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Abstract SOund Fixing And Ranging (RAFOS) floats deployed by the Naval Postgraduate School (NPS) in
the California Current system from 1992 to 2001 at depth between 150 and 600 m (http://www.oc.nps.edu/
npsRAFOS/) are used to study 2-D turbulent characteristics. Each drifter trajectory is adaptively decomposed
using the empirical mode decomposition (EMD) into a series of intrinsic mode functions (IMFs) with corre-
sponding specific scale for each IMF. A new steepest ascent low/non-low-frequency ratio is proposed in this
paper to separate a Lagrangian trajectory into low-frequency (nondiffusive, i.e., deterministic) and high-
frequency (diffusive, i.e., stochastic) components. The 2-D turbulent (or called eddy) diffusion coefficients
are calculated on the base of the classical turbulent diffusion with mixing length theory from stochastic
component of a single drifter. Statistical characteristics of the calculated 2-D turbulence length scale,
strength, and diffusion coefficients from the NPS RAFOS data are presented with the mean values (over the
whole drifters) of the 2-D diffusion coefficients comparable to the commonly used diffusivity tensor method.

Plain Language Summary A new method is presented to determine two-dimensional turbulent
characteristics (length, strength, and diffusivity) from a single Lagrangian drifter rather than from a large
group of Lagrangian drifters as the existing methods do.

1. Introduction

A Lagrangian drifter provides fluid characteristics along fluid particles’ trajectories (i.e., Lagrangian trajecto-
ries), which make water masses distinguishable in terms of origin and/or destination and traced, while its
characteristics are continually changing. Velocity can be calculated from Lagrangian trajectories using rou-
tine ocean data assimilation systems (e.g., Galanis et al., 2006; Sun et al., 2009) and data analysis methods
such as optimal interpolation (OI; Melnichenko et al., 2016), and optimal spectral decomposition (OSD; Chu
et al., 2003a, 2003b). Some phenomena were identified such as fall-winter recurrence of current reversal
from westward to eastward on the Texas-Louisiana continental shelf from near-surface drifting buoy and
current meter (Chu et al., 2005), and propagation of long baroclinic Rossby waves at middepth (around
1,000 m deep) in the tropical north Atlantic from the Argo floats (Chu et al., 2007).

Let {x(n)(t) 5 [x(n)(t), y(n)(t)], u(n)(x, y, t), n 5 1, 2, . . ., N} represent the time series of horizontal position (x zonal,
y latitudinal) and velocity of N Lagrangian drifters at time t. How to identify currents and eddies from them
has been studied for several decades with two major approaches. The first one is the particle dispersion rel-
ative to their center,
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The variances of locations of N drifters at time instance t,
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estimate the dispersion of the drifters (e.g., Obuko & Ebbesmeyer, 1976; Rypina et al., 2012). The 2-D turbu-
lent diffusivities (Kx, Ky) are defined by
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With (Dx, Dy) grow linearly with time and the corresponding constant spreading rates (Kx, Ky) are referred as
the 2-D turbulent diffusivity (Rypina et al., 2012).

The second approach is to estimate the Eulerian mean velocity from a group of N drifters,

Uðx; yÞ5huðnÞðx; y; tÞi;

and subtraction of U(x, y) from the velocity identified from Lagragian drifters, u(n)(x, y, t), leads to the ‘‘resi-
due’’ velocities,

uðnÞres ðx; y; tÞ5uðnÞðx; y; tÞ2Uðx; yÞ: (4)

Here the Eulerian mean velocities are computed as an ensemble average in the defined geographic region
that velocities from different floats and times (e.g., Collins et al., 2004; Chu et al., 2007, 2008; Chu & Fan,
2014; Davis, 1991) or as binned velocities with cubic splines (Bauer et al., 1998). This approach (a) requires
well separation of the mean and residual velocities, (b) requires near Gaussian distribution of the residual
velocities, (c) has possible false impression of diffusion gradient caused by nonuniform drifter coverage,
and (d) has possible effect of mean velocity on the diffusivity. Interested readers may read a review paper
by LaCasce (2008). Three methods are available to calculate the 2-D turbulent diffusivity from the Lagrang-
ian residue velocities [uðnÞres ðx; y; tÞ] from a group of N drifters: (1) Lagrangian velocity autocorrelation (e.g.,
Paduan & Niiler 1993; Poulain & Niiler, 1989), (2) diffusivity tensor (Davis, 1991), and (3) minor principal com-
ponent of the Davis’ diffusivity tensor (Zhurbas & Oh, 2003).

Both approaches (particle dispersion and Lagrangian residue velocities) need sufficient number (N) of
drifters in the calculation. What should we do if there is very few codeployed drifters such as less than three
RAFOS floats available at same time periods by the Naval Postgraduate School (NPS) in the California coasts
(see website: http://www.oc.nps.edu/npsRAFOS/)? One option is to combine drifters from different time
periods together as if they were deployed at the same time period.

Collins et al. (2004) calculated the diffusion coefficients for the California Current system from NPS floats
N115, N108, N102 (not listed in the website), N090, N089, N088, N085, N071, N064, N050, and N039
between 1992 and 2002 using the diffusivity tensor method (Davis, 1991),

Kx5920 m2=s; Ky51; 070 m2=s: (5)

Other estimates are (Kx53:43103 m2=s; Ky54:23103 m2=s) from 124 drifters deployed 1985–1990 (Swen-
son & Niiler, 1996), K53:83103 m2=s by Zhurbas and Oh (2003) using the diffusivity tensor with minor prin-
ciple component. With the Lagrangian velocity autocorrelation, the diffusion coefficients are
(Kx5ð3:424:1Þ3103 m2=s; Ky5ð4:325:9Þ3103 m2=s) from 29 TRISTAR-I drifters in the California Current
system 1985–1986 (Poulain & Niiler, 1989), and (Kx 5 (0.84–1.1) 3 103 m2/s, Ky 5 (1.5–1.6) 3 103 m2/s) from
47 TRISTAR-II drifters in the northeast Pacific in October 1987 (Paduan & Niiler, 1993). Interested readers are
referred to Zhurbas and Oh (2003, their Table 1).

A question arises: Can we determine 2-D turbulent diffusion coefficients from a single drift trajectory? The
purposes here are to answer this question and to present a simple and effective method to do so on the
base of the empirical mode decomposition (EMD; Huang et al., 1998; see Appendix A). The rest of the paper
is organized as follows. Section 2 depicts the stochastic Lagragian velocity and turbulent characteristics.
Section 3 describes the EMD of Lagrangian trajectory. Section 4 introduces the low/non-low-frequency ratio
for each IMF. Section 5 presents the steepest ascent low/non-low-frequency ratio to separate deterministic
and stochastic velocities for each float. Sections 6 and 7 show 2-D turbulence length, strength, and diffusion
coefficients for each float and their statistical characteristics. Section 8 presents the conclusions.

2. Stochastic Lagragian Velocity

Let the positon vector from a Lagrangian drifter at time instance tj be represented by x(tj) 5 [x(tj), y(tj), j 5 1,
2, . . ., J] with J the total number of the position points (or size of the time series). The two one-dimensional
time series, [x(tj), y(tj)] represent two-dimensional motion but not in the Eulerian sense since they are not
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evaluated at all the grid points inside the domain of interest. Thus, the drifter position data [x(tj), y(tj)] can
only be individually analyzed as two separated univariate signals.

Let time series of position vector consist of low frequency (deterministic) [xdet ðtjÞ] (i.e., deterministic dis-
placement) and high frequency (stochastic) [xstoðtjÞ] (i.e., stochastic displacement) components,

xðtjÞ5xdet ðtjÞ1xstoðtjÞ; j51; 2; . . . ; J: (6)

The deterministic and stochastic velocities (only showing stochastic) can be calculated from position vector
(only showing x direction) with the first-order difference for the two endpoints,

ustoðt1Þ5
xstoðt2Þ2xstoðt1Þ

t22t1
; ustoðtIÞ5

xstoðtJÞ2xstoðtJ21Þ
tJ2tJ21

; (7)

and the central difference for the internal points,

ustoðtjÞ5
xstoðtj11Þ2xstoðtj21Þ

tj112tj21
; j 5 2; 3; . . . ; J21: (8)

It is noted that the stochastic Lagragian velocity, usto(t) 5 [usto(t), vsto(t)], is not the same as the residual
velocity uðnÞres ðx; y; tÞ defined by (4). The root mean squares of [xsto(ti), ysto(ti)],
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represent the 2-D turbulence lengths. The root mean squares of [usto(tj), vsto(tj)],

Figure 1. Trajectories of 54 RAFOS floats in the California coast by the Naval Postgraduate School between 1992 and
2004 (http://www.oc.nps.edu/npsRAFOS/). The thick black trajectory refers to the Float N035.

Journal of Geophysical Research: Oceans 10.1002/2017JC013500

CHU ET AL. 1710

http://www.oc.nps.edu/npsRAFOS/


rx5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
J

XJ

j51

u2
stoðtjÞ

vuut ; ry5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
J

XJ

j51

v2
stoðtjÞ

vuut (10)

represent the turbulence strengths. The 2-D turbulent diffusion coefficient is proportional to the product of tur-
bulence length and strength on the base of Monin and Yaglom (1971)’s turbulence with mixing length theory,

Kx5crudx ; Ky5crvdy ; (11)

where c (50.1) is the Ozmidov coefficient (Ozmidov, 1960). For given mixing lengths (dx, dy), turbulent diffu-
sion increases with increasing turbulence strength (ru, rv). For given turbulence strength (ru, rv), turbulent
diffusion increases with increasing mixing lengths (dx, dy). Thus, identification of stochastic displacement

Figure 2. The IMFs and trend of (a) x(t) and (b) y(t) of the RAFOS float N035 from 7 August 1995 to 5 November 1996.
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[xsto(tj), ysto(tj), j 5 1, 2, . . ., J] provides possibility to determine turbulent diffusion coefficients from a single
Lagrangian drifter. Chu (2017) demonstrated such a possibility on the base of the empirical mode decompo-
sition (EMD; Huang et al., 1998; see Appendix A), but he has not shown how to separate deterministic and
stochastic motions from a drifter’s trajectory.

3. EMD of Lagrangian Trajectory

The EMD supports the decomposition of signals into IMFs regardless of their linearity, stationarity, and
stochasticity (e.g., Chu et al., 2012, 2014; Huang et al., 1998). The key point to perform this decomposi-
tion is the sifting process with four steps, which decompose a Lagrangian drift trajectory x(t) into (see
equation (A5)),

Figure 3. The phase spectra for the IMFs in Figure 2.
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Figure 4. Fourier spectra and lowest (5%, 10%, 20%, and 33%)—high-frequency ratios for each IFM of the N035 RAFOS float from 7 August 1995 to 5 November
1996. The steepest ascent (6.736, 3.090, 2.282, and 1.889) occurs from IFM-3 to IFM-4. Thus, combination of IFM-4, IFM-5, IFM-6, and trend constitutes the determin-
istic component.
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xðtÞ5
XP

p51

xpðtÞ1rðtÞ; (12)

where xp(t) 5 [xp(t), yp(t)], is the pth IMF and r(t) 5 [rx(t), ry(t)] is the trend (not oscillated). The first IMF has
highest frequency, and frequency reduces as the subscript p increases. The trajectory of NPS RAFOS float

Figure 5. Comparison of RAFOS N035 among (a) x(t), xd(t), xtrend(t) and (b) y(t), yd(t), ytrend(t).

Figure 6. Observed (blue) and deterministic (red) trajectories of RAFOS N035.
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#N035 (thick curve in Figure 1), downloaded from http://www.oc.nps.edu/npsRAFOS/DATAS/NPS035/
DATAS.html, is used for illustration. Six IFMs and a trend are identified in the (x, y) directions (Figure 2). It
clearly shows that the high-frequency motion dominates the low IFM modes. Frequency reduces as the
IFM mode from the lowest (IMF-1) to the highest (IMF-6). The trend (no oscillation) is of course the part of
the deterministic motion, but not all. Rios and de Mello (2016) claimed that the IMFs can be combined to
form additive deterministic and stochastic components. Summation of trend and deterministic IMFs con-
stitute the deterministic motion (or deterministic Lagrangian trajectory).

4. Low/Non-Low-Frequency Ratio

The Fourier transform is conducted on each IMF cp(t) [cp(t) representing xp(t) and yp(t)],

Table 2
2-D Turbulence Length Scales (dx, dy) Identified From Each RAFOS Float

Float dx (m) dy (m) Float dx (m) dy (m)

N002 6,160 7,282 N050 107,415 118,217
N003 28,182 31,196 N051 188,122 61,380
N004 93,324 60,060 N053 117,579 86,823
N005 25,333 10,582 N055 83,039 123,343
N006 82,434 35,343 N062 108,559 76,252
N007 13,134 22,253 N063 66,121 44,627
N008 18,304 17,743 N064 134,970 48,906
N010 41,173 27,588 N065 25,025 21,604
N011 17,226 16,445 N066 117,150 121,286
N013 34,430 28,512 N067 126,951 110,616
N014 41,448 29,579 N069 106,392 59,345
N019 72,666 98,307 N071 32,626 55,165
N021 1,738 638 N072 95,964 106,733
N022 825 737 N073 37,598 31,944
N024 2,640 781 N075 125,422 108,284
N026 61,468 17,853 N080 154,682 152,262
N028 32,505 16,654 N081 141,251 146,927
N029 19,811 27,775 N082 67,331 80,718
N030 946 18,678 N083 111,694 129,591
N031 82,357 65,340 N084 158,752 120,054
N032 57,002 52,305 N085 120,439 149,622
N033 22,451 78,551 N087 101,871 160,204
N035 129,514 54,351 N088 96,162 229,647
N039 107,481 104,852 N089 139,667 224,103
N041 149,039 91,839 N090 179,487 250,008
N043 106,986 68,706 N091 149,611 152,449
N048 92,103 18,579 N092 134,596 141,218

Table 1
Low-Frequency Dominance Parameter Rp,a and the Ascent Parameter Cp,a for Each IMF of the N035 RAFOS Float From 7
August 1995 to 5 November 1996

a 5 5% a 5 10% a 5 20% a 5 33%

IMF Rp,a Cp,a Rp,a Cp,a Rp,a Cp,a Rp,a Cp,a

1 0.0822 0.398 0.108 0.440 0.295 0.383 0.426 0.484
2 0.0327 1.633 0.0475 4.400 0.113 2.761 0.206 1.966
3 0.0534 40.075* 0.209 12.297* 0.312 9.006* 0.405 7.383*
4 2.14 1.491 2.57 1.358 2.81 1.292 2.99 1.237
5 3.19 1.273 3.49 1.264 3.63 1.273 3.70 1.273
6 4.06 4.41 4.62 4.71
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which is a set of complex coefficients in frequency space. Here i �
ffiffiffiffiffiffiffi
21
p

and T is the length of the time
series. For each IFM, cp(t) the phase spectrum (Rios & de Mello, 2016) of is calculated by

hpðkÞ5arctan
Im ðfpkÞ
Re ðfpkÞ

(14)

and the amplitude is computed up to the Nyquist frequency

apðkÞ5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jfpk f̂ pk j

q
=J; k51; 2; . . . ; J=2: (15)

Let m represents lowest a-fraction (a< 1) of the frequency domain, i.e., m5½a3J=2� with the bracket indicat-
ing the integer part. The powers of lowest a-fraction frequency (Ea)
and total frequency (ET) are defined by

Ep;a5
Xm

k51

a2
pðkÞ; Ep;T 5

XJ=2

k51

a2
pðkÞ: (16)

The low/non-low-frequency ratio is defined by

Rp;a5
Ep;a

Ep;J2Ep;a
; (17)

which indicates the low-frequency (a-fraction) dominance of the pth
IMF.

5. Steepest Ascent Low/Non-Low-Frequency Ratio

The ratio of the low-frequency dominance parameter for the (p 1 1)th
IMF to the pth IMF,

Cp;a5
Rp11;a

Rp;a
(18)

represents increase of strength of the low-frequency component.
Since the low frequency enhances as the mode number p increases,
separation of deterministic and stochastic signals is at the IMF with
the maximum value of the ratio,

Cs;a5max ðCp;ajp51; 2; . . . ; P21Þ: (19)

The combination of the first, second, . . ., sth IMFs constitutes the sto-
chastic signal, and the combination of (s 1 1)th, (s 1 2)th, . . ., Pth IMFs,
and the trend constitutes the deterministic signal.

Fourier transform is applied to all the 6 IFMs of the Float N035 in Fig-
ure 2, [(xp(t), yp(t)], p 5 1, 2, . . ., 6. The phase spectra show the fre-
quency reduction for consecutive IMFs (Figure 3). The low-frequency
dominance parameter (Rp,a) and the parameter ratio (Cp,a) are calcu-
lated for all the IMFs and four values of a 5 (0.05, 0.10, 0.20, 0.33) [see
(15)–(17)]. For a particular a, C3,a is the maximum among the five
parameter ratios: 40.075 for a 5 5%, 12.297 for a 5 10%, 9.006 for
a 5 20%, and 7.383 for a 5 33% (see Figure 4 and Table 1). The values
of C4,a and C5,a change from 1.237 (a 5 33%) to 1.491 (a 5 33%), i.e.,
minor change of the low/non-low-frequency ratio. Thus, the combi-
nation of first, second, and third IMFs constitutes stochastic veloci-
ties; the combination of fourth, fifth, and sixth IMFs and the trend

Figure 7. Histograms of 2-D turbulence length scales (a) dx and (b) dy (unit: m)
identified from 54 RAFOS floats in the California coast by C. A. Collins at the
Naval Postgraduate School from 1992 to 2001.
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constitutes the deterministic velocities. Two position vectors, xdet(t) 5 [xdet(t), ydet(t)] and xtrend

(t) 5 [xtrend(t), ytrend(t)], are constructed and compared to the original position vector x(t). The three time
series in the two directions [x(t), xdet(t), xtrend(t)] (Figure 5a) and [y(t), ydet(t), ytrend(t)] (Figure 5b) and the tra-
jectories of the three position vectors (Figure 6) show the separation of the deterministic and stochastic
signals. It is clearly indicates that the trends [xtrend(t), ytrend(t)] do not fully represent the deterministic sig-
nal. Here a 5 10% is used for the rest of the NPS RAFOS floats.

6. 2-D Turbulence Length and Strength

The RAFOS subsurface data downloaded from http://www.oc.nps.edu/npsRAFOS/ contains 61 RAFOS floats.
Among them seven floats (N001, N009, N012, N042, N046, N049, and N068) have too many missing data
inside the time series. They are not included in the computation. The data rate varies from general 3/day to
around 22/day (N030 18 May to 10 June 1994). For each float, the time series [x(tj), y(tj)] are decomposed
into IMFs and trend using the EMD method (see Appendix A). The method depicted in sections 4 and 5 is
used to separate the deterministic and stochastic motion and to get [xsto(tj), ysto(tj)] (see (6)) and [usto(tj),
vsto(tj)] (see (7) and (8)). The 2-D turbulence length scales (dx, dy) are calculated using (9) and strengths (rx,
ry) are calculated using (10).

Table 2 lists (dx, dy) for each of the 54 RAFOS floats. The averaged 2-D turbulence length scales are quite
comparable in zonal (mean (dx) � 80.9 km) and latitudinal (mean (dy) � 76.2 km) directions. However, the
length scales (dx, dy) identified from individual RAFOS floats are quite diverse with minima (825 m, 638 m),
maxima (188.1 km, 250.0 km), standard deviations (52.1 km, 60.8 km), skewness (0.0439, 0.9350), and kurto-
sis (1.8801, 3.4033) (also see second and third rows of Table 5).

The histogram of log10 dx (Figure 7a) shows that 33 RAFOS floats (61% of total floats) are in the three high-
est bins, i.e.,

Table 3
2-D Turbulence Strengths (rx, ry) Identified From Each RAFOS Float

Float rx (cm/s) ry (cm/s) Float rx (cm/s) rx (cm/s)

N002 8.17 4.86 N050 7.51 7.36
N003 7.15 8.21 N051 7.60 7.00
N004 13.59 16.01 N053 6.33 6.54
N005 20.22 15.23 N055 6.93 10.27
N006 14.01 13.90 N062 4.86 5.98
N007 10.69 14.48 N063 4.01 3.56
N008 12.55 7.68 N064 6.35 6.50
N010 6.69 8.68 N065 9.44 3.62
N011 14.46 14.81 N066 7.93 6.73
N013 11.70 11.62 N067 8.77 9.63
N014 8.62 10.51 N069 5.10 4.31
N019 7.30 7.05 N071 2.76 3.94
N021 38.49 21.34 N072 5.63 4.36
N022 18.28 13.95 N073 13.46 13.51
N024 17.71 12.89 N075 9.49 10.43
N026 12.82 10.12 N080 7.24 6.91
N028 9.26 8.78 N081 6.51 7.61
N029 6.47 8.19 N082 10.26 11.07
N030 21.53 23.48 N083 10.89 11.85
N031 16.66 20.72 N084 4.84 5.69
N032 6.59 5.44 N085 8.07 9.07
N033 4.74 8.43 N087 5.93 5.65
N035 6.92 6.08 N088 5.08 5.76
N039 5.02 6.03 N089 5.46 11.51
N041 7.54 7.36 N090 10.05 8.27
N043 9.89 9.01 N091 6.23 5.50
N048 5.17 4.65 N092 7.20 9.05
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67; 608 m5104:83m � dx � 105:33m 5 213; 796 m:

Five RAFOS floats (9% of total floats) are in the lowest bins with dx less
than 10 km (on submesoscale), and 16 RAFOS floats (30% of
total floats) are between 10 and 67.6 km. The histogram of log10 dy

(Figure 7b) shows more spread out that 49 RAFOS floats (91% of total
floats) represent mesoscale,

dy � 104 m;

and 5 RAFOS floats (9% of total floats) are in the lower bins with dy

less than 10 km (on submesoscale). Most (91%) of the stochastic
parts of the RAFOS float trajectories represent the mesoscale
motion.

Table 3 lists (ru, rv) for each of the 54 RAFOS floats. The averaged 2-D
turbulence velocity scales are quite comparable in zonal (mean (ru)
� 9.58 cm/s) and latitudinal (mean (rv) � 9.27 cm/s) directions. How-
ever, the turbulence velocity scales (ru, rv) identified from individual
RAFOS floats are quite diverse with minima (2.76 cm/s, 3.56 cm/s),
maxima (38.49 cm/s, 23.48 cm/s), standard deviations (5.80 cm/s,
4.46 cm/s), skewness (2.6760, 1.2684), and kurtosis (12.8330, 4.4720)
(also see fourth, and fifth rows of Table 5).

The histogram of log10 ru (Figure 8a) shows that 51 RAFOS floats (94%
of total floats) are in the range of

4:37 cm=s5100:64cm=s � ru � 101:36cm=s 5 22:91 cm=s:

Thirty-five RAFOS floats (65% of total floats) are in the three highest
bins, i.e.,

4:37 cm=s5100:64cm=s � ru � 10 cm=s:

Two RAFOS floats (3.7% of total floats) are in the lowest bins with ru

less than 4.37 cm/s, and 1 RAFOS float (1.9% of total floats) with ru

higher than 22.91 cm/s, which is 38.49 cm/s from N021.

The histogram of log10 rv (Figure 8b) shows more spread out than ru

that 44 RAFOS floats (81% of total floats) are in the range of

5:25 cm=s5100:72cm=s � ru � 101:22cm=s 5 16:60 cm=s:

7. Diffusion Coefficients

With given (dx, dy) and (rx, ry), the diffusion coefficients (Kx, Ky) are computed using equation (11) for each
RAFOS float. Table 4 lists (Kx, Ky) for each of the 54 RAFOS floats. The averaged 2-D turbulent diffusion
coefficients are quite comparable in zonal (mean (Kx) � 635 m2/s) and latitudinal (mean (Ky) � 629 m2/s)
directions. However, the diffusion coefficients (Kx, Ky) identified from individual RAFOS floats are quite
diverse with minima (15 m2/s, 10 m2/s), maxima (1,803 m2/s, 2,579 m2/s), standard deviations (427 m2/s,
536 m2/s), skewness (0.4357, 1.3539), and kurtosis (2.5183, 5.1195) (also see sixth, and seventh rows of
Table 5).

The histogram of log10 Kx (Figure 9a) shows that 45 RAFOS floats (83% of total floats) are in the range of

200 m2=s5102:30m2=s � Kx � 1; 803 m2=s:

Thirty-five RAFOS floats (65% of total floats) are in the four highest bins, i.e.,

Figure 8. Histograms of 2-D turbulence strengths (a) rx and (b) ry (unit: cm/s)
identified from 54 RAFOS floats in the California coast by C. A. Collins at the
Naval Postgraduate School from 1992 to 2001.
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407 m2=s5102:61m2=s � Kx � 103:22m2=s51; 660 m2=s:

Nine RAFOS floats (17% of total floats) are in the lower bins with Kx less than 141 (5102.15) m2/s, and 1
RAFOS float (1.9% of total floats) with Kx higher than 1,660 m2/s, which is 1,803 m2/s from N090.

The histogram of log10 Ky (Figure 9b) shows that 44 RAFOS floats (81% of total floats) are in the range of

200 m2=s5102:30m2=s � Kx � 1; 803 m2=s:

Eight RAFOS floats (15% of total floats) are in the lower bins with Ky< 200 m2/s, and 2 RAFOS floats (4% of
total floats) higher bins with Ky> 1,803 m2/s, which are 2,579 m2/s for N089 and 2,068 m2/s for N090.

8. Conclusions

A new method is presented in this paper to separate deterministic and stochastic signals and to estimate
the 2-D turbulent diffusion coefficients from a single Lagrangian drifter using steepest ascent low/non-low-

Table 4
Horizontal Diffusivity Coefficients (Kx, Ky) Identified From Each RAFOS Float

Float Kx (m2/s) Ky (m2/s) Float Kx (m2/s) Kx (m2/s)

N002 50.33 35.36 N050 807.00 869.98
N003 201.50 256.01 N051 1,428.79 429.88
N004 1,268.10 961.34 N053 744.84 567.72
N005 512.28 161.15 N055 575.79 1,266.25
N006 1,154.57 491.32 N062 527.90 455.62
N007 140.41 322.12 N063 264.97 159.00
N008 229.77 136.26 N064 857.32 317.78
N010 275.39 239.34 N065 236.35 78.13
N011 249.02 243.60 N066 928.46 816.23
N013 402.84 331.44 N067 1,113.50 1,064.76
N014 357.15 310.99 N069 542.80 255.66
N019 530.12 692.70 N071 90.03 217.50
N021 66.89 13.61 N072 540.54 464.90
N022 15.08 10.28 N073 506.08 431.43
N024 46.75 10.07 N075 1,190.04 1,128.97
N026 788.09 180.61 N080 1,119.79 1,052.69
N028 301.14 146.19 N081 919.83 1,118.54
N029 128.14 227.37 N082 690.91 893.65
N030 20.37 438.64 N083 1,216.25 1,535.29
N031 1,372.19 1,354.11 N084 768.98 683.10
N032 375.76 284.72 N085 971.53 1,357.00
N033 106.38 662.16 N087 604.49 904.98
N035 896.11 330.70 N088 488.44 1,323.34
N039 539.05 631.89 N089 762.60 2,579.02
N041 1,123.98 619.72 N090 1,803.36 2,067.87
N043 1,057.78 618.90 N091 931.87 838.59
N048 476.43 86.36 N092 969.12 1,277.95

Table 5
Statistical Characteristics of 2-D Turbulence Length Scales, Strengths, and Diffusion Coefficients

Mean Min Max Standard deviation Skewness Kurtosis

dx 80,910 m 825 m 188,122 m 52,136 m 0.0439 1.8801
dy 76,183 m 638 m 250,008 m 60,832 m 0.9350 3.4033
ru 9.58 cm/s 2.76 cm/s 38.49 cm/s 5.80 cm/s 2.6760 12.8330
rv 9.27 cm/s 3.56 cm/s 23.48 cm/s 4.46 cm/s 1.2684 4.4720
Kx 634.95 m2/s 15.08 m2/s 1,803.36 m2/s 426.83 m2/s 0.4357 2.5183
Ky 628.76 m2/s 10.07 m2/s 2,579.02 m2/s 535.96 m2/s 1.3539 5.1195
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frequency ratio in EMD and classical turbulence theory with mixing
length theory. The calculated diffusion coefficients for the California
Current system near Monterey are comparable using this method to
the diffusivity tensor calculation (Collins et al., 2004).

Comparison between Tables 4 and 5 with Zhurbas and Oh (2003,
Table 1) leads to the fact that the diffusion coefficients obtained using
this method is comparable to Paduan and Niiler (1993) but lower than
Poulain and Niiler (1989), Swenson and Niiler (1996), and Zhurbas and
Oh (2003). The difference in the diffusion coefficients is caused by
only one drifter used in this new method rather than an ensemble of
drifters used in the existing methods.

This study also shows the capability of EMD to decompose the drifter’s
trajectory with frequency reduction from IMF-1 to IMF-P (the last IMF)
along IMF extraction. The low/non-low-frequency ratio (see section 4)
represents the low-frequency dominance for each IMF. Its steepest
ascent low/non-low-frequency ratio indicates refers to the separation
of high-frequency (stochastic) and low-frequency (deterministic) sig-
nals. Such a separation is not sensitive to the selection of a (5%–33%)
because of the frequency reduction along IMF extraction. This method
can be used in general signal processing.

Appendix A: Empirical Mode Decomposition

This appendix is duplicated from Chu et al. (2012, section 2). Let x(t)
represent the time series with fluctuations on various time scales (see
Chu et al., 2012, Figure 1). The EMD method is depicted as follows.
First, the local minima and maxima of the signal x(t) are identified.
Second, the local maxima are connected together by a cubic spline
interpolation (other interpolations are also possible), forming an upper
envelope emax(t). The same is done for local minima, providing a lower
envelope emin(t). Third, the mean of the two envelopes are calculated.

m1 tð Þ5 emax tð Þ1emin tð Þ½ �=2: (A1)

Fourth, the mean is subtracted from the signal, providing the local
detail

h1ðtÞ5xðtÞ2m1ðtÞ; (A2)

which is then considered to check if it satisfies the above two condi-
tions to be an IMF. If yes, it is considered as the first IMF and denoted.

c1ðtÞ5h1ðtÞ: (A3)

It is subtracted from the original signal and the first residual,

r1ðtÞ5xðtÞ2h1ðtÞ (A4)

is taken as the new series in step 1. If h1(t) is not an IMF, a procedure called ‘‘sifting process’’ is applied as
many times as necessary to obtain an IMF. In the sifting process, h1(t) is considered as the new data, and
the same procedure applies. The IMFs are orthogonal, or almost orthogonal functions (mutually uncorre-
lated). This method does not require stationarity and linearity of the data and is especially suitable for non-
stationary and nonlinear time series analysis.

By construction, the number of extrema decreases when going from one residual to the next; the above
algorithm ends when the residual has only one extrema, or is constant, and in this case no more IMF can be
extracted; the complete decomposition is then achieved in a finite number of steps. The signal x(t) is finally
written as the sum of IFMs cp(t) and the trend r(t):

Figure 9. Histograms of turbulence diffusion coefficients (a) Kx and (b) Ky (unit:
m2/s) identified from 54 RAFOS floats in the California coast by C. A. Collins at
the Naval Postgraduate School from 1992 to 2001.
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xðtÞ5
XP

p51

cpðtÞ1rðtÞ: (A5)

There is no any oscillation (i.e., nonexistence of both maximum and minimum envelopes) in the trend r(t),
which should represent the trend. Obviously, successfulness of the EMD depends on accurate determina-
tion of upper and lower envelopes.
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