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An Instability Theory of Ice-Air Interaction for the Formation 
of Ice Edge Bands 

P. C. CHO 

Department of Oceanography, Naval Postgraduate School, Monterey, California 

Ice edge bands are well-observed phenomena at the ice edge of the world ocean at times when winds 
are blowing off the ice. Differing from the wave radiation theory, water wave theory, wind wave theory, 
and ice-water coupling theory, we propose an ice-air feedback mechanism to generate the ice edge bands. 
To eliminate ocean effects, the water is set motionless. Thermally generated surface winds, blowing from 
ice to water (ice breeze) with some deflection due to the earth's rotation, force the drift of ice floes in the 
marginal ice zone (MIZ). By changing the surface temperature gradient, the ice motion feeds back on the 
surface winds. A coupled ice-air model similar to the author's earlier paper is employed to discuss the 
instability properties of such a feedback mechanism. The linearized governing equations are then solved 
as an eigenvalue problem with two model parameters: mean ice thickness H i (0.5 m < H i < 2.5 m) and a 
characteristic surface temperature difference over ice and water DT o (4øC < DT o < 20øC). The model 
results show alternating ice divergence and convergence zones and demonstrate a great number of 
e-folding acceleration modes excited by the coupled ice-air system. Ice floes are transported from the 
divergence area to the convergence zone and are eventually rearranged into a band structure. The 
e-folding acceleration rate of ice motion depends on the width of two adjacent convergence zones I. It 
increases with L/l (where L is the length of twice the MIZ width, i.e., 200 km) for 10 km < l < 200 km, 
and then remains high for 2 km < l < 10 km. The length scale (2-10 km) of the high acceleration modes 
agrees well with the observed ice edge bandwidth (1-10 km). The e-folding acceleration rate increases 
with an increase in DT o and with a decrease in H i. 

1. INTRODUCTION 

Surface bands of ice floes are generally observed at ice edges 
of the world ocean when winds are blowing off the ice. These 
bands have size scales of 1-10 km, with their long axes orient- 
ed approximately normal to the wind direction. The ice band 
spacing varies strongly from I to 10 km. Differing from wave 
radiation theory [Wadhams, 1983], water wave theory 
[Muench et al., 1983-1, wind wave theory [Martin et al., 1983-1, 
and ice-water coupling theory [Hh'kkinen, 1986], we propose 
in this study an ice-air feedback mechanism for the generation 
of ice edge bands in the marginal ice zone (MIZ) by means of 
an ice-air model similar to that treated by Chu [1986a] except 
that (1) no horizontal eddy viscosity v h is included in the 
boundary layer airflow model and (2) the solutions are not 
restricted to the first Fourier mode. 

McPhee [1980] mentioned ice-ocean and ice-air coupling in 
a review paper. A possible mechanism for the mesoscale ice-air 
interaction is presented in Figure 1. Surface winds generated 
by the surface temperature gradient blow from ice to water 
(ice breeze) with some deflection due to the earth's rotation. 
However, movement of ice floes in the MIZ changes thermal 
conditions near the surface and produces a different surface 
temperature gradient across the ice edge, which in general is 
less than or greater than the characteristic temperature gradi- 
ent in the MIZ. 

The ice-air interaction model depicted in the subsequent 
sections is intended to determine the unstable modes of ice 

motion and to predict the length scale of the ice band spacing. 

2. THERMALLY FORCED BOUNDARY LAYER AIR FLOW 

temperature gradient will thermally generate local atmospher- 
ic flow near the MIZ. In this section we utilize a planetary 
boundary layer air model treated by Kuo [1973] and Chu 
[1986a, b, c] to simulate thermally forced boundary layer air- 
flow. The x axis is in the cross-edge direction, and the y axis is 
parallel to the ice edge, as is shown in Figure 3. 

The potential temperature of air is divided into two parts: a 
basic state Os,(z) and perturbation 0,'. The basic state is given 
by 

OB,(Z ) = OBo + (N20BO•/•I)Z (1) 

where 0•o is the basic air potential temperature at the surface 
and N is the Brunt-V/iis/il/i frequency. The subscript asterisk 
means dimensional variables. 

As discussed by Chu [1986a], the waterward/iceward migra- 
tion of the MIZ increases/decreases the surface temperature 
gradient, so the effects of ice flow on the surface air temper- 
ature gradient can be parameterized as 

c•20a,'/c•t, c•x, = OrDTo/L2)ui,(x,, t,) (2) 

where D T o is the characteristic surface temperature difference 
across the MIZ and L is a length scale twice the MIZ width; 
subscripts a and i denote air and ice, respectively. 

The coordinates and atmospheric variables are nondimen- 
signalized by setting 

(x,, z,, t,) = (xL, zg, tT) s' = Oa,'/Oao = (DTo/Oao)S • 

(u•,, v•,, w•,, ui,, vi, ) = U(ua, v•, w• g/L, ui, vi) 
(3) 

Overland et al. [1983] show that air temperature increases 
waterward in the Bering Sea MIZ (Figure 2). Such a surface 
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P•, = (g•DTo/O•o)p • • = (v/f•)•/2 

where v is the vertical eddy viscosity, f• is the angular velocity 
of the earth's rotation, 
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Fig. 1. Ice-air-ocean coupled system. 

is the scale of ice breeze wind, and T = L/U is the time scale 
for change of the surface temperature gradient due to move- 
ment of the ice edge. If we assume that local airflow satisfies 
the modified Boussinesq approximation [Kuo, 1973] then the 
vorticity equation, the momentum equation (both in the y 
direction), and the heat equation for air disturbances gener- 
ated by the differential surface temperature gradient near the 
MIZ are [Chu, 1986a] 

E•2(V2!pa)/•z 2 = f o•Va/•Z -- •$J•X (5) 

Ice Interior MIZ Olin Water 

•X 

Fig. 3. The model MIZ and the coordinate system. 

EJ2v,,/Jz 2 = --f o&PJJz (6) 

EO2sJOz 2 = Ri O½JOx (7) 

In the foregoing, 

u• = -•½•z w• = 

V 2 • •2/L2•2/•x2 + •2/•Z2 (8) 
where fo = sin •, • is latitude, and 

E m v/(2•6 •) = • Ri• 6•N•/(4L• •) (9) 

are the Ekman and Richardson numbers, respectively. 
The model variables are decomposed into Fourier sine or 

cosine series: 
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Fig. 2. Cross sections of potential temperature perpendicular to 
the ice edge in the Bering Sea for the three off-ice wind cases [from 
Overland et al., 1983]. 

½.(x, z, t)= • ½.k(z, t) sin kr•x 
k=l 

s.l==o -- s.k(t) cos k•x 
k=l 

u. lz= o = Y, u.•(t) sin k•x 
k=l 

(0c) 

vJz= o = Y, v•(t)sin k•x 
k=l 

u s = Y, ui•(t) sin k•x 
k=l 

(10d) 

vi = Y, vi•(t) sin k•x 
k=l 

Introducing a new variable •i representing nondimensional ice 
displacement in the x direction, 

L d•.ddt = U i (11) 

expanding it into Fourier sine series, 

•i(X, t)= Z •ik(t) sin k•tx (12) 

and substituting (10d) and (12) into (11), we obtain 

L d•in/dt = uin (13) 

Integrating (2) with respect to x and t after nondimensionali- 
zation, we get 

s.•(t) = - [•it•(t) -[- fi•J/k (14) 

where fik (k = 1, 2, ...) are the integration constants. 

(10a) 

(10b) 
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Eliminating v a and s a from (5)-(7), we find that the stream 
function satisfies the following partial differential equation' 

(1/40'*/Oz'* +fo 2) 02tpa/OZ 2 + Ri 02tpa/OX 2 = 0 (15) 

We solve (15) for the stream function •Pa and obtain the solu- 
tions of v a and sa from (6) and (7) after substituting •Pa. The 
local airflow is thermally forced by the surface temperature 
gradient, as is indicated in (14). The boundary conditions in 
the vertical direction are derived as follows. The dependent 
variables should remain finite as z--} or, i.e., 

lim (levi, 10½d0zl, Iv•l, la•l) < • 

The boundary conditions at z = 0 are 

(16) 

tpa = 0 Otp,,/OZ = M 02tp•/Oz 2 

v a = M Ov•/az s a = -- • [•an(t) + fin] cos knx/k 
k=l 

(17) 

where M is a measure of the effective depth of the constant 
stress sublayer [Kuo, 1973]: M = v/(Ca,6), where Ca, is a di- 
mensional (meters per second) air drag coefficient. 

Substituting (10a) into (15), we obtain the following sixth- 
order ordinary differential equations for the Fourier coef- 
ficients •Pan: 

d6½an/dz 6 + 4fo2d2½an/dz 2 -4rr2k 2 Ri •Pan = 0 (18) 

The general solutions of (18) have the following form: 
6 

Can(z, t) = (•in + fiR) • an• exp (X•jz) (19) 
j=l 

where the eigenvalues 2n• (j = 1, 2, ..-, 6) are the roots of the 
sixth-order algebraic equations: 

•6 + 4f o2•2 __ 4k2•2 Ri = 0 (20) 

According to the upper boundary conditions listed in (16), we 
must set up coefficients that correspond to those eigenvalues 
with the positive real parts to zero. Consequently, the general 
solutions (19) satisfying the top boundary conditions may be 
written 

3 

•an(z, t) = [•m(t) + fin] • anj exp (injz) (21) 
j=l 

where the eigenvalues inj all have negative real parts. Substi- 
tuting (21) into (10a), we obtain the stream function 

3 

Ca(x, z, t) = • anj[•in -}- fiR] exp (injz) sin k•rx (22) 
j=l 

Using the definition of a stream function and integrating the 
momentum equation (6) and the heat equation (7) with respect 
to z after substituting (22), we find that 

Ual==o -- • aan[•in q- fiR] sin k•rx 
k=l 

(23) 

v, lz=o = • fian[•in + fiR] sin k•rx 
k=l 

Sal=--O -- 5', •a•[•,n + l•n] COS knx (24) 
k=l 

where 

3 3 

j=! j=! 

(•s) 
3 

g•n • 2knRi • anj/•nj 2 
j=l 

Substituting solutions (22•24) into the surface boundary con- 
ditions listed in (17), we get the following four algebraic equa- 
tions for anj an bn' 

3 

• a•j = 0 
j=l 

3 

• Zn•(1 -- MZn•)an• = 0 
•= • (26) 

3 1 -- MZn• 
-:fo • • % + • = 0 

j = • Znj 
3 

2k•rR i • anj/•nj 2 = -- 1/k 
j=l 

3. FREE ICE DRIFT MODEL 

The linearized momentum equations for a free drift ice 
model are 

Ou'dOt = --CwUi + fvi + Ca Z fian[•in(t) q- fiR] sin k•rx (27) 
k=l 

Ovi/Ot = -CwVi-fui + Ca • gan[•m(t) + fin] sin k•rx (28) 
k=l 

where the first and last terms on the right-hand side represent 
the water and air stresses on ice, respectively. Here 

-- _ 

Ca = PaCa,/(P,H,) C• = pwCw,/(p,H,) (29) 

Cw, is a dimensional (meters per second) water drag coefficient 
(on ice), and Pa, Pi, and Pw are the densities of air, ice, and 
water, respectively. 

4. UNSTABLE MODES OF ICE MOTION 

The solutions of (27)-(28) have the following forms' 

ui(x, t) = Z air exp (aRt) sin k•rx (30) 
k=l 

vi(x, t)= Z v-m exp (aRt) sin k•rx (31) 
k=l 

Substituting (30) and (31) into (27) and (28), we obtain the 
following dispersion relation' 

rrn 3 + 2Cwan 2 + [Cw 2 - C,fi,•n/L + f2]rrn 

-- (CdL)[Cwaan + f6an] = 0 (32) 

The roots a n (k = 1, 2, ...) of the cubic equations (32) give the 
e-folding time dependence of the kth component of ice veloci- 
ty. The standard values of model parameters are given in 
Table 1. The instability criterion for the kth mode of ice 
motion in the MIZ can be written 

Re (an) < 0 (33a) 



CHU: IcE-AIR INTERACTION FOR FORMATION OF ICE EDGE BANDS 6969 

TABLE 1. Standard Model Parameters 

Parameter Value 

L 200 km 

•1 0.7292 x 10 -4 s -• 

Pa 1.29 kg/m 3 
C a. 3 X 10 -2 m/s 
v 5 m2/s 
0 9.81 m/s 2 
Pw 103 kg/m3 
C•. 1.76 x 10 -3 m/s 
• 65 ø 
0•o 270 K 
Pi 910 kg/m 3 

the kth mode of ice velocity decreases with time, 

Re (a•,) = 0 

neutral, and 

(33b) 

, t/' 

20 40 60 80 100 

k 

Fig. 5. The o'•(k)-k diagram for H i = 1.5 m and (a) DT o = 4øC, (b) 
DT o = 8øC, (c) DT o = 12øC, (d) DT o = 16øC, and (e) DT o = 20øC. 

Re (ak) > 0 (33c) 

the kth mode of ice velocity increases with time. We define the 
time-increasing mode of ice velocity as an unstable mode. 

The oscillation criterion for the kth mode of ice motion is 

given by 

Nonoscillatory 

Im (at,) = 0 (34a) 

Oscillatory 

Im (ak) :/: 0 (34b) 

We compute all the roots of (32) for different values of the 
parameters H t and DT o, which are organized into two groups: 
(1) fixed H i (1.5 m), DT o = 4øC, 8øC, 12øC, 16øC, and 20øC and 
(2) fixed DT o (10øC), H i = 0.5, 1, 1.5, 2, and 2.5 m. We obtain 
three roots a•(k), a2(k), and rr3(k ) for each given k, H i, and 
DT o. Here a•(k) is real and positive for all given k, Hi, and 
DT o. However, rr2(k ) and a3(k ) are complex with negative real 
parts. Therefore the time-increasing modes of ice velocity are 
those eigenfunctions associated with the eigenvalues a•(k): 

ain(•, t) = ffin exp [ai(k)t] sin kr•x 

t7o,(x, t) = •i•, exp [ai(k)t] sin kr•x 
(35) 

which indicate that the ice velocity Vik = (ain, •in) has an e- 
folding acceleration and a sinusoidal-type spatial variation. 

5. MODEL RESULTS 

Solutions (35) show that time and spatial variations of ice 
velocity are separable, which means that the sinusoidal-type 
spatial structure does not change with time and that the e- 
folding acceleration does not vary with space. 

Figure 4 indicates the spatial variation (sinusoidal) of the 
kth mode ice velocity Vit , depicted in (35). We see the alter- 
nation pattern of ice convergence and divergence zones. The 
width of the two adjacent convergence zones is L/k. Such an 
ice velocity field transports ice floes from the divergence area 
to the convergence zones and eventually forms ice edge bands 
with band spacing L/k. 

Solutions (35) also show that this convergence-divergence 
alternation pattern has an e-folding time variation. The e- 
folding acceleration factor a•(k) denotes how fast the ice veloc- 
ity increases. Figures 5 and 6 are the a•-k diagram for groups 
1 and 2 of parameters H i and DT o, respectively. "F-type" 
curves demonstrate the following facts. 

1. For any given parameters H i and DT o, the e-folding 
acceleration factor a• increases rapidly with k when 
1<k<20 and then remains high for 20<k<100. This 
means that the modes with fast increasing ice velocity have 
short band spacing (2 km < L/k < 10 km). 

2. For fixed H i (1.5 m), the e-folding acceleration rate a• 
increases with DT o, since the larger • DT o is, the stronger the 
forcing. 

, . • x\\\\\\\x•, ' , , xx\\\\\\\x x, , . ß , • x\\\\\\\x•, ' 
, , x x\\\\\\XXX • ' , , xx\\\\\\XXx , , ß ' ' ' x x\\\\\ \\x•' ' 

ß , • x \\\\\\\\\x • , , , xx\\\\\\\xx , , , , x \\\\\\\\\x, , 
' , • \\\\\\\\\•, ' , , x\\\\\\\\\ x , , ' , , • \\\\\\\\\x, , , • xx\\\N\\xx x , ß 

ß , , • \\\\\\\\\• • ' , , x\\\\\\\\\ x , , , , x \\\\\\\\\• • , , • x\\\\\\\\\ x , , 
' ' , • x\\\\\\\\• •' , , x \\\\\\\\\• • , 

i•--'-- Ice Convergence--->l• Ice Divergence ---•l<-- Ice Convergence 

i i i 

L/k 2L/k 3L/k 
•>x, 

4L/k 

Fig. 4. The kth mode of ice velocity. 
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to the convergence zone and are eventually rearranged into a 
band structure with spacing as the distance of two adjacent 
convergence zones. 

3. The alternation pattern of ice divergence/convergence 
has a time variation. The e-folding acceleration rate of ice 
velocity depends on the band spacing. The modes with a fast 
increasing ice velocity have short band spacing (2 
l(m < L/k < 10 km), which agrees well with the observed ice 
edge band spacing [Hakkinen, 1986; Martin et al., 1983; 
Muench eta!., 1983; Wadhams, 1983]. 
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Fig. 6. The ax(k)-k diagram for DT o = 10øC and (a) Hi = 0.5 m, (b) 
H i= lm,(c) Hi-- 1.5m,(d) H i=2m, and(e) H i=2.5m. 

3. For fixed DT o (10øC), the e-folding acceleration rate a x 
increases with a decrease in H i. The smaller H i is, the more 
unstable the coupled system. 

4. The q-folding acceleration rate for the most unstable 
modes i s around 1-4 x 10 -s s -•, and the doubling time 
during which the ice doubles its speed is 

T = !n 2/a, (36) 

Therefore the doubling time for most unstable modes is 
around 5-20 hours. 

6. CONCLUSIONS 

1. This ice-air coupled model is intended to depict only 
the mesoscale processes of ic.e-air interaction in the MIZ. The 
synoptic scale pressure gradient may addit•ionally produce sur- 
face winds in the MIZ, and large-scale ocean currents may 
drive ice drift. These processes are, however, beyond the scope 
of thi, s paper. Nevertheless, where the ice-to-open-water tem- 
perature gradient is strong, the mesoscale feedback mechanism 
discussed here may become as strong as, or stronger than, the 
synoptic scale and oceanic forcings. 

2. The air-ice feedback mechanism in the MIZ generates 
the alternation pattern of ice convergence and divergence 
zones. Ice floes are thus transported from the divergence area 
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