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NOTE

A Three-Point Sixth-Order Nonuniform
Combined Compact Difference Scheme

A three-point nonuniform combined compact difference (NCCD) scheme with
sixth-order accuracy is proposed for numerical models. The NCCD scheme is a gen-
eralization of the previously proposed combined compact difference (CCD) scheme
with a global Hermitan polynomial spline and has major improved features such as
error and computational (CPU) time reduction. For nonperiodic boundaries, addi-
tional sixth- or fifth-order nonuniform boundary conditions are proposed. The NCCD
scheme with either sixth- or fifth-order additional boundary conditions can increase
the accuracy and decrease the CPU time about 1–2 orders of magnitude, compared
to the CCD scheme. c© 1999 Academic Press

1. INTRODUCTION

Following the trend toward highly accurate numerical schemes of partial differential
equations (PDE) led by many authors (e.g., Adam [1]; Chu and Fan [2]; Hirsh [5]; Rubin
and Khosla [8]; Navon and Riphagen [6]), Chu and Fan [2] proposed a three-point sixth-
order uniform combined compact difference (CCD) scheme to increase accuracy. This
scheme follows earlier work on the use of second derivatives in compact differencing (such
as Rubin and Khosla [8]),

1∑
k=−1

(ak fi+k + bk f ′i+k + ck f ′′i+k) = 0, (1)

which is referred as the Hermite formula. Here,f is a dependent variable.
The ocean variability is not uniform. For example, the western boundary currents (e.g.,

the Gulf Stream, Kuroshio) have much larger variability than the ocean interior. An ideal
treatment is to use a nonuniform scheme: high resolution grids for high variability areas
and low resolution grids for low variability areas. Goedheer and Potters [4] proposed a
nonuniform grid for a fourth-order compact difference scheme. Following their path, we
propose in this paper a three-point sixth-order nonuniform combined compact (NCCD)
scheme with sixth-order or fifth-order accuracy at both interior and exterior boundaries.
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664 CHU AND FAN

2. NCCD SCHEME

Let f (x) be defined on the interval, 0≤ x≤ L. Use a nonuniform grid, 0= x0< x1< x2<

· · ·< xN = L with a nonuniform spacehi ≡1xi = xi − xi−1 (i = 1, 2, . . . , N). Let the de-
pendent variablef (x) at any grid pointxi and two neighboring pointsxi−1 andxi+1 be given
by fi , fi−1, and fi+1 and let its derivatives at the two neighboring pointsxi−1 andxi+1 be
given by f ′i−1, f ′′i−1, and f ′i+1, f ′′i+1. Let Hi (x) be a local Hermitian polynomial defined on
a closed interval [xi−1,xi+1] with a spacing of (hi + hi+1), and determined byf evaluated
at xi−1, xi , xi+1, and its derivativesf ′, and f ′′ evaluated atxi−1 andxi+1 (Fig. 1a),

Hi (x) = fi + ( fi−1− fi )81(ξ)+ ( fi+1− fi )82(ξ)+ f ′i−1hi83(ξ)

+ f ′i+1hi84(ξ)+ f ′′i−1h2
i 85(ξ)+ f ′′i+1h2

i 86(ξ), (2)

whereξ = (x− xi )/hi and

8 j (ξ) = aj ξ + bj ξ
2+ cj ξ

3+ dj ξ
4+ ej ξ

5+ gj ξ
6, j = 1, 2, . . . ,6, (3)

are six elements of the local Hermitian polynomialHi (x) satisfying the following homo-
geneous conditions

8 j (−1) = 0, 8 j (ki ) = 0, 8′j (−1) = 0, 8′j (ki ) = 0,

8′′j (−1) = 0, 8′′j (ki ) = 0, j = 1, 2, . . . ,6,

except for

81(−1) = 1, 82(ki ) = 1, 8′3(−1) = 1, 8′4(ki ) = 1, 8′′5(−1) = 1, 8′′6(ki ) = 1,

FIG. 1. Nonuniform grid systems: (a) three-point grid in the interior domain; (b) three-point grid at the left
boundary; and (c) four-point grid at the left boundary.
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whereki = hi+1/hi .
If we define (

δ f

δx

)
i

= H ′i (xi ),

(
δ2 f

δx2

)
i

= H ′′i (xi ),(
δ f

δx

)
i−1

= f ′i−1,

(
δ f

δx

)
i+1

= f ′i+1,

(
δ2 f

δx2

)
i−1

= f ′′i−1,

(
δ2 f

δx2

)
i+1

= f ′′i−1,

the NCCD scheme is given by

k3
i (2ki + 5)

(ki + 1)4

(
δ f

δx

)
i−1

+
(
δ f

δx

)
i

+ (5ki + 2)

(ki + 1)4

(
δ f

δx

)
i+1

+ k3
i

2(ki + 1)3
hi

(
δ2 f

δx2

)
i−1

− ki

2(ki + 1)3
hi

(
δ2 f

δx2

)
i+1

= 3
(
5k2

i + 4ki + 1
)

(ki + 1)5
fi+1− fi

ki hi
+ 3k3

i

(
1k2

i + 4ki + 5
)

(ki + 1)5
fi − fi−1

hi
(4)

and

−6k2
i

(
5− ki − k2

i

)
(ki + 1)4

(
δ f

δx

)
i−1

+ 6
(
5k2

i − ki − 1
)

ki (ki + 1)4

(
δ f

δx

)
i+1

− k2
i (3− 2ki )

(ki + 1)3
hi

(
δ2 f

δx2

)
i−1

+ hi

(
δ2 f

δx2

)
i

− (3ki − 2)

(ki + 1)3
hi

(
δ2 f

δx2

)
i+1

= 6

ki (ki + 1)5

((
15k3

i + 4k2
i − 2ki − 1

) fi+1− fi
ki hi

− k3
i

(
15+ 4ki − 2k2

i − k3
i

) fi − fi−1

hi

)
. (5)

Expanding the variablef, f ′, and f ′′ into the Taylor series at pointsi − 1 andi + 1, the
truncation errors are estimated as−k3

i f (7)i h6
i /7! for (4) and−2k2

i (9k2
i −17ki +9) f (8)i h7

i /8!
for (5).

3. A GLOBAL HERMITAN POLYNOMIAL SPLINE ON A NONUNIFORM GRID

Let Hi (x) be a local Hermitian polynomial defined on a closed interval [xi−1,xi+1] with
a spacing of (hi + hi+1). We may define a global Hermitan polynomial spine by

Hg(x) = H2(x), 0= x1 ≤ x < x2,

Hg(x) = xi+1− x

hi
Hi (x)+ x − xi

hi
Hi+1(x), xi ≤ x < xi+1 (i = 2, 3, . . . , N − 2) (6)

Hg(x) = HN−1(x), xN−1 ≤ x ≤ xN,

which has up to third-order continuous derivatives at [x1, xN ].
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4. BOUNDARY ALGORITHMS

For periodic boundaries, the NCCD scheme automatically provides the sixth-order ac-
curacy at the boundaries. But for nonperiodic boundaries, we propose a sixth-order and
a fifth-order boundary algorithm for solving finite difference equations (FDE) and a fifth-
order boundary algorithm for difference calculation. For simplicity, we discuss left boundary
(i = 0) as an example. The treatment of the right boundary (i = N) is the as same as for the
left boundary.

4.1. Finite Difference Equation (FDE)

We have a choice of using sixth-order or fifth-order additional boundary conditions. The
grid structure is illustrated in Fig. 1b.

4.1.1. Sixth-Order Accuracy Formulation

The sixth-order accuracy at the boundary is based on using a global Hermitan polyno-
mial spline and an integration equation for the boundary cell. For a second-order partial
differential equation with constant coefficients,

a f ′′(x)+ bf ′(x)+ c f (x) = s(x), (7)

we propose an extra boundary condition with sixth-order accuracy as

a1

(
δ f

δx

)
0

+ a2

(
δ f

δx

)
1

+ b1

(
δ2 f

δx2

)
0

+ b2

(
δ2 f

δx2

)
1

+ c1 f0+ c2 f1+ c3 f2 = d. (8)

4.1.2. Fifth-Order Accuracy Formulation

If we can bear a little less accuracy (fifth-order) at the boundary, the formulation will be
much simpler,

(
3k2− 2k+ 1− 1

(1+ k)2

)(
δ f

δx

)
0

+ k(3k− 1)

(
δ f

δx

)
1

+ k3

2(1+ k)
h

(
δ2 f

δx2

)
0

− k2

2
h

(
δ2 f

δx2

)
1

+
(

6k2− 3k+ 1− 1

(1+ k)3

)
f0

h

− (6k2− 3k+ 1)
f1

h
+ 1

(1+ k)3
f2

h
= 0. (9)

4.2. Finite Difference Calculation

The NCCD can also be used to calculate the high-order finite difference. There are
2∗ (N+ 1) unknown variables [(δ f/δx)i , (δ2 f/δx2)i , i = 0, 1, 2, . . . , N], but there only
are 2∗ (N− 1) equations (4) and (5) at internal nodes. Therefore, at each boundary point
two additional conditions are needed to close the system. Here, we only show the left
boundary. The first additional boundary condition is (9). Expanding the variablef into
the Taylor series in another form (Fig. 1c), we obtain the second additional boundary
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condition,(
δ f

δx

)
0

+ a1

(
δ f

δx

)
1

+ a2h

(
δ2 f

δx2

)
1

= a3
f1− f0

h
+ a4

f2− f0

h
+ a5

f3− f0

h
. (10)

5. STOMMEL OCEAN MODEL

We use the Stommel ocean model [9] to compare the accuracy and CPU between NCCD
and CCD schemes.

5.1. Model Description

Stommel [9] designed an ocean model to explain the westward intensification of wind-
driven ocean currents. Consider a rectangular ocean with the origin of a Cartesian coordinate
system at the southwest corner. Thex andy axes point eastward and northward, respectively.
The boundaries of the ocean are atx= 0, Lx andy= 0, L y. The ocean is considered as a
homogeneous and incompressible layer of constant depthH when at rest. Stommel derived
an equation for the streamfunctionψ ,(

∂2

∂x2
+ ∂2

∂y2

)
9 + β̂ ∂9

∂x
= −γ sin

(
π

L y
y

)
(11)

with the boundary conditions:

9(0, y) = 9(Lx, y) = 9(x, 0) = 9(x, L y) = 0. (12)

Here, the right-hand side of (11) indicates the wind forcing, andβ̂, γ represent the latitudinal
change of the Coriolis parameter and the strength of the surface wind stress, respectively.
The analytical solution of (11) with the boundary conditions (12) is given by (Fig. 2)

9(a)(x, y) = −γ
(

L y

π

)2

sin

(
π

L y
y

)
(peAx + qeBx − 1). (13)

FIG. 2. Streamfunction (m2/s) obtained from Stommel ocean model.
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The physical parameters selected by Stommel [9] are

Lx = 107 m, L y = 2π × 106 m, β̂ = 1

3
× 10−5 m−1, γ = 1

4
× 10−10 m−2. (14)

5.2. Two-Dimensional Nonuniform Grid

We discretize the domain into 0= x0< x1< x2< · · · < xM = Lx; 0= y0< y1< y2< · · ·
< yN = L y with nonuniform spacing (1xi , 1yj ), that is,

xi = xi−1+1xi , yj = yj−1+1yj , i = 1, 2, . . . ,M; j = 1, 2, . . . , N, (15)

whereM and N are numbers of grid cells in thex andy directions, respectively. A two-
dimensional nonuniform grid (Fig. 3) was used with left-to-right decreasing resolution in
thex-direction,

1xi = 1x∞

[
1− exp

(
−αx

i

M

)]
, i = 1, 2, . . . ,M, (16)

and with boundary-to-interior decreasing resolution and symmetric at the middle in the
y-direction,

1yj = 1y∞

[
1− exp

(
−αy

2 j

N

)]
, if 1 ≤ j ≤

[
N

2

]
,

(17)

1yj = 1yN− j+1, if

[
N

2

]
≤ j ≤ N,

FIG. 3. Two-dimensional nonuniform grid.
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whereαx andαy are thee-folding homogeneity parameters and1x∞ and1y∞ are the
limiting grid size in thex and y directions, respectively. Increase ofαx (or αy) means
the increase of the homogeneity of thex-grid (or y-grid). The values of1x∞ and1y∞ are
determined by satisfying the conditionsxM = Lx andyN = L y. In this study, we used the
same number of grid cells for bothx andy directions(M = N).

We use the same alternating direction implicit (ADI) method as described in Chu and
Fan [3] to solve the two-dimensional equation (11) numerically. Such an iterative process
stops when the correction at the iterationk+ 1,

corr(k+1) =
∑N−1

i=1

∑M−1

j=1

∣∣9k+1
i, j −9k

i, j

∣∣(1xi +1xi+1)(1yj +1yj+1)∑N−1

i=1

∑M−1

j=1

∣∣9k
i, j

∣∣(1xi +1xi+1)(1yj +1yj+1)
, (18)

is smaller than 10−8. The numerical solution for the grid point (xi , yj ) is 9i, j . The

TABLE I

Comparison of Relative Average Error (%)
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discretization error was represented by an area-averaged relative error (AARE),

AARE =
∑N−1

i=1

∑M−1

j=1

∣∣9i, j −9(a)
i, j

∣∣(1xi +1xi+1)(1yj +1yj+1)∑N−1

i=1

∑M−1

j=1

∣∣9(a)
i, j

∣∣(1xi +1xi+1)(1yj +1yj+1)
. (19)

We solved (11) numerically with both NCCD and CCD schemes under various horizontal
resolutions and recorded the CPU time (a SUN Sparc-20 was used) for each run. To test
the sensitivity of NCCD scheme on the grid size ande-folding scale, we computed the dis-
cretization error with different cell numbersM = N= 15, 20, 25, 30, 35, 40, 45, 50, different
x-directionale-folding scalesαx = 0.1, 0.2, 0.3, 0.5, 0.7, 1, 2 and differenty-directionale-
folding scalesαy= 0.2, 0.5, 1. Using the uniform CCD scheme as the reference, we define
the error and CPU ratios (%) by

ε(N, αx, αy) = AARE(NCCD)(N, αx, αy)

AARE(CCD)(N)
, λ(αx, αy) = CPU(NCCD)(N, αx, αy)

CPU(CCD)(N)
. (20)

Thus, the uniform CCD scheme has a value of 100% for bothε andλ.

TABLE II

Comparison of Relative CPU Time (%)
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FIG. 4. The AARE-CPU diagrams for NCCD and CCD scheme comparison. Here, the solid curve indicates
the CCD scheme. Eight symbols represent differentαx-values: 0.1 (◦); 0.2 (4); 0.3 (h); 0.5 (¦); 0.7 (+); 1.0 (×);
2.0,(∗); and∞ (5).

Table I shows the distribution ofε(N, αx, αy). The symbols “X-D” and “Y-D” mean the
x-dependency andy-dependency, respectively. The last column (row) of the table indicates
the use of the uniform grid inx-direction (y-direction). The AARE of the NCCD scheme
is 1 to 14% of the AARE of the uniform CCD scheme. This error reduction enhances as
N increases and asαx or αy decreases. We further notice that the AARE are very sensitive
to thee-folding parameterαx and very insensitive toαy. Taking N= 15 as an example,
ε decreases from 14.2% to 8.35% asαx decreases from 2 to 0.1. However,ε keeps the
same value asαy varies. Such anx–y asymmetry is called by the inhomogeneous ocean
variability. The analytical solution of the Stommel ocean model shows a strong variability
of9 in the western boundary only (Fig. 2). The nonuniform scheme reduces the truncation
error drastically when the fine resolution grid is applied there.

Table II shows the distribution ofλ(N, αx, αy). The CPU of the NCCD scheme is 50 to
89% of the CPU of the uniform CCD scheme. This CPU saving enhances asN decreases
and asαx increases. TakingN= 15, αy= 0.5 as an example,λ decreases from 54.6% to
50.8% asαx increases from 0.1 to 2.

We use the AARE-CPU diagram to verify the performance of the NCCD scheme. Whenαx

andαy are given, both AARE and CPU depend onN. Thus, variation ofN creates a curve in
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FIG. 5. Error comparison between specific NCCD scheme (withαx = 0.3 andαy= 0.5) and CCD scheme:
(a) CPU time; (b) AARE; and (c) AARE-CPU diagram. Here, the solid curves denote the CCD scheme, and the
dashed curves denote the NCCD scheme.

the AARE-CPU diagram. We only use eight different values forN (15, 20, 25, 30, 35, 40, 45,
50) in this study. Therefore, we have eight points given forαx andαy on the diagram. Figure 4
shows the AARE-CPU diagram for four different values ofαy (0.2, 0.5, 1, and∞ (uniform)),
respectively. The solid curve indicates the CCD scheme. Eight different symbols represent
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the eight different values used forαx. The symbol “∇” indicatesαx =∞ (uniform). The other
seven symbols represent the seven values we used forαx (0.1, 0.2, 0.3, 0.5, 0.7, 1, 2). For the
CCD scheme,αx =∞ andαy=∞. Again, we see the insensitivity of the NCCD scheme to
αy. For a given CPU time, the NCCD scheme increases the accuracy by 1–2 orders of mag-
nitudes.

Figure 5 shows the comparison between a specific NCCD scheme (withαx = 0.3 and
αy= 0.5) and the CCD scheme. The solid curves denote the CCD scheme, and the dashed
curves denote the NCCD scheme. This specific NCCD scheme reduces both CPU time
by 20–30% (Figure 5a) and AARE around 100 times (Fig. 5b) versus the CCD scheme.
Such a reduction enhances asN increases. Such an error reduction is clearly seen in the
AARE-CPU diagram for this specific NCCD scheme and the CCD scheme (Fig. 5c).

6. CONCLUSIONS

(1) This study shows that the NCCD scheme is a promising highly accurate method
for both derivative computation and FDE solutions. The NCCD scheme has all the good
features as the CCD scheme, such as three-point and sixth-order accuracy. Besides, the
NCCD scheme represents the high variability area more accurate than the CCD scheme by
using fine grid there. Our analysis shows that for the same CPU time, the NCCD scheme
has an error reduction by 1–2 orders of magnitude, compared to the CCD scheme.

(2) To keep a three-point scheme, an additional boundary algorithm is needed. We pro-
pose both fifth- and sixth-order boundary algorithms. Since the fifth-order formulation is
more simple than the six-order formulation and easy to use, especially in two-dimensional
problems.

(3) Use of the NCCD scheme makes the convergence fast. In other words, it needs less
iterations and saves CPU time.

(4) We found a global Hermitan polynomial spine in this study. Thus, the NCCD scheme
is easily used in integral methods as well as in stagged grids.
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