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NOTE

A Three-Point Sixth-Order Nonuniform
Combined Compact Difference Scheme

A three-point nonuniform combined compact difference (NCCD) scheme with
sixth-order accuracy is proposed for numerical models. The NCCD scheme is a gen-
eralization of the previously proposed combined compact difference (CCD) scheme
with a global Hermitan polynomial spline and has major improved features such as
error and computational (CPU) time reduction. For nonperiodic boundaries, addi-
tional sixth- or fifth-order nonuniform boundary conditions are proposed. The NCCD
scheme with either sixth- or fifth-order additional boundary conditions can increase
the accuracy and decrease the CPU time about 1-2 orders of magnitude, compared
to the CCD scheme. ¢ 1999 Academic Press

1. INTRODUCTION

Following the trend toward highly accurate numerical schemes of partial differer
equations (PDE) led by many authors (e.g., Adam [1]; Chu and Fan [2]; Hirsh [5]; RL
and Khosla [8]; Navon and Riphagen [6]), Chu and Fan [2] proposed a three-point s
order uniform combined compact difference (CCD) scheme to increase accuracy.
scheme follows earlier work on the use of second derivatives in compact differencing (
as Rubin and Khosla [8]),

1
Z (a fipk + b 'y + ) =0, (1)
k=1

which is referred as the Hermite formula. Hefeis a dependent variable.

The ocean variability is not uniform. For example, the western boundary currents (
the Gulf Stream, Kuroshio) have much larger variability than the ocean interior. An ic
treatment is to use a nonuniform scheme: high resolution grids for high variability a
and low resolution grids for low variability areas. Goedheer and Potters [4] propos
nonuniform grid for a fourth-order compact difference scheme. Following their path,
propose in this paper a three-point sixth-order nonuniform combined compact (NC
scheme with sixth-order or fifth-order accuracy at both interior and exterior boundarie
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664 CHU AND FAN

2. NCCD SCHEME

Let f (x) be defined onthe interval, Ox < L. Use anonuniform grid, & Xg < X3 < X2 <
-+- < XNy = L with a nonuniform spach = Ax; =x —Xi_1(i=1,2,..., N). Let the de-
pendent variabld (x) at any grid poink; and two neighboring pointg_; andx;; be given
by fi, fi_1, and f;; and let its derivatives at the two neighboring poixts; andx; 1 be
given by f/_,, f”,, andf/,, f” . Let H;i(x) be a local Hermitian polynomial defined on
a closed intervalyj_; X 1] with a spacing oflt; + h;j11), and determined by evaluated
atxi_i, Xi, Xi+1, and its derivatives’, and f” evaluated a; _; andx; 1 (Fig. 1a),

Hi(x) = fi + (fi_1 — f)®1(€) + (fiyr — fi)@2(8) + f_1hi P3(§)

+ f/ i ®a(€) + f/1h2Ds(8) + f" 1 h2Ds (), )
where¢ = (X — x;)/h; and
(&) = ajé +bjE? + g +dig? + 8% +g;E°% j=12,...,6 (3)

are six elements of the local Hermitian polynomil(x) satisfying the following homo-
geneous conditions

®j(-1) =0, @j(k)=0, @(-) =0, @jk)=0,
/(-1 =0, ®(k)=0 j=12...86

except for

O1(-1) =1, Pyk) =1, d3-D =1 @ k)=1 >i(-1) =1 &¢k)=1,
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FIG. 1. Nonuniform grid systems: (a) three-point grid in the interior domain; (b) three-point grid at the le
boundary; and (c) four-point grid at the left boundary.
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wherek; =h;,1/h;.
If we define

(%)I = H/ (%), (8271;)' = H/" (%),
the NCCD scheme is given by
k(2K +5)<ﬁ) N (g) L Gki+2 (ﬁ)
(ki +D* \ox /i, \8x/; (ki +D*\6x /i,

SN ki (82t
+ 2(ki + 1)3h' (W)i_l_ 2(ki + 1)3h' <W)i+l

3(5k? + 4k + 1) fiyq — f N 3Kk3(1k? + 4k +5) fi — fi_1

(ki +1)° ki h; (ki +1)° h; @
and
6k2(5 — ki — k?) / of 6(5k2 — ki — 1) /sf
ERCERE <8x> Tk r DR <ax>
k?(3—2ki), (8°f (8% Bk —2), [8%f

BCET R (W)i_fh' (W> U (W)M
_ % (mdsae—ok 1)t
vy P ((15ki A — 2k — 1) <h

— k3 (15+ 4k — 2k — k) %) (5)

Expanding the variablé, f’, and f” into the Taylor series at points— 1 andi + 1, the
truncation errors are estimated-ak? f.’h8 /7! for (4) and—2k2(9k2 — 17k +9) f,®'h7/8!
for (5).

3. AGLOBAL HERMITAN POLYNOMIAL SPLINE ON A NONUNIFORM GRID

Let H; (x) be a local Hermitian polynomial defined on a closed interxaly[x; 1] with
a spacing oftf; + hj;1). We may define a global Hermitan polynomial spine by

Hg(x) = Hy(X), O0=X1 <X <X,

Hg(X) Xi+1 —

H(X)+ h H.+1(X) Xi <X<X41(0=23,....,N=2) (6)
i
Hg(X) = Hno1(X),  Xn—1 < X < XN,

which has up to third-order continuous derivativesat ky].
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4. BOUNDARY ALGORITHMS

For periodic boundaries, the NCCD scheme automatically provides the sixth-order
curacy at the boundaries. But for nonperiodic boundaries, we propose a sixth-order
a fifth-order boundary algorithm for solving finite difference equations (FDE) and a fiftl
order boundary algorithm for difference calculation. For simplicity, we discuss left bounde
(i =0) as an example. The treatment of the right boundagyN]) is the as same as for the
left boundary.

4.1. Finite Difference Equation (FDE)

We have a choice of using sixth-order or fifth-order additional boundary conditions. T
grid structure is illustrated in Fig. 1b.

4.1.1. Sixth-Order Accuracy Formulation

The sixth-order accuracy at the boundary is based on using a global Hermitan poly
mial spline and an integration equation for the boundary cell. For a second-order pal
differential equation with constant coefficients,

af”(x) + bf’'(x) + cf(x) = s(x), @

we propose an extra boundary condition with sixth-order accuracy as

sf sf 82 f 82f
— — b by —5 f f f=d. (8
a1<8x>0+a2(8x> + 1(32> + 2(8X2>1+Cl otCfit+csf (8)

4.1.2. Fifth-Order Accuracy Formulation

If we can bear a little less accuracy (fifth-order) at the boundary, the formulation will |
much simpler,

- 1 st i SN
(3k 2k +1 (1+k)2)<6x) + k(3K — 1)( > 20"\ ),

K2 /82f 1 \f
LY K_akp1- + o
2 (5 2) +(6 S+ (1+k)3) h

1 f
A+k3h

— (6k? — 3k + 1)— 9)

4.2. Finite Difference Calculation

The NCCD can also be used to calculate the high-order finite difference. There
2% (N + 1) unknown variables(Bf/8x);, (82 f/86x?)i,i=0,1,2,..., N], but there only
are 2« (N — 1) equations (4) and (5) at internal nodes. Therefore, at each boundary pc
two additional conditions are needed to close the system. Here, we only show the
boundary. The first additional boundary condition is (9). Expanding the varitibitgo
the Taylor series in another form (Fig. 1c), we obtain the second additional bound
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condition,

5f 5f 82f fi— fo fo — fo fs— fo
— — ah = . (10
<8x)0+a1(8x>1+ > (8 2) az h +ay h + a5 h (10)

5. STOMMEL OCEAN MODEL

We use the Stommel ocean model [9] to compare the accuracy and CPU between N
and CCD schemes.

5.1. Model Description

Stommel [9] designed an ocean model to explain the westward intensification of w
driven ocean currents. Consider a rectangular ocean with the origin of a Cartesian coorc
system at the southwest corner. ®endy axes point eastward and northward, respectivel
The boundaries of the ocean arexat 0, Ly andy =0, Ly. The ocean is considered as ¢
homogeneous and incompressible layer of constant dépthen at rest. Stommel derived
an equation for the streamfunctign

92 92 T
— — = —ysin| — 11
(ax2+ay2> 5 VS'”(LQ’) ()
with the boundary conditions:
VO, y) =¥(Lx,y) =¥ 0 =¥(XLy=0. (12)

Here, the right-hand side of (11) indicates the wind forcing,&ndrepresent the latitudinal
change of the Coriolis parameter and the strength of the surface wind stress, respec
The analytical solution of (11) with the boundary conditions (12) is given by (Fig. 2)

U@ (x, y)=—y (Ly> sm( )(peAX+qe - 1. (13)
b4 Ly

X (108 m)

FIG. 2. Streamfunction (fis) obtained from Stommel ocean model.
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The physical parameters selected by Stommel [9] are
\/ 2 1 —5 —1 1 —10 12
Ly =10'm, Ly=27 x10°m, ,8=§><10 m, y=Zx10 m=2. (14)

5.2. Two-Dimensional Nonuniform Grid
We discretize the domainintoOxg < X; <Xo < --- <Xy =Lx;0=Yo<Yy1<Yo < ---
< yn = Ly with nonuniform spacing4x;, Ayj), that is,

Xi =X-—1+AX, Yj=Yj-1+Ay, i=12 ..., M;j=12...,N, (15

whereM andN are numbers of grid cells in theandy directions, respectively. A two-
dimensional nonuniform grid (Fig. 3) was used with left-to-right decreasing resolution
the x-direction,

[

AXi = AXyo {1— exp<—axM>}, i=12,..., M, (16)
and with boundary-to-interior decreasing resolution and symmetric at the middle in
y-direction,

2j . . N

AYj = Ay [1—exp<—ayN)], ifl<j< {2}

N (17)

AYj = AYn-ji1, if M <j=N,

s T T T L}
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FIG. 3. Two-dimensional nonuniform grid.
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whereay anday are thee-folding homogeneity parameters and., and Ay, are the
limiting grid size in thex andy directions, respectively. Increase @f (or «y) means
the increase of the homogeneity of thgrid (or y-grid). The values ofiAx,, andAy,, are
determined by satisfying the conditiorg = Ly andyyn = Ly. In this study, we used the
same number of grid cells for bothandy directions(M = N).

We use the same alternating direction implicit (ADI) method as described in Chu
Fan [3] to solve the two-dimensional equation (11) numerically. Such an iterative proc
stops when the correction at the iteratlos 1,

corrk+d — N I T — W [(Ax A+ Axi)(AY; + AYj) (18)
SIS (A 4 AXi)(AY] + AYj)
is smaller than 10°. The numerical solution for the grid poinki( y;) is Wi j. The

TABLE |
Comparison of Relative Average Error (%)

n=15 (CCD AARE= 0.00236) n=20 (CCD AARE= 0.000238)
%-D e-folding a, ‘ X-D e-folding a
uniform niforn
Y-b 0.1 0.2 03 Q.5 0.7 1 2 Y-D Q.1 0.2 0.3 0.5 0.7 1 2
- 02| 8351847 | 86 | 886 | 9.19 10 14.2 | 100 s 02{685|702| 7231765 (811|887 11.8] 100
=] f=
'5 05|835({847 | 86 | 8.86 | 9.19 10 14.2 | 100 5 05685 702 |723}765)| 8114887118/ 100
(=] o
T T
@ 1 835 (847 ) 86 | 886 | 9.19 10 14.2 | 100 @ 1 6.85 17.02 | 723|785 | 811|887 | 118 | 100

uniform | 835 | 847 | 86 | 8.86 | 2.19 10 142 | 100 uniform | 6.85 | 7.02 | 723 | 785 | 8.11 | 887 | 11.8 | 100
n=25 (CCD AARE=0.000111) n=30 (CCD AARE= 5.56e~05)
X-D e-foldinga, X-D e-foiding a,
uniforr nitorm|

Y-D 0.9 0.2 0.3 0.5 0.7 1 2 Y-D 0.1 Q0.2 03 0.5 0.7 1 2
o 02| 38 | 391|403 ) 426 | 451 | 494 | 661 100 s 02 ] 254|261 (268|284 3 3.29 | 441 100
=] >
f: 05| 381 | 391 | 403 ] 426 | 451 | 494 | 6.61 100 5 05 ) 254|261 (268 | 284 3 3.29 | 441 100
o o
T T
@ 1 381§ 391 | 403 | 426 | 452 | 494 | 6.61 100 @ 1 2,54 | 261 | 268 | 284 3 3.28 | 441 100

uniform | 381 | 3.92 | 4.03 | 426 | 4.52 | 494 | 662 | 100 uniform [ 2.54 | 2.61 | 2.68 | 2.84 3 329 | 441 100
n=35 (CCD AARE= 2.89e-05) n=40 (CCD AARE= 1.58e-05)
X-D e-Tolding a X-D e-tolding a,
uniforrmy nifarmy

Y-b 0.1 0.2 0.3 Q.5 0.7 1 2 Y-D 0.1 0.2 0.3 05 0.7 1 2

& 02| 183 199204 | 217 [ 229 | 251 | 3.35 | 100 o 02| 18 165|169 | 1.78 | 189 | 208 | 2.75 | 100
> f=4
% 05] 192197 1 203|215 | 228 | 248 | 3.34 } 100 1% 05| 155159 | 164 | 174 { 185|202} 272} 100
[=] g
T T

® 1 192 | 197 1 203 | 215 [ 228 | 2.48 | 3.3¢4 | t00 @ 1 155 ] 159 | 184 | 174 | 185 | 2.02 | 272 { 100

uniform | 1.92 | 1.97 | 2.03 | 2.15 | 228 | 249 | 3.34 | 100 uniform | 1.54 | 1.59 | 1.63 | 1.73 | 1.84 | 201 | 2.71 | 100
n=45 (CCD AARE= 9.05e-06) =50 (CCD AARE= 5.41e-06)
X-D e—foidinga, ‘ X-D e-folding a
uniforr niform

Y¥-0 0.1 0.2 0.3 05 0.7 1 2 Y-D Q0.1 02 0.3 0.5 0.7 1 2

e 02| 141 | 145 | 148 | 1.57 | 166 1.8 2.4 100 o 02| 133|136 | 139|147 | 155 | 1.67 | 2.18 | 100
D j=d
E 0.5 13 134 | 1.38 | 146 | 1.55 1.7 2.3 100 é 05| 1.09 f 112 | 115 | 123 | 1.31 | 1.44 | 1.98 | 100
o [=]
T T

@ 1 1.3 134 | 137 | 146 | 1.55 | 169 | 23 100 @ 1 109 | 112 | 115 { 128 | 1.31 | 1.44 [ 198 | 100

uniform | 1.28 [ 1.31 [ 1.36 | 145 | 1.54 | 1.68 | 2.29 | 100 uniform | 1.04 § 1.07 | 111 ] 118 | 127 | 1.4 | 1.94 | 100
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discretization error was represented by an area-averaged relative error (AARE),
SIS WL — WP [(AX + AXip1) (AY) + AYia)
Z:lz?ﬁfl“l’i(,aj)KAXi + AXi+1) (AYj + AYj41)

=1

AARE = (19)

We solved (11) numerically with both NCCD and CCD schemes under various horizor
resolutions and recorded the CPU time (a SUN Sparc-20 was used) for each run. To
the sensitivity of NCCD scheme on the grid size afdlding scale, we computed the dis-
cretization error with different cell numbek$é = N = 15, 20, 25, 30, 35, 40, 45, 50, different
x-directionale-folding scales, = 0.1, 0.2, 0.3, 0.5, 0.7, 1, 2 and differepdirectionale-
folding scalesy, = 0.2, 0.5, 1. Using the uniform CCD scheme as the reference, we defir
the error and CPU ratios (%) by

NCCD NCCD
(N, 0y, cty) = AARE! )(N,ocx,oty) Mety. o) = CPU )(N,ocx,oty) (20)
k) X - k] X =
Y AARECCD (N) Y CPUCCD(N)
Thus, the uniform CCD scheme has a value of 100% for bathd .
TABLE Il
Comparison of Relative CPU Time (%)
n=15 (CCD CPU time= 9.94(s) ) n=20 (CCD CPU time= 18.3(s) )
XD e-foldinga, %D e—folding a,
Y-D ot o2 o3]os|or] 1 2 |0 | y-0 o1 ]oz]o3]os] o7 ] 1 7 niform
o 02| 591|592 | 585 ) 582574 | 568 | 545 464 s 02} 678 {678 | 67.2 | 66.7 | 66.7 65 634 | 568
§ 05| 546 | 545 | 546 | 538 | 53.9 | 53.1 | 508 | 41.9 § 05623 ] 617 | 61.2 | 60.7 | 60.7 59 57.4 | 50.9
) 1 613 | 614 | 613 { 605 | 606 | 59.2 | 56.1 | 45.7 @ 1 68.9 | 68.3 | 67.2 | 66.7 | 656 65 61.7 | 538

uniform | 215 162 160 158 158 154 138 100 uniform 154 143 142 133 138 131 118 100
n=25 (CCD CPU time= 30.3(s) ) n=30 (CCD CPU time= 48.1(s) )
XD e-folding a ] X-0 e-folding a
uniform| niforr
Y-D 0.1 0.2 0.3 0.5 0.7 1 2 Y-D 0.1 0.2 0.3 Q0.5 0.7 1 2
o 0.2 | 69.6 69 69 68.3 | 67.7 | 67.7 | 66.3 64 e 02| 667 | 66.1 | 66.1 | 66.1 | 65.5 | 655 | 65.5 | 68.2
o o
é 051627 | 62.7 | 627 62 61.1 { 60.4 | 59.7 | 56.8 1_57 05| 597 595|595 | 588 | 588 | 588 | 58.8 | 60.9
o o
T T
@ 1 67.7 | 67.7 67 66 65.3 | 64.7 | 634 | 59.7 @ 1 636 | 63.6 | 63.4 | 628 63 622 | 624 | 63.6
uniform 129 120 118 "7 115 12 104 100 uniform 109 101 101 | 99.2 | 979 | 96.7 | 91.9 | 100
n=35 (CCD CPU time= 74(s) ) n=40 (CCD CPU time= 110(s) )
X-D o-foldinga, ] X-D e-folding a_
uniform| niformy
Y-D 0.1 0.2 0.3 0.5 0.7 1 2 Y-D 0.1 0.2 0.3 Q.5 Q7 1 2
o 027231716 | 716 | 705 | 69.9 | 686 | 65.7 | 70.4 o 02| 849 {844 839|834 823813775/ 739
(=2 =g
é 05)| 639 | 63.4 | 634 | 628 | 622 | 60.9 | 59.3 | 65.1 é 05| 7451739 | 739 | 734 [ 728 | 71.8 | 69.3 | 69.7
(=} o
" T
@ 1 66.4 | 65.7 | 65.7 | 65.1 | 64.6 | 63.9 | 61.6 | 67.4 @ 1 7754770 | 771 [ 765 | 76 [ 749 | 724 | 718
uniform | 97.6 | 92.3 | 916 | 90.5 | 89.5 | 87.6 | 835 | 100 uniform 115 108 108 107 105 104 | 96.4 | 100
n=45 (CCD CPU time= 169(s) ) n=50 (CCD CPU time= 274(s) )
X-D e-Tolding a ] X-D e-folding a
nifore niform)|
Y-0 01 |02 | 03] 05|07 1 2 Y-D 0.1 02 | 03| o5 | 07 1 2
- 02893888 | 888] 882 87 86.4 | 834 | 769 o 0.2 85 B47 | 843 | 836 | 828 | 825 | 79.6 | 78.8
o (=
S 05| 787|781 | 781|775 | 769|763 | 746|728 | |§ |05 745|741 | 737|734 | 73 | 723 | 708 | 723
o o
T T
@ 1 82.2 | 81.7 | 81.1 | 81.1 | 805 ] 79.3 | 775 | 74.6 @ 1 77.7 | 77.4 77 766 | 763 | 755 | 73.7 | 75.5

uniform | 122 | 116 | 115 114 | 113 § 111 105 | 100 uniform 117 [ 111 110 | 109 | 108 | 107 | 10% 100
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FIG. 4. The AARE-CPU diagrams for NCCD and CCD scheme comparison. Here, the solid curve indic:
the CCD scheme. Eight symbols represent diffesgatalues: 0.14); 0.2 (A); 0.3 {@); 0.5 (0); 0.7 (+); 1.0 (x);
2.0,(*); andoo (V7).

Table | shows the distribution @f(N, oy, ay). The symbols “X-D” and “Y-D” mean the
x-dependency ang-dependency, respectively. The last column (row) of the table indica
the use of the uniform grid ir-direction §/-direction). The AARE of the NCCD scheme
is 1 to 14% of the AARE of the uniform CCD scheme. This error reduction enhance:
N increases and as or ay decreases. We further notice that the AARE are very sensiti
to thee-folding parametetr, and very insensitive tery. Taking N =15 as an example,
¢ decreases from 14.2% to 8.35% @sdecreases from 2 to 0.1. Howeverkeeps the
same value aay varies. Such ax—y asymmetry is called by the inhomogeneous oce
variability. The analytical solution of the Stommel ocean model shows a strong variabi
of W in the western boundary only (Fig. 2). The nonuniform scheme reduces the trunce
error drastically when the fine resolution grid is applied there.

Table 1l shows the distribution of(N, oy, ay). The CPU of the NCCD scheme is 50 to
89% of the CPU of the uniform CCD scheme. This CPU saving enhanddsdasreases
and aswy increases. TakingN = 15, oy = 0.5 as an example, decreases from 54.6% to
50.8% asxy increases from 0.1 to 2.

We use the AARE-CPU diagram to verify the performance of the NCCD scheme.&y/hel
anday are given, both AARE and CPU dependNnThus, variation o creates a curve in
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300 T T T T T T

n N
[=] a
o o

CPU time (s)
@
o

100
50
0
15 20 25 30 35 40 45 50
grid number
(b)

AARE

15 20 25 30 35 40 45 50
grid number

©

0 50 100 150 200
CPU time (s)

FIG. 5. Error comparison between specific NCCD scheme (witk= 0.3 ande, = 0.5) and CCD scheme:
(a) CPU time; (b) AARE; and (c) AARE-CPU diagram. Here, the solid curves denote the CCD scheme, and
dashed curves denote the NCCD scheme.

the AARE-CPU diagram. We only use eight different valueNdd.5, 20, 25, 30, 35, 40, 45,
50) inthis study. Therefore, we have eight points giverdaanday on the diagram. Figure 4
shows the AARE-CPU diagram for four different value&f0.2, 0.5, 1, ando (uniform)),
respectively. The solid curve indicates the CCD scheme. Eight different symbols repre:
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the eight different values used igy. The symbol V" indicateswy = co (uniform). The other
seven symbols represent the seven values we used (or1, 0.2,0.3, 0.5, 0.7, 1, 2). For the
CCD schemeyy = co anday = oo. Again, we see the insensitivity of the NCCD schemet
ay. For a given CPU time, the NCCD scheme increases the accuracy by 1-2 orders of
nitudes.

Figure 5 shows the comparison between a specific NCCD schemedywtld.3 and
ay =0.5) and the CCD scheme. The solid curves denote the CCD scheme, and the d:
curves denote the NCCD scheme. This specific NCCD scheme reduces both CPU
by 20-30% (Figure 5a) and AARE around 100 times (Fig. 5b) versus the CCD sche
Such a reduction enhances ldsincreases. Such an error reduction is clearly seen in t
AARE-CPU diagram for this specific NCCD scheme and the CCD scheme (Fig. 5c).

6. CONCLUSIONS

(1) This study shows that the NCCD scheme is a promising highly accurate met
for both derivative computation and FDE solutions. The NCCD scheme has all the g
features as the CCD scheme, such as three-point and sixth-order accuracy. Beside
NCCD scheme represents the high variability area more accurate than the CCD schel
using fine grid there. Our analysis shows that for the same CPU time, the NCCD sch
has an error reduction by 1-2 orders of magnitude, compared to the CCD scheme.

(2) To keep a three-point scheme, an additional boundary algorithm is needed. We
pose both fifth- and sixth-order boundary algorithms. Since the fifth-order formulatior
more simple than the six-order formulation and easy to use, especially in two-dimensi
problems.

(3) Use of the NCCD scheme makes the convergence fast. In other words, it need:
iterations and saves CPU time.

(4) We found a global Hermitan polynomial spine in this study. Thus, the NCCD sche
is easily used in integral methods as well as in stagged grids.
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