is from the mean value
calculation, and the second term is the hydrostatic correc-
tion. Substitution of equation (25) into equation (10) and
neglect of high-order terms lead to

�p

�x

� �
i;k

’
piþ1;kþ1 � pi;k
	 


ziþ1;k � zi;kþ1

	 

þ piþ1;k � pi;kþ1

	 

zi;k � ziþ1;kþ1

	 
� �
xiþ1 � xið Þ zi;k þ ziþ1;k � zi;kþ1 � ziþ1;kþ1

	 
 þ�ik ;

ð26Þ

where

�ik ¼
g�ik

6 xiþ1 � xið Þ zi;k þ ziþ1;k � zi;kþ1 � ziþ1;kþ1

	 
 ;

�ik � Hiþ1sk � Hiþ1skþ1ð Þ2 riþ1;k � riþ1;kþ1

	 
h

� Hisk � Hiskþ1ð Þ2 ri;k � ri;kþ1

	 

þ Hiþ1skþ1 � Hiskþ1ð Þ2

� riþ1;kþ1 � ri;kþ1

	 

� Hiþ1sk � Hiskð Þ2 riþ1;k � ri;k

	 
i
: ð27Þ

[12] The new correction term �ik is in some sense equiv-
alent to the common practice in Princeton Ocean Model
(POM) [Blumberg and Mellor, 1987] of removing a vertical
mean density profile [Mellor et al., 1994], though here is
done locally, while in the standard POM code the mean
density profile is usually based on area averaged climatology
and requires interpolation of the mean density profile to the
sigma grid. In the sigma coordinate ocean models, equation
(26) becomes

�p

�x

� �
i;k

’
piþ1;kþ1 � pi;k
	 


Hiþ1sk � Hiskþ1ð Þ þ piþ1;k � pi;kþ1

	 

Hisk � Hiþ1skþ1ð Þ

� �
�xi�sk Hi þ Hiþ1ð Þ þ �ik :

ð28Þ

The scheme (28) is evaluated with the coastal and seamount
topography. The horizontal pressure gradient is computed
using equations (27) and (28).

6. Error Estimation

6.1. Analytical Coastal Topography

[13] Choose coordinates such that the y axis coincides with
the coast, and the x-axis points offshore. Cross-coastal topog-
raphy consists of shelf, slope, and deep layer (Figure 3a).
Analytical bottom topography is proposed in a way that
shelf and slope are arcs of two circles. The shelf has a
smaller radius (r), and the slope has a larger radius (R). The
two arcs are connected such that the tangent of the bottom
topography, dh/dx, is continuous at the shelf break (x = x0).
This requirement is met using the same maximum expand-
ing angle (q) for both arcs (Figure 3b). Thus q represents the
maximum slope angle. This bottom topography has three
degrees of freedom: r, R, and q. The maximum water depth
is given by (Figure 3b)

H ¼ r þ Rð Þ 1� cos qð Þ; ð29Þ

The horizontal, vertical coordinates, radii (r, R), and water
depth are nondimensionalized by

x* ¼ x

H
; z* ¼ z

H
; r* ¼ r

H
; R* ¼ R

H
; h* ¼ h

H
: ð30Þ

The analytical bottom topography representing shelf, slope,
and deep layer (Figure 3) is given by

h* x*ð Þ ¼

r*�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r*

2

� x*
2

q
; if x* � x0*ð Þ

1� R*þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R*

2

� x1*� x*
	 
2q

; if x0* < x* � x1*
	 


1; if x* > x1*
	 


8>>>>>><
>>>>>>:

ð31Þ

Let the ratio between the two radii be defined by

k ¼ r

R
; ð32Þ

Figure 2. Directional derivative of pressure along upper or
lower segment.
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Substitution of equations (29) and (32) into equation (30)
leads to

r* ¼ k

1þ kð Þ 1� cos qð Þ ; R* ¼ 1

1þ kð Þ 1� cos qð Þ ;

x0* ¼ r* sin q ¼ k � sin q
1þ kð Þ 1� cos qð Þ ;

x1* ¼ r*þ R*ð Þ sin q ¼ sin q
1� cos q

:

ð33Þ

The shelf and slope widths are x0* and (x1* � x0*),
respectively. Use of equations (32) and (33) leads to

x0*= x1*� x0*ð Þ ¼ r*=R* ¼ k ð34Þ

which indicates that the nondimensional parameter k is the
ratio between shelf and slope widths. Thus the nondimen-
sional bottom topography (equation (31)) has two degrees
of freedom: k and q. Figure 4 shows the coastal topography
varying with the maximum slope angle q (10�, 30�, 60�,
90�) and the shelf slope ratio k (0.1, 0.5, 1). The larger the
angle q, the steeper the bottom topography is; the lager the
k, the shorter the slope is.

6.2. Nondimensional Pressure

[14] Let r0 (1,025 kg m�3) be the characteristic density.
The density (r) and pressure (p) are nondimensionalized by

r* ¼ r
r0

; p* ¼ p

r0gH
; ð35Þ

and the hydrostatic balance (equation (16)) is nondimensio-
nalized by

@p*

@z*
¼ �r*: ð36Þ

Integration of equation (36) from the ocean surface to depth
z* leads to

p* ¼
Z 0

z*
r*dz*þ pa*; ð37Þ

where pa* is the nondimensional atmospheric pressure. Since
the horizontal atmospheric pressure gradient does not
depend on the ocean bottom topography (or selection of

the oceanic coordinate system), its effect on the sigma
coordinate error (ocean) is neglected in this study.

6.3. Methodology

[15] Error reduction by the hydrostatic correction term
(�ik) is evaluated using the motionless ocean with an
exponentially stratified density [Chu and Fan, 1997],

r* ¼ 1þ 0:005 1� e2z*
� �

; ð38Þ

which leads to the fact that the pressure p* depends only on
z* (atmospheric pressure effect neglected) and no horizontal
pressure gradient exists. However, computation in the sigma
coordinate leads to false horizontal pressure gradient that is
regarded as the sigma coordinate error.
[16] The horizontal pressure gradient dp*/dx* is computed

for x* from 0 to 12 from the density field (equation (38))
with the analytical bottom topography (equation (31)) using

Figure 3. Coastal geometry with open boundaries: (a) three-dimensional view and (b) cross-coastal
view.

Figure 4. Dependence of bottom topography on k values
for different values of maximum slope q: (a) 10�, (b) 30�, (c)
60�, and (d) 90�.
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four different schemes: second-order difference (SD)
scheme (equation (14)), fourth-order compact difference
(CD) scheme [Chu and Fan, 1998], sixth-order combined
compact difference (CCD) scheme [Chu and Fan, 1998],
and the hydrostatic correction (HC) scheme (equation (28)).
The accuracy of these schemes is evaluated by various mean

and maximum values of the horizontal pressure gradient
errors.

6.4. Global Performance

[17] The global performance of the four schemes is eval-
uated by the global mean (over all the grid points) of the

Figure 6. Dependence of GME on the shelf slope ratio (k value) for different q value: (a) 10�, (b) 30�,
(c) 60�, and (d) 90�. Note that the four curves in each panel represent the SD (dotted), CD (dot-dashed),
CCD (dashed), and HC (solid) schemes.

Figure 5. Dependence of GME on the maximum slope (q value) for different k values: (a) 0.1, (b) 0.3,
(c) 0.6, and (d) 1.0. Note that the four curves in each panel represent the SD (dotted), CD (dot-dashed),
CCD (dashed), and HC (solid) schemes.
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absolute values of the horizontal pressure gradient, denoted
by global mean error (GME). GME is computed using the
four schemes for various k (0.1 to 1.0) and q (5� to 90�).
Figure 5 shows the dependence of GME on the maximum
slope angle q with four different values of the shelf/slope
ratio: k = 0.1, 0.3, 0.6, 1. On each panel (a particular value of
k), four curves are plotted representing the four schemes: SD,
CD, CCD, and HC. For all the four schemes, GME increases
with the maximum slope q monotonically. However, GME
reduces from SD to CD, from CD to CCD, and from CCD to
HC schemes. Taking k = 0.1 and q varies from 5� to 90�,
GME increases from 1.04 � 10�7 to 1.58 � 10�5 using the
SD scheme, from 2.37 � 10�8 to 6.08 � 10�6 using the CD
scheme, from 1.58 � 10�9 to 5.82 � 10�6 for the CCD
scheme; and from 1.09 � 10�11 to 1.31 � 10�8. The overall
error reduces drastically using the HC scheme.
[18] Figure 6 shows the dependence of GME on the shelf

slope ratio (k) with four different maximum slopes: q = 10�,

30�, 60�, and 90�. On each panel (a particular value of q),
four curves are plotted representing the four schemes: SD,
CD, CCD, and HC. The same as Figure 5, GME greatly
reduces using the HC scheme, compared to using the three
currently used schemes (SD, CD, and CCD). For not very
steep topography (Figures 6a–6c), GME reduces from SD
to CD, from CD to CCD, and from CCD to HC schemes.
[19] For very steep topography (Figure 6d, q = 90�), GME

is comparable using any of the existing schemes (SD, CD,
CCD), but 2–3 orders of magnitude smaller using the HC
scheme. Such a high performance makes the HC scheme
valuable for coastal modeling.

6.5. Cross-Coastal Error

[20] The cross-coastal error is evaluated by the vertical
mean (over a water column) of the absolute values of the
horizontal pressure gradient, denoted by vertical mean error
(VME). VME is computed using the four schemes for three

Figure 7. Dependence of VME on the offshore distance (x*) for three k values (0.1, 0.5, and 1) and four
q values (10�, 30�, 60�, and 90�). Note that each panel has four curves representing SD (dotted), CD (dot-
dashed), CCD (dashed), and HC (solid) schemes.
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k values (0.1, 0.5, 1.0) and four q values (10�, 30�, 60�,
90�). Each panel in Figure 7 shows the dependence of VME
on the offshore distance (x*) with four different schemes for
a particular combination of the (k, q) values. For the SD and
HC schemes, VME usually has a minimum value at the
coast (x* = 0) and increases with x* from shelf to slope. For
the CD and CCD schemes, however, VME has a relatively
large value at the coast, reduces with x* to shelf break and
then increases with x* in the slope. This is caused by
additional condition such as @2p/@x2 = 0 is added at the
coast (x* = 0). The HC scheme reduces around 105 times of
VME comparing to the SD scheme, around 104 times of
VME comparing to the CD scheme, and around 10–103

times of VME comparing to the CCD scheme.
[21] Figure 8 shows the contour of the absolute values of

the pressure gradient (with q = 60� and k = 0.2) calculated
using the four schemes. Large errors occur near the bottom
topography for all the schemes. However, the error reduces
from SD to CD, from CD to CCD, and from CCD to HC
schemes. The maximum error reduces by a factor of 2.39
from SD to CD scheme, a factor of 5.96 from CD to CCD
scheme, and a factor of 32.57 from CCD to HC scheme.
GME reduces by a factor of 3.81 from SD to CD scheme, a

factor of 5.00 from CD to CCD scheme, and a factor of
408.8 from CCD to HC scheme (Table 1). High GME error
reduction of the HC scheme is expected since the entire
error in those tests is due to the vertical density gradient (see
equation (38)). Removal of the hydrostatic term (or hydro-
static correction) removes most of the error.

7. Seamount Test Case

7.1. Known Solution

[22] Accuracy of any numerical scheme should be evalu-
ated by either analytical or known solution. For a realistic
ocean model, the analytical solution is hard to find. Consider

Figure 8. Contour of the absolute values of the horizontal pressure gradient (with q = 60� and k = 0.2)
calculated using: (a) SD, (b) CD, (c) CCD, and (d) HC schemes.

Table 1. Comparison of Maximum and Global Mean Horizontal

Pressure Gradient Errors Among Four Schemes Using the

Analytical Coastal Bottom Topography With q = 60� and k = 0.2

Maximum Error Global Mean Error

SD 28.2 � 10�6 1.41 � 10�6

CD 11.8 � 10�6 0.37 � 10�6

CCD 1.98 � 10�6 0.74 � 10�7

HC 6.08 � 10�9 1.81 � 10�10
Figure 9. Seamount geometry.
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a horizontally homogeneous and stably stratified ocean with
realistic topography. Without forcing, initially motionless
ocean will keep motionless forever, that is to say, we have
a know solution (V = 0). Any nonzero model velocity can be
treated as an error. Ezer et al. [2002] evaluated seven different
schemes and found that the sixth-order CCD scheme is
accurate but computationally expensive. Thus we use the
standard POM seamount test case to verify the performance
of HC scheme, comparing with the SD and CCD schemes
both in accuracy and computational efficiency.

7.2. Configuration

[23] A seamount is located in the center of a square
channel with two solid, free slip boundaries in the north
and south (Figure 9). The bottom topography is defined by
[Ezer et al., 2002]

H x; yð Þ ¼ Hmax 1� A exp � x2 þ y2
	 


=L2
� �� �

; ð39Þ

where Hmax is the maximum depth (4,500 m); L is the
seamount width; and (1 � A) represents the depth of the
seamount tip. In this study, we use a ‘‘very steep’’ case with
A = 0.9 and L = 25 km.
[24] Unforced flow over the seamount in the presence of

resting, level isopycnals is an idea test case for the assess-
ment of pressure gradient errors in simulating stratified flow
over topography. The flow is assumed to be reentrant
(periodic) in the along the two open boundaries of the
channel. We use this standard seamount case of POM to test
the performance of the HC scheme. POM is the sigma
coordinate model. In the horizontal directions the model
uses the C grid and the second-order finite difference
discretization except for the horizontal pressure gradient,
which the user has choice of either second-order SD or
sixth-order CCD schemes. There are 21 sigma levels. For
each level, the horizontal model grid includes 64 � 64 grid
cells with nonuniform size with finer resolution near the
seamount,

�xi ¼ �xmax �
1

2
�xmax sin

ip
64

� �
;

�yj ¼ �ymax �
1

2
�ymax sin

jp
64

� �
;

ð40Þ

where �xmax = �ymax = 8 km, denoting the grid size at the
four boundaries. Temporal discretization is given by

�tð Þex ¼ 6 s; �tð Þin ¼ 30 �tð Þex; ð41Þ

where (�t)ex and (�t)in are external and internal time steps,
respectively.
[25] POM is integrated from motionless state with an

exponentially stratified temperature (�C) field

T x; y; zð Þ ¼ 5þ 15 exp z=HTð Þ; HT ¼ 1000 km; ð42Þ

and constant salinity (35 ppt) using three different schemes:
SD, CCD and HC. During the integration, a constant
density, 1000 kg m�3, has been subtracted for the error
reduction. The Laplacian Smargorinsky diffusion set up in
the standard POM seamount test case is used in this study.

[26] It is found that 5 days are sufficient for the model
mean kinetic energy (MKE) per unit mass,

MKE ¼

ZZZ
1

2
rV2dxdydzZZZ
rdxdydz

to reach quasi-steady state under the imposed conditions
(Figure 10) for all the three schemes. Here, V is the error
velocity. Thus we use the first 5 days of model output inside
the region of (�169.35 km � x � 169.35 km, �169.35 km
� y � 169.35 km) to compare the HC scheme to the SD and
CCD schemes. Feasibility of using the HC scheme is
twofold: (1) drastic error reduction and (2) no drastic CPU
time increase. The following two quantities are used to
compare the errors: the volume-integrated pressure gradient
and the vertically integrated velocity.

7.3. Volume-Integrated Horizontal Pressure Gradient

[27] The volume-integrated horizontal pressure gradient
(@p/@x) for a finite volume (Hdsdxdy) with its center at
(x, y, s), denoted by VIPG, is used to represent the sigma
coordinate errors. Figure 11 shows VIPG at day 5 for the
second-order SD, sixth-order CCD, and HC schemes at
four sigma levels: ks = 5, 10, 15, and 20 (ks = 0 at the
surface, and ks = 21 at the bottom). VIPG reveals a
dipole pattern at east and west of the seamount at the
upper half water column (ks = 5, 10), and a quadruple
dipole in the lower layer. VIPG increases with depth from
the surface (maximum 3.41 � 104 N) to the bottom
(maximum 3.98 � 105 N) using the SD scheme). It reduces
greatly using both CCD and HC schemes. Taking ks = 10 as
an example, the maximum VIPG is 2.01 � 105 N using the
SD scheme, 3.42 � 103 N using the sixth-order CCD
scheme, and 3.05 � 103 N using the HC scheme. This
indicates that the HC scheme has a comparable accuracy as
the sixth-order CCD scheme and reduces the errors by a
factor of 70 comparing to the SD scheme.

7.4. Vertically Integrated Velocity

[28] Owing to a very large number of calculations
performed, we discuss the results exclusively in terms of

Figure 10. Temporally varying MKE (m2 s�2) using SD
(dotted), CCD (dashed), and HC (solid) schemes.
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the vertically integrated velocity (Vint) generated by the
pressure gradient errors. Figure 12 shows the time evolu-
tion of the vertically integrated error velocity for day 1,
day 2, day 4, and day 5 using the SD, CCD, and HC
schemes.
[29] The vertically integrated velocity (Vint) has a large-

scale eight-lobe pattern centered on the seamount. This
symmetric structure can be found in all the fields. However,
its maximum values are around 0.05–0.1 m2 s�1 using the
SD scheme, 0.001–0.002 m2 s�1 using the CCD and HC

schemes. After 5 days of integration, the model generates
spurious vertically integrated currents of O(0.09 m2 s�1)
using the SD scheme and of O(0.0015 m2 s�1) using the
CCD and HC schemes. Thus the HC scheme has the same
accuracy as the sixth-order CCD scheme.

7.5. Computational Efficiency

[30] The numerical integration of POM using the three
schemes was performed using SGI-Origin 200 machine.
The CPU time was recorded at the end of day 5 integration.

Figure 11. VIPG (unit: N) on day 5 at four sigma levels: ks = 5, 10, 15, and 20 (ks = 0 at the surface,
and ks = 21 at the bottom) using SD, CCD, and HC schemes.
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It increases 36% from the SD to CCD, and only 3% from
the SD to HC scheme (Table 2). No evident CPU increase
from the SD to HC scheme but the drastic error reduction
make the HC scheme a good choice for the sigma coordi-
nate ocean model to reduce the horizontal pressure gradient
error.

8. Comparison Between the Two Test Cases

[31] Comparing to the analytical coastal topography test,
the seamount test case yields smaller error reduction. The
large difference in the error reduction is caused by the
existence of the two kinds of the sigma error [Mellor et al.,
1998]. The two-dimensional coastal topography test only

includes the sigma error of the first kind, which often
decreases with time. While the three-dimensional seamount
test case also includes the sigma error of the second kind
that depends on the curvature of the topography and does
not reduce with time. Thus high-order interpolation

Figure 12. Vertically integrated velocity vectors (unit: m2 s�1) at day 1, day 2, day 4, and day 5 using
SD, CCD, and HC schemes.

Table 2. Comparison of CPU Time (Minute) at the End of 5 Day

Runs of the POM Seamount Test Case Using the SD, CCD, and

HC Schemes

Scheme SD CCD HD

CPU Time 171.51 233.33 176.92
Ratio 1 1.36 1.03
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schemes are especially useful for the second kind of the
sigma error.

9. Conclusions

[32] 1. The sigma coordinate pressure gradient error
depends on the choice of difference schemes. By choosing
an optimal scheme, we may reduce the error significantly
without increasing the horizontal resolution. An optimal
scheme should satisfy the three requirements: conservation
(especially for pressure gradient calculation), high accuracy
(especially near the steep topography), and computational
efficiency.
[33] 2. The hydrostatic correction scheme has been de-

veloped in this study using the finite volume discretization.
The major features of this new scheme are conservation (for
pressure gradient calculation), high accuracy, and computa-
tional efficiency.
[34] 3. Computation of horizontal pressure gradient for

analytical coastal topography with two varying parameters
(maximum slope and shelf slope ratio) is used to verify the
performance of the hydrostatic correction scheme against
the second-order, fourth-order combined, and sixth-order
combined compact schemes. For all the four schemes, the
global mean error increases with the maximum slope and
decreases with the shelf slope ratio monotonically. Howev-
er, it reduces by a factor of 3.81 from the second-order to
fourth-order compact schemes, a factor of 5.00 from the
fourth-order compact to sixth-order combined compact
schemes, and a factor of 408.8 from the sixth-order com-
bined compact to hydrostatic correction schemes. The
maximum error reduces by a factor of 2.39 from the
second-order to fourth-order compact schemes, a factor of
5.96 from the fourth-order compact to sixth-order combined
compact schemes, and a factor of 32.57 from the sixth-order
combined compact to hydrostatic correction schemes.
[35] 4. For very steep topography, the global mean

pressure gradient error is comparable using any of the
existing schemes (second-order, fourth-order compact,
sixth-order combined compact), but 2–3 orders of magni-
tude smaller using the hydrostatic correction scheme. Such
high performance of the hydrostatic correction scheme is
due to its conservation characteristics for calculating the
horizontal pressure gradient.
[36] 5. The standard POM seamount test case is used to

evaluate the performance of the hydrostatic correction
scheme against the second-order, and sixth-order combined
compact schemes. The hydrostatic correction scheme has
comparable accuracy as the sixth-order combined compact
scheme and reduces the errors by a factor of 70 comparing
to the second-order scheme. However, its computational
efficiency is comparable to the second-order scheme.

[37] 6. As model resolution increases, the cost for given
accuracy will eventually favor the high-order methods.
While the HC scheme looks the best overall here, more
stringent accuracy requirements could be easily satisfied
using the HC scheme.

[38] Acknowledgments. The Office of Naval Research, the Naval
Oceanographic Office, and the Naval Postgraduate School supported this
study.
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