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A new three-point combined compact difference (CCD) scheme is developed for
numerical models. The major features of the CCD scheme are: three point, implicit,
sixth-order accuracy, and inclusion of boundary values. Due to its combination of
the first and second derivatives, the CCD scheme becomes more compact and more
accurate than normal compact difference schemes. The efficient twin-tridiagonal (for
calculating derivatives) and triple-tridiagonal (for solving partial difference equation
with the CCD scheme) methods are also presented. Besides, the CCD scheme has
sixth-order accuracy at periodic boundaries and fifth-order accuracy at nonperiodic
boundaries. The possibility of extending to a three-point eighth-order scheme is also
included. (© 1998 Academic Press

1. INTRODUCTION

The grid spacingsAx, Ay) in most ocean numerical models are not small. For exampl
a global ocean model is considered having high resolution when a horizontal dri@)s,
approximately 14.5 km. For such large grid spacing, use of highly accurate differer
scheme becomes urgent. For example, McCalpin [1] used fourth-order differencing to
duce pressure gradient errordrcoordinate ocean models.

The trend toward highly accurate numerical schemes of partial differential equatic
(PDE) has recently led to a renewed interest in compact difference schemes. Concurre
Adam [2], Hirsh [3], and Kreiss [4] have proposed Hermitian compact techniques usi
less nodes (three instead of five) at each grid point to solve PDE. Later on, as poir
out by Adam [5], the truncation errors are usually four to six times smaller than the sa
order noncompact schemes. Since then, much work has been done in developing con
schemes for various applications, such as: an implicit compact fourth-order algorithm |
a fourth-order compact difference scheme for nonuniform grids [7]; fourth-order and six
order compact difference schemes for the staggered grid [8]; an early form of the sixth-ol
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3-POINT CCD SCHEME 371

combined compact difference scheme [9]; compact finite difference schemes with a re
of spatial scales [10]; and an upwind fifth-order compact scheme [11]. These schel
are characterized by (a) 5-point sixth-order, (b) much lower accuracy at nodes adjace
boundaries, and (c) no requirement on PDE to be satisfied at boundaries.

Several recent work emphasizes on the improvement of boundary accuracy. For hy
bolic system, Carpentet al.[12, 13] introduced a simultaneous approximation term (SAT
method that solves a linear combination of the boundary conditions and the hyperbolic et
tions near the boundary. This method provides fourth-order accuracy at both interior
boundary. Under the assumption that the derivative operator admits a summation-by-f
formula then the SAT method is stable in the classical sense and is also time-stable.
2D vorticity-stream function formulation, E and Liu [14, 15] proposed a finite differenc
scheme with fourth-order accuracy at both interior and boundary. Question arises:
we construct a scheme (1) working for any differential equation and (2) with high-orc
accuracy at both interior and boundary?

A new three-point sixth-order combined compact (CCD) scheme is such a scheme \
the following features: (a) 3-point sixth-order, (b) comparable accuracy at nodes adjax
to boundaries, and (c) requirement on PDE to be satisfied at boundaries. Fourier analy:
errors is used to prove the CCD scheme as having better resolution characteristics thal
current (uncompact and compact) scheme. Two implicit solvers for the CCD scheme are
proposed for calculating various differences (twin-tridiagonal solver) and for solving PD
(triple-tridiagonal solver). Furthermore, we use the one-dimensional convection-diffus|
equation and two-dimensional Stommel ocean model to illustrate the application of
CCD solvers and to demonstrate the benefit of using CCD scheme.

2. CCD SCHEME

2.1. General CCD Algorithm

Let the dependent variablie(x) be defined on the interval, 8 x < L. Use a uniform
grid, 0=x; < X < X3 < --- < XN < Xn41= L with a spacindi=X;+1 — % =L/N. Let
the dependent variablie(x) at any grid poink; and two neighboring pointg_; andx; .1 be
given by f;, fi_3, andf; .1 and letits derivatives at the two neighboring poixts andx; 1

be given byf/ ,, f"4, ..., fi%‘)l andf/ o, f7,,..., fi(f)l. The essence of the CCD scEeme
is to relatef;, f/, f",..., (fki)( ) to the two neighboring pointsfi_1, f/_;, f”" 4, ..., fi(fl
and fiq, £/ 4, 74, ..., T3,

5f 5f 5f h 52 f 52 f
(5), rea((5e) o () ) () - (5), )+
= :_;(fiJrl_ fi_1)

82 f 52 f 82 f 1 Sf 5f
(@i*“Z((m)iH*(m)i_l) *ﬁ%((&)i; (&)i_) -

2.1)
ap
= ﬁ(fi+1—2fi + fi_1)



372 CHU AND FAN

and to computef/, ", ..., fi(k) by means of the values and derivatives at the two neigf
boring points. Moving from the one boundary to the other, CCD forms a global algorithm
compute various derivatives at all grid points. In this paper we only discuss the sixth-or
CCD scheme.

2.2. Local Hermitian Polynomial

Let H; (x) be a local Hermitian polynomial defined on the closed interyal;| x; 1],
representing the variablé at x; and f and its derivativest’, f” at the two neighboring
pointsx;_1, andx 1,

Hixi—1)=fi—t, Hix)="fi, HXi)=fiq, 2.2)
Hxi—)=f_,, H &)= fi,+17 H'(xi—0)= "4, H'(Xit1)= f|+1 .

ExpandH; (x) into Taylor series in the neighborhood>gfwith sixth-order accuracy

” 3 (@]
H; (Xi)X2+ H; (Xi)xg H; (Xi)X4

Hi 00 = Hi () + H/ 00)x + = 3! 4!

Hi@(xoxs Hi“”(xi)x6
51 6! ’

(2.3)
The seven coefficients in (2.3) are determined by the seven equations in (2.2),

15 , h o, "
Hi/(xi) = E(fH—l— fi—l) (f|+1+ fi71)+ 16 (f|+1 fifl)

3 / 1 " 1
H/(xi) = —(fi+1—2fi + fic1) — (f.+1 _1)+—(fi+1+ )

HE ) = 4h3<f.+1 fi_1) + 4hz(f'+1+ fl ) — <f.”+l )
3 (2.4)
H® () = —m(fi+1—2fi+ fi,1>+ (f.+1 i) — 5 (Fa+ )
45 / 1 " 14
HE00) = S (fis—fio - 2h4<f.+1+ i l>+2hg(f.+1 f0)
360
HOx) = “=(fiya—2f + fip) — (f.+1 l)+ <f“ + 1.
Thekth derivative at the grid point; is approximately given by
0 (x) = H* (x). (2.5)
Substitution of (2.5) into (2.4) leads to
, , y Y 151 1349
(f,+l+ fl )+ f — (fIH £ = 8 o (fie1 = f,,l)—778176013%6
1 4 " " 1
(f.+1 fl)—g(fha+ flo+f = sﬁml—zfﬁ fiD = 5oie0ft N°

(2.6)



3-POINT CCD SCHEME 373

which are the schemes for computing the first-order and second-order derivatives at the
pointx;, respectively. Thus, the CCD scheme with sixth-order accuracy can be written

7 Sf Sf S5f h 52 f 52 f
16 ((&)J (&U - (&)i Te((m)m‘ (m)i_)
15
= E(fiﬂ - ficp) (2.7)

which is for the first derivative calculation, and

9 sf Sf 1/ /68%f 52f 52f
8h<(ax>i+f(ax>i1)‘s<<5xz)i+l+(axz>i)*(axz)i
3
= ﬁ(fi-s-l— 2fi + fi—1) (2.8)

which is for the second derivative calculation. Comparing (2.7) with (2.1), we find that t
parameters in (2.1) for the sixth-order scheme should be

7 1 15 1

16 B1 T ay , Po=—, @

n= 8’ 8

For the sixth-order CCD scheme, the truncation errors in (2.6)

1349

1
: hé ~ 1.73% 1074 fi(7)h6, - f~(8)h6 ~ 4.9x%10°° fi(8)h6
7781760

20160

are quite small.

Another benefit of using CCD scheme is the existence of a global Hermitian polynon
with continuous first- and second-order derivatives at each grid point. We will describ
in Appendix 1.

2.3. Error Estimation

We compare the truncation errors between the CCD scheme with current general
schemes [10] for first-order derivatives,

fiza— fi fizo— fi_ fizg— fi
fi/+a(fi/+l+ fi/_l)+ﬂ(fi,+2+fi/_2)=a i+1 [ l+b i+2 1 2+C i+3 i—3

2h 4h 6h
(2.9
and the second-order derivatives,
f' ot + )+ (o + 7y
fiyp—2f + fig fipp—2f+fio fia—2f+f_3
= 2.1
a 2 +b e + oz ,  (2.10)

where the parametess 8, a, b, c take different values for various schemes (Table 1). Th
comparison of truncation errors is listed in the last column in Table 1. We find that t
CCD scheme has the smallest truncation error among various sixth-order schemes
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TABLE 1
Truncation Errors in Various Difference Schemes for the First
and Second Derivative Calculations

Parameter
Derivative
approximation Eq. Scheme a b c Truncation error
1
First (2.12)  2nd-order central 0 0 1 0 0 3 f@h?
3 1 3 —1 e
(2.12) Standard Padscheme 2 0 5 0 0 Hf 'h
3 -3 1 1
(2.12)  6th-order central 0 0o = T 36x — fOne
2 5 10 7!
1 14 1 1
2.12)  6th-order tridi | - 0 — = 4x —fOpt
( ) order tridiagonal 3 9 5 X 7
17 -1 90 -100 1
2.12 h- i = — — ——— x — ™t
( )  6th-order pentadiagonal 57 124 57 0 0 19 X T
—-1349 1
- £ (MR6
2.7) 6th-order CCD / / / / 544 X = fh
1
Second (2.13)  2nd-order central 0 0 1 0 0 ><24j f@h?
1 6 18 1
2.1 Padsch — . — x = f®hp*
(2.13) Standard Padkcheme 10 0 5 0 3 x &l
3 -3 1 1 66
(2.13) 6th-order central 0 0 > 5 10 72 x 8l fO®h
2 12 3 —-184 1
- idi il =< i O TCIN
(2.13)  6th-order tridiagonal 1 0 11 11 11 X 8!f h
12 -1 120 —-2672 1
2.13) 6th-ord tadi = — = 0 ———x_—fOne
( ) order pentadiagonal 97 194 97 97 X 8l
1
(2.8) 6th-order CCD / / / / / -2 x ai f®ne

example, the truncation error of the first derivative using the CCD scheme is about 4
times smaller than using the sixth-order central scheme, 4.6 times smaller than using
sixth-order tridiagonal (compact) schemes, and 6.0 times smaller than using the sixth-o
pentadiagonal (compact) scheme. The truncation error of the second derivative using
CCD scheme is about 36 times smaller than using the sixth-order central scheme, 8.4 t
smaller than using the sixth-order tridiagonal scheme (compact), and 13.8 times sm:
than using the sixth-order pentadiagonal scheme (compact). Comparing the CCD sch
with the second-order central difference (SCD) scheme (most commonly used in oc
models), truncation errors for both first and second derivatives are more than four order
magnitude smaller.

Another good feature of the CCD scheme is that the CCD scheme uses the same fo
lation at all grid points except at the boundaries, where some additional boundary treatn
is formulated. These additional schemes at the boundaries are fifth-order accurate fo
PDE with the CCD scheme (see Section 5). A CCD scheme with eighth-order accuracy
be presented in Appendix 2.

3. FOURIER ANALYSIS OF ERRORS

Fourier analysis of errors is commonly used to evaluate various difference schen
described extensively in Swartz and Wendroff [16], Oliger and Kreiss [17], Vichnevets
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and Bowles [18], Roberts and Weiss [19], Fromm [20], Orszag [21, 22], and Lele [1
As pointed out by Lele [10], Fourier analysis provides an effective way to quantify tl
resolution characteristics of differencing approximations.

For the purpose of Fourier analysis the dependent varifatdgis assumed to be periodic
over the domain [OL] of the independent variable, i.ef; = fy,1 andh=L/N. The
dependent variable may decomposed into Fourier series,

k=N/2

foo= Y fe® b, (3.1)
k=—N/2

wherei =+/—1. It is convenient to introduce a scaled wavenumbet 2rkh/L =
27k /N, and a scaled coordinase= x/ h. The Fourier modes in terms of these are simply
exp(ws). The exact first-order and second-order derivatives of (3.1) generate a funct
with exact Fourier coefficients

However, the Fourier coefficients of the derivatives obtained from the differencing sche
might not be the same as the exact Fourier coefficients, i.e.,

H / " 2
o/ lw ~ ~1 w ~
(fk)fd:?fw (fk)fd:_(F> fk,

wherew’ = w'(w) andw” = w”(w) are the modified wavenumber (both real numbers) fo
the first-order and second-order differencing. The smaller the difference between the e
and modified wavenumbers, the better the difference scheme.

According to Lele [10], the modified wavenumbers of the current generalized differer
schemes (2.9) and (2.10) are

asinw + 2§ sin 2w + £ sin 3w

"(w) = 3.2
w(w) 1+ 20 cosw 4 2P cos A (3.2)
and
2a(1— cos b(1— cosaw) + L (1— cos3v
W (wy = 1| 2 )+ 5 )+ 9 ¢ ), (3.3)
1+ 20 cosw + 28 cos dv

respectively.
For the CCD schemes (2.7) and (2.8), the modified wavenumbessnd w” can be
calculated jointly as follows:

fo) = felve/m (3.4)
k

o) = > fetwe/m (3.5)
k

700 =Y felvos/m (3.6)
k
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and
[F0]ta = > (F)rae /™ 3.7
k
[F700] g = Y _ () ae™ /™ (3:8)
k
fox+hy =) felv/mer (3.9)
k
fox—hy =) fetwt/meriv (3.10)
k
[ +)]rg = > () rae!/Mer (3.11)
k
[Fx—=]tg = D> (F)ae" /e (3.12)
k
[+ = Y (F)rae™/Me (3.13)
k
(/X —M]tg = > _(f)rae™*/ e, (3.14)

k

Substitution of (3.4)—(3.14) into (2.7)—(2.8), we have

7 1 . 15 .
é[COSw + 1w + 5 sinw(w”)? = g Sinw (3.15)

—Z(sinw)w/ — {1 — icosw] (w”)? = 6[cosw —1]. (3.16)

Solving (3.15)—(3.16), we have

9sinw[4 4 cosw]

! = 3.17
w'(w) 24+ 20 cosw + cos 2w ( )
81— 48cosw —33cos w
i = . A
w'(w) \/ 48+ 40 cosw + 2 cos v (3.18)

Among various difference schemes, the modified wavenumbers of the first-order dif
encingw’ (Fig. 1a) and of the second-order differencing (Fig. 1b) of the CCD scheme
are closest to the exact wavenumber

In multidimensional problems the phase error of first-order differencing scheme app
in the form of anisotropy [10, 18],

(cosf)w’(w cosh) + (sind)w’(w sind)

(Cpta(w, 0) = w'(w, 0)/w= -

(3.19)

Figure 1c shows polar plots of phase speed anisotropy of various schemes for first deriv:

approximations. The phase speed for wavenumber (magnitude)= &, =, ..., 22, 2

are plotted. Here, we also see that the CCD scheme shows improvement.
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(a) (b)
First derivative approximation Second derivative approximation
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»

0 0.5 1 15 2 25 3 0 0.5 1 1.5 2 2.5 3
Wavenumber Wavenumber

Polar plot of phase speed anisotropy for the first derivative approximation;
wavenumber(magnitude): 1/50, 5/50,......, 45/50, 50/50

FIG. 1. Fourier analysis of error for derivative approximation: (a) second-order central scheme; (b) stanc
Pad scheme; (c) sixth-order central scheme; (d) sixth-order tridiagonal scheme; (e) sixth-order pentadiag
scheme; (f) combined compact scheme; (g) exact differentiation.

4. CCD FOR DERIVATIVE CALCULATIONS

The previous section shows that the sixth-order 3-point CCD scheme is more accu
than any other sixth-order scheme including ordinary compact schemes. Nevertheless,
the CCD scheme is implicit and combines computation between the first-order and sec
order differences, we should computeand f” jointly and globally.

An efficient and implicit CCD solver is designed to calculate the first-order and secol
order differences. Since CCD is a 3-point scheme, the difference calculatipnedds to
usef, f’, andf” at the two neighboring points _; andx; ;1. At the two boundaries; and
Xn+1, Some specific treatment should be included in the CCD scheme.

4.1. Non-Periodic Boundaries

At both boundariesx = x; and x = xy.1, we propose a fourth-order one-sided CCD
scheme instead of the two-sided scheme to keep 3-point structure,

82 f 1
<&>1 + o (&)2+ﬁlh (m)z = E(a]_ f1+ b]_ f2+C1 fg) (41)
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h <m> + 2h< ) ,32( ) = ﬁ(azf1+b2f2+C2f3) (42)

8x? 85X
<&) N4l “ <&) —fih (sz) = _H(alfNJrl-i-bl fn+cfano)  (4.3)

82 f 82f 8f 1
hi 5z h B o) = Z@f f fn- 4.4

where

o =2, ﬂ]_:—l, a1=—7/2, b1=4, C1=—1/2,
oy =5, ,32=—6, a =09, b2=—12, C, =3.

At the boundaries, the first-order difference, represented by (4.1) and (4.3), has a trunc:
error of—é—ff‘f’)h“. The second-order difference, represented by (4.2) and (4.4), ha:
truncation error of—g‘ f®h* The accuracy at both boundaries can be further improved
fifth or sixth order.

The global CCD system, consisting of (4.1) and (4.2) ifer1, (2.7) and (2.8) for
i=234,...,N,and (4.3) and (4.4) for=N +1, is a well-posed system since it has
2(N +1) equations with 2N + 1) unknowns:(8f/8x)i, (82f/6x?);,i =1,2,3,..., N
N +1. We may write the &N + 1) equations (4.1)—(4.4), (2.7), and (2.8) into a more
general form (global CCD system),

j ﬁ) i (ﬁ) j (ﬁ) i (52_'“)
ad (5)( i—1 Ta e 8x /i Ao 8X /i1 @ 8x2 /4
: 52 f 52 f ;
e ( (SXZ) SNIE) ( ) —¢. j=12 (4.5)
+1

with
al()=bl()=al,,3=b,,3=0, j=12 (4.6)

representing the four boundary equations (4.1)—(4.4). Hetel corresponds to the first-
order derivative computation (2.7), arjd= 2 corresponds to the second-order derivative
computation (2.8). The two variablgsands? are source terms.

The AN + 1) x 2(N + 1) coefficient matrix of (4.5) has a twin-tridiagonal structure
and can be directly solved by two steps: twin-forward elimination and twin-backwa
substitution (see Appendix 3).

4.2. Periodic Boundaries

For periodic boundaries, we have
fo=1fn, fi="fnp, fo=1N, fi=1, fo=1 /=11 4.7)

Thus, the global CCD system, consisting of (2.7) and (2.8) fed, 2, 3, ..., N, is well-
posed since it has N equations with Rl unknowns: (§f/6x);, (6% f/8x?)i,i =1, 2,
3, ..., N. The coefficient matrix and related algorithm are listed in Appendix 4.
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5. CCD FOR SOLVING FINITE DIFFERENCE EQUATIONS (FDE)

Any PDE discretized by the CCD scheme (called here the CCD FDE) can only be sol
globally since the CCD scheme is implicit. Unlike any other schemes, the CCD FDE sol
requires the satisfaction of the FDE not only on the interior points, but also on the bound
nodes. Benefits of such a treatment are to decrease the truncation errors near the boun
as well as to increase the global accuracy. Here, we propose a triple-tridiagonal solve
solving CCD FDE.

5.1. Nonperiodic Boundaries

Consider a one-dimensional differential equation,

df d2f .
al(X)& + az(X)W +ax)f(@i)=s(x), 0<x=<L, (5.1)

with general boundary conditions
di(X)F'X) +do(X)f(X) =c(x) atx=0;x=1L, (5.2)

which is the Dirichlet boundary condition whelg= 1, d; = 0 and the Neumann boundary
condition wherdy =0, d; = 1.
The corresponding FDE can be written as

2
ar(i) (ﬁ> + ax(i) (5 f)_ +a(i)fi=s, i=12...,N+1, (5.3)

X W,

and the boundary conditions become

sf sf
d [ — difi=d, d[— di fye1 =C'. 5.4
1(8x>1+ bfi=C¢C 1 { 5% N+l+ b fng1=C (5.4)

Notice that we applied the FDE (5.3) not only to the interior points but also to the tv
boundary pointsX; andxy1). At each interior grid nodé (2 < i < N) we have three
equations [(5.3), (2.7), and (2.8)] with three unknown varialfless f /8x);, (82 f/6x2);.
However, we have only two equations [(5.3) and (5.4)] at both boundaries but th
unknowns: fi, (§f/8x)1, (82f/6x?), for the left boundary, andfy,1, (8f/8X)n1,
(82 f/6x?)n41 for the right boundary. To close the system we need an extra conditi
for both the left and right boundaries.

The additional boundary conditions are obtained by constructing a new fifth-order pc
nomial,

P(X) = Po+ Pix + Pox? + Pax®+ Pyx* 4 Psx°. (5.5)
For the left boundary, the six coefficientsBfx) can be obtained by

P(Xl) = f]_, P(Xz) = f2, P(Xg) = f3, P/(Xl) = f,, P,(Xz) = f2,, P”(Xz) = fz//
(5.6)



380 CHU AND FAN

The additional left boundary condition with fifth-order accuracy is then (Appendix 5)

St st 82 f 52 f 1
14 — 16( — 2h{ — | —4h|( — —(31f; — 32f f3)=0 (6.7
<6x>1+ (8x>2+ <8x2>1 (6x2)2+h( 1732k H =0 (57)

and the additional right boundary condition with fifth-order accuracy is written as

2 2
14(”) +16(‘”) - Zh(“) +4h<“)
8X/ N1 8X /N 8% ) N1 8% )y
1
- H(31fN+1—32fN + fno1) =0. (5.8)
Thus, we establish three equations for all grid points (interior and boundary) with tht

unknownsf;, (§f/8x)i, (82f/6x?);,i =1,2,..., N+ 1. We may write the @ + 1) equa-
tions (2.7), (2.8), (5.3), (5.4), (5.7), (5.8) into a more general form (global CCD FD

system),
] ot J sf J sf j 8t j 8t
aﬂ)(w i11+a1(2) 8Xi+a($ 5xiﬂ+b”D 7 ill+b,(2) ).
i 52 f i : ) :
+b/(3) (—2) + Wfica+d @fi+¢/ @ fia=¢, (5.9)
8X% )i

wherei =1,2,3,..., N+ 1landj =1, 2, 3. The superscriptindicates different equations
used at each grid poinj:= 1 corresponds to FDE (5.3) = 2 corresponds to the first-order
derivative calculation (2.7), and= 3 corresponds to the second-order derivative calculatio
(2.8). For all the interior and boundary points, the coefficients of (5.9) satisfy

a'()=3a')=b'D=b@B=c1)=c@d =0 (5.10)
For the two boundaries, the coefficients of (5.9) satisfy
al(=b@=c@=o0,
al ,(3®=bl,,3=c\,,(3=0 j=123 (5.11)

Thus, the coefficient matrix of (5.9) indicates a triple-tridiagonal structure and c
be solved in two steps: triple-forward elimination and triple-backward substitutic
(Appendix 6).

5.2. Periodic Boundaries

For periodic boundaries (4.9), the global CCD system (5.9) is well-posed since ihhas
equations with 8l unknowns:f;, (8f/8x);, (6% f/8x?);,i =1,2,3,..., N. The coefficient
matrix and the related algorithm are listed in Appendix 7.

6. EXAMPLES

The CCD scheme proposed here is a three-point scheme with sixth-order accuracy. |
ally a three-point scheme (e.g., central difference scheme) has only second-order acct
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Two examples are used in this section to show the advantage of using this new th
point scheme. Comparison is made between the CCD scheme and the second-order ¢
difference (SCD) scheme on: (a) truncation error, (b) horizontal resolution, and (c) C
time.

6.1. One-Dimensional Convection—Diffusion Equation

Consider a one-dimensional convection—diffusion equation,

dyr d?y
200y +b(x) = — ()57 =d(X)., 0<x=<m, (6.1)
with the boundary conditions
¥(0)=0, y(m)=0. (6.2)

If the coefficient functions in (6.1) are taken as
ax)=1, bx)=1, cx)=1, d(xX)=cosx+2sinx, 0<Xx <, (6.3)
Eq. (6.1) has an analytical solution,
Y@ (x) = sin(x). (6.4)
We solved (6.1) numerically with both CCD and SCD schemes under various horizor
resolutions, and we recorded the CPU time (a SUN Sparc-20 was used) for each
Comparing the numerical results with the analytic solution (6.4), we obtain the truncat
errors of the two schemes for the given resolution (represented by number of cells).

define an averaged relative error (grby

erny = S [ - v |axay
L=
& > Wi jlAxAyY

(6.5)

Thus, we have a data set consisting of truncation error, CPU time, and cell number for
two schemes.

The relationship between the cell numbaf)(@nd erg, (Fig. 2a) for the CCD scheme
(solid curve) and the SCD scheme (dashed curve) shows that for the sapthecell
number would be much smaller in the CCD scheme than in the SCD scheme. In o
words, we may use a much coarser resolution for the CCD scheme than for the S
scheme if the same accuracy is required. For example, the CCD scheme needs on
cells when ey, is around 038 x 10~'. However, for the same accuracy, the SCD schem
requires 9400 cells (see Table 2).

The relationship between the CPU time and the averaged relative error (Fig. 2b) for
CCD scheme (solid curve) and the SCD scheme (dashed curve) shows that for the ¢
err,, the CPU time is much shorter in the CCD scheme than in the SCD scheme.

Such striking features can also be observed in Table 2. When the relative truncation el
are on the order of.@ x 108, the SCD scheme needs 3600 grid cells; however, the CC
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FIG.2. Comparison between the CCD and SCD schemes in one-dimensional convection—diffusion equa
(a) cell number versus average error; (b) CPU time versus average error. Here solid curves denote the CCD s
and the dashed curves represent the SCD scheme.

scheme requires only 14 grid cells. The CPU time is also more than an order of magnit
smaller using the CCD scheni@28 x 102 s) than using the SCD schem@32x 101 s).
The ratio of CPU between using SCD and CCD scherR®s3,(called the CPU ratio here,
is around 24.2 when the truncation errors are on the orde3@f4 10~".

6.2. Stommel Ocean Model

Stommel [23] designed an ocean model to explain the westward intensification of wi
driven ocean currents. Consider a rectangular ocean with the origin of a Cartesian coc
nate system at the southwest corner (Fig. 3). Xtamdy axes point eastward and north-
ward, respectively. The boundaries of the ocean axe=a0, A andy =0, b. The ocean is
considered as a homogeneous and incompressible layer of constanDdepin at rest.
When currents occur as in the real ocean, the depth differs Bawerywhere by a small



3-POINT CCD SCHEME 383

TABLE 2
Comparison between the CCD and SCD Schemes in One-Dimensional
Convection-Diffusion Equation

Error range Features CCD SCD Ra

0.36~0.83 x 10°* Cell number 7 200
Average error (B649x 1074 0.8292x 104 1.22
CPU time(s) 0.0015 0.001833

0.27~0.35x 10°° Cell number 10 1000
Average error (R734x 10°° 0.343x 10°° 4.42
CPU time(s) 0.002 0.008833

0.23~0.26 x 10°® Cell number 14 3600
Average error (2395x 10°¢ 0.2577x 10°® 11.3
CPU time(s) 0.002833 0.032

0.37~0.38 x 1077 Cell number 18 9400
Average error B747x 1077 0.3779x 1077 24.2
CPU time(s) 0.0035 0.08483

perturbation. Due to the incompressibility, a streamfunctfois defined by

_

v= ,
X

whereu andv are thex andy components of the velocity vector.
The surface wind stress is taken a$ cogry/b). The component frictional forces are

taken as— Ruand — Rv, whereR is the frictional coefficient. The Coriolis parameteis

also introduced. In general it is a functionpfThe latitudinal variation off, 8 =d f/dy,

is called thes-effect in the ocean dynamics. Under these conditions Stommel derived

equation for the streamfunctiaf,

92 32 BN e
— 4+ — |Vt a—=— vy, 6.6
(8x2+ay2> +aax ysm(by) (6.6)

[¢]

FIG. 3. Ocean basin dimensions and the coordinate system.
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with the boundary conditions

VO, y)=V(,y) =¥ (X, 0 =v(x,b)=0. (6.7)
Here, the two parametessandy are defined by
_bs_Fm
TR TRy
The analytical solution of (6.6) with the boundary conditions (6.7) is given by
b\? (= « Bx
W=—y(—]) sin(LY (pe™+qe®*—1), (6.8)
b
where
B + o? + o a? 4 72
2 4 b
(6.9)
(1-€eB) /(eM —€ePY), gq=1-p.

The physical parameters are selected as [23]

A=10m, b=27rx10°m, D=200m
F=03x10"m?s2 R=06x103ms

The parametep is taken as 0 for the case without teeffect case, and it is taken as
10~ m~1s~1 for the case with thg-effect case.

6.2.1. Computational Algorithm

Use a uniform grid, G=x; <Xp < -+- <Xy, <Xn41=4, and C=y1<yo< -+ <
YN, < YN, +1=Db with grid spacingAx =X 11 — X =A/Nx and Ay =y;,1—Y; =b/Ny.
For simplicity and no loss of generality, we assume that the cell number in bottetiny
directions are the samdl, = Ny = N. The alternating direction implicit (ADI) method is
used for solving FDE. The iteratidnto k 4+ 1 can be separated into two parts: (a) iteratior

along thex-axis to obtain “intermediate variable®;’;, (§¥/5x);;, and (82w /8x?)¢ i

<82\p)* + <W> O W =8 (WK + U )+1(52\y>

o ol 22) 2 g —s k oy - (2%

8%2 ) | ox )i Ay2 W T Ay VLR TS g \sy2 )
1 /82w\* 9 [[sw\* AN

s ()
8\ 38y /ij—1 8AY \\dy /i 8Y /i1

B () (G- ()

16 i1 8X /i 4] 8x Ji; 16 5x2 Y 8x2 i1

15 1
'8 2AX

9 SW\* SW\* 132\p*+52\y*
8AX 8X /i1 8X /i1 8 5x2 L] NG 1]

2u\* . .
toz) 3 (‘I’u+11 20 + W, )=0 (6.12)
1]

5o Wi — Wiy =0 (6.11)
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k+1

and (b) iteration along thg-axis to obtain variables at the next iteratibr-1, Wy,

(SW/85x) and (82w /sx2)k+1

ij ij1

2w\t 6 it SONT 3 g gyl 52w\ *
- — P Tt =5 —a | — _— ; . ; . | —
8y2 )., Ax2h S 8 /i Axz IR TS g ax2 )

1 /52w 9 [ (8w’ LAY
1/82w 9 [ [s¥ (¥ 6.13
T3 <8X2)i—1,j +8AX<(5X)i—Lj <5X>i+1’j> o
1 (W)kﬂ +<8‘I’)k+l +<8‘I’>k+1 ﬂ <62\1’)k+1 (82\1/>k+1
16 8Y )i 8Y Jij-1 8y /i | 16 8y? ij+1 8y? ij—1

15 1

~ B 3y (Wi W) =0 (6.1
9 SW k+1 SW k+1 1 52w k+1 52w K+1
9 [(Y (v 15w L (v
oAy <<8y>”“ <5y)i~il> 8 <(5y2>i,j+1 <5y2)i,j1)
52\11 k+1 1 - - "
i <W)i,j — 35y (Wi — 20+ W) =0 (6.15)

Such an iterative process stops when the correction at the itekatidn

> Wi - wkj|axay

corrtktD —
> [l [axay

(6.16)

is smaller than 1¢F.

6.2.2. Casel: Without theg-Effect

The conditiong =0 leads tax =0 in (6.6). The analytical solution of (6.6) becomes

b2 n 1—e 5% est—1 .,
=y(=) sin(= Y - Sl 17
Y y(n) S'”(by)( S T e ) ©17

which is depicted in Fig. 4.

We solved (6.6) numerically with both CCD and SCD schemes under various horizor
resolutions, and we recorded the CPU time (a SUN Sparc-20 was used) for each
Comparing the numerical results with the analytic solution (6.17), we obtain the truncat
errors of the two schemes for various resolutions (represented by the number of cells)

The relationship betweeN and erg, (Fig. 5a) for the CCD scheme (solid curve) and
the SCD scheme (dashed curve) shows that for the sametercell number ) would
be much smaller for the CCD scheme than for the SCD scheme. This is to say that we
use a much coarser resolution for the CCD scheme than for the SCD scheme for the ¢
accuracy. The relationship between the CPU time and the averaged relative error (Fig
for the CCD scheme (solid curve) and the SCD scheme (dashed curve) shows that fo
same ery, the CPU time is much shorter in the CCD scheme than in the SCD scheme.

Table 3 lists ery, cell number, CPU time for the two schemes, and CPU rd®ia)(
When the relative truncation errors are on the order®8& 10~4, the SCD scheme needs
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FIG. 5. Performance of the CCD and SCD schemes in Stommel ocean modek(Bgtéa) average error
versus cell number in the SCD scheme; (b) average error versus cell number in the CCD scheme; (c) CPU
versus cell number in the SCD scheme; (d) CPU time versus cell number in the CCD scheme.



3-POINT CCD SCHEME

TABLE 3
Comparison between the CCD and SCD Schemes in Stommel Ocean Model (beta = 0)

387

Error range Features CCD SCD Ra

0.86~0.9 x 10 Cell number 9% 9 50x 50
Average error B66x 107* 0.894x 1074 27.0
CPU time (s) 3.10 83.8

0.76~0.77 x 107* Cell number 10x 10 100x 100
Average error 766 x 104 0.761x 104 271.7
CPU time (s) 46 1250

0.68~0.69 x 1074 Cell number 14x 14 150x 150
Average error ®85x 1074 0.68 x 10 356.8
CPU time (s) 16.2 5780

22,500 grid cells; however, the CCD scheme requires only 196 grid cells. The CPU r:
between using SCD and CCD schemBgy(is 356.8.

6.2.3. Case2: With theg-Effect

For this caseg = 1071 m~s!is used. The analytical streamfunctiaf", is plotted
in Fig. 6. We solved (6.6) numerically with both CCD and SCD schemes under varic
horizontal resolutions, and we recorded the CPU time (a SUN Sparc-20 was used)
each run. Comparing the numerical results with the analytic solution (6.8), we obtain
truncation errors of the two schemes for various given resolutions (represented by
number of cells).

The relationship betweeN and erg, (Fig. 7a) for the CCD scheme (solid curve) and the
SCD scheme (dashed curve) shows that for the samgtleer cell number ) would be

y (m)

X (m})

FIG. 6. Streamfunction (ifis) obtained from Stommel ocean model with betb0'* m=tst,
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FIG. 7. Performance of the CCD and SCD schemes in Stommel ocean modek=(betd m~*s?):
(a) average error versus cell number in the SCD scheme; (b) average error versus cell number in the CCD sc
(c) CPU time versus cell number in the SCD scheme; (d) CPU time versus cell number in the CCD scheme.

much smaller in the CCD scheme than in the SCD scheme. The relationship betweer
CPU time and the averaged relative error (Fig. 7b) for the CCD scheme (solid curve) :
the SCD scheme (dashed curve) shows that for the sag)éreCPU time is much shorter
in the CCD scheme than in the SCD scheme.

Table 4 lists ery,, cell number, CPU time, andafor the two schemes. When the relative
truncation errors are on the order 078 x 10~%, the SCD scheme needs 22,500 grid cells
however, the CCD scheme requires only 729 grid cells. The CPU ratio between using S
and CCD schemedRa) is 254.87.

7. CONCLUSIONS

(1) From this study, it can be stated that the three-point sixth-order CCD scheme
promising highly accurate method for both derivative computation and FDE solutions. T
advantage of this scheme is the existence of a global sixth-order polynomial which not c
satisfies the FDE at all the grid nodes including boundary points but also the bounc
conditions.
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TABLE 4
Comparison between the CCD and SCD Schemes in Stommel
Ocean Model (beta = 10 m~—1s™?)

Error range Features CCD SCD Ra

0.20-0.24x 1072 Cell number 14x 14 50x 50
Average error @36x 102 0.204x 1072 1.98
CPU time (s) 8.12 16.1

0.22-0.24x1073 Cell number 19 19 150x 150
Average error 238x 107 0.225x 107 78.79
CPU time (s) 14.9 1174

0.73-0.74x107* Cell number 27 27 250x 250
Average error ¥3x 10* 0.735x 104 254.87
CPU time (s) 33.9 8640

(2) Fourier analysis shows that the CCD scheme has the least error among other ¢
order schemes, including the normal compact scheme. Also, the CCD scheme ha:s
smallest truncation error among various sixth-order schemes. The truncation error of
first derivative using the CCD scheme is about 41.2 times smaller than using the sixth-o
central scheme, 4.6 times smaller than using the sixth-order tridiagonal (compact) sche
and 6.0 times smaller than using the sixth-order pentadiagonal (compact) scheme.
truncation error of the second derivative using the CCD scheme is about 36 times smaller
using the sixth-order central scheme, 8.4 times smaller than using the sixth-order tridiag
scheme (compact), and 13.8 times smaller than using the sixth-order pentadiagonal scl
(compact). Comparing the CCD scheme with the second-order central difference (St
scheme (most commonly used in ocean models), the truncation errors for both first
second derivatives are more than four orders of magnitude smaller.

(3) For periodic boundaries, the CCD scheme has sixth-order accuracy at all grid po
including boundary nodes. For nonperiodic boundaries, the CCD scheme has sixth-c
accuracy at all interior grid points, fourth-order accuracy in the derivative computation, &
fifth-order accuracy in the FDE solutions at the boundary nodes.

(4) Both twin-tridiagonal and triple-tridiagonal techniques are proposed for the CC
scheme for calculating derivatives and solving FDEs.

(5) Two examples (the convection—diffusion model and the Stommel ocean model) st
striking results (great reduction in truncation error and CPU time), which may lead tc
wide application of the CCD scheme in computational geophysics.

(6) Future studies include applying the CCD scheme to nonuniform and/or stagge
grid systems, as well as designing even higher order schemes such as an eighth-order
scheme.

APPENDICES

Appendix 1: Global Hermitian Polynomial

The first-order and second-order CCD differences are obtained implicitly and globe
by the two joint equations (2.7) and (2.8). A twin-tridiagonal technique was developed
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computef’ and f” at all grid points. As soon as the global first and second differenc
are obtained, the higher ordde=£ 3, 4, 5, 6) differences can easily be calculated locally
with (2.5).

Since the CCD scheme is solved globally, the neighboring local Hermitian polynomi
should satisfy

, , 5f
HI() = H_1(X) =H,(x) = <_x)

" " 4 82f
H'(x) = HZ () =H/;(x) = <37>

A global polynomialHg(x) can be defined by

Hg(x) = Ha(x), a=X; <X < Xo,

Hg(X) = oi Hi(X) + (1 —wi)Hiz1(X), X <X <X41(1=23,...,n=1),

Hg(X) = Hnh(X), Xn < X < Xny1 =D,

wherew; (i =2, 3,...,n—1) are the local weighting factors. Notice that no matter wha
value ofw; is, the global polynomiaHg(x) always has continuous first- and second-orde
derivatives at the poing;,

Hg(x) = Hg(xi —0) = Hy(xi +0)
Hg (x1) = H (x —0) = Hg(%; +0).

The weighting factors are recommended to bed) < 1. If only the first-order and second-
order derivatives are computed, we may ugse- 1/2 for simplicity. It is also possible to
optimize w; by minimizing the discontinuity properties of the high-ordkr=(3) deriva-
tives at the node points. As soon as the global polynofigl) is established, we can
calculate all the derivatives and integrate. Since the values ofo not affect the first-
order and second-order derivatives, we will not discuss here the effegt. athis pa-
per focuses only on the first-order and second-order differentiation of the second-ol
PDE.

Furthermore, a higher order (higher than sixth-order) three points CCD scheme can
be defined. See Appendix 2 for description.

Appendix 2: Eighth-Order CCD Scheme

The eighth -order CCD scheme relat&s £/, £, £ to the two neighboring points:
fiie, £ 0, f70, £ and e, £/, £, £1 and solves for f/, 7, £°. A local
Hermitian polynomiaH; (x) is defined on the closed intervad [ 1, X 1] by

’ 3) (] 5)
Hi/(xi)xz+ H; (Xi)x3 H; (Xi)x4+ H; (Xi)x5

Hi(x) = Hi(%)+ H (x)x+ o1 3 2 5

HO00) 6, HP00 7 HO 00 g
X X X
6! 7! 8!




with

Hi (i -

H. //(xI
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1) = fl 1, Hi (Xi) = fla Hi (X|+l)— f,+1, H (Xi—1) = f| 1 H (Xl+1)_ fi,-&-l

l) - f|// 1 H //(XI Jrl) - f| +1 i(s) (Xi 71) f|(3)17 H @ (X|+1) = f|_g_:|_

The nine parameters are determined by

Hi (Xi)

H/ (xi)

H/ (%)

H® (%)

Hi(4)

H® ()

H® 04)

HP ) = —

HOx) =

= fi
35 / "
- ﬁ(fi“_ ~1) = (f|+1+f| D+5 (f|+1 fi 1)__(f(3)1+f(3))
4 " 1
= ﬁ(fi+1—2fi + fis1) — (f|+1 1)+ (f + )
h ‘e 0
48(fl(+l_f )
1 / " "
= 16h3(f'+1 |—1)+16h2(f|+1+f| )~ (f|+1 fil1)

PS4 19)

72 / ,
= _F(fwl_zfi + fi71)+ (f.+1 fl ) — (f/ + 7))

4h3 4h2

3
L)

315 30 o
= 4h5 ( f|+1 fi_1) — 4h4 ( f|+1 + f. 1) + (f|+1 fi—l)
15

4h2(f(3)1+f(3))

1440 193 495
= S (faa—2fi 4 fig) - 2h5(f'+1 {0+ g (a7

45
2h3 ( fl(f)l - f(a))
2575
2h7

105, _ 3
2h4 ( f|+l

(fiqa— fi—l)2+ 2h6 (f|+1 fi_1) — (f|+1_ f" 1)
+ 1)

21060 13860 L3780,
—— e =2fi + i) + == (g = Flp) — =5~ (Fl + i)

420
8- 1),
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Thekth derivative at the grid point; is approximated by
O ~HYx), k=12....8
Therefore, the first-order derivative at grid points computed by

(f A f+ - (f,+1 f”l)+ (flf‘l+f(3))

35 1 427 g h®.
=Teon T i)+ 7t g

the second-order derivative at grid poiqtis computed by

29 5 . h
(f|+1 )——16(f )+ 8(f|f)1 f(3))
=4— h8
hz(fi+1 2fi+ fi_)+— f(10)8'.

and the third-order derivative at grid poitis computed by

! " 3
16h2(f'+1+f“1)+ (f|+1 ") — 1(f|<j’>1+f<3)>+f<3)

105 1 1357 o h°

=—g el - geoniTgr

Appendix 3: Nonperiodic CCD Calculation

Twin-forward elimination/backward substitution scheme is designed to solve global C(
system (4.5) with boundary conditions (4.6). TH&2+ 1) x 2(N + 1) coefficient matrix of
(4.5) has a twin-tridiagonal structure and can be directly solved by two steps: twin-forw:
elimination and twin-backward substitution.

A.3.1. Twin-Forward Elimination

The twin-forward technique is used to transform the twin-tridiagonal coefficient matr
into a twin-diagonal coefficient matrix by eliminating the four parametat€l), b'(1),
a?(1), b?(1) at each grid point (Fig. 8). At the left boundaiiy= 1), these four parameters
are already absent.

If the four parameters at grid nodeare eliminated, it is easy to use (4.5) to eliminate
al (1), a% (1), b, (1), b2 1 (1) at grid pointi + 1. This process continues until reaching
the right boundary. The coefficient matrix of the global CCD system becomes twin-diagor
Figure 9 shows the structure of the coefficient matrix after twin-forward elimination, whe
the shadowed area shows the eliminated elements.

A.3.2. Twin-Backward Substitution

The twin-backward substitution technique is used to obtain @Bdtts x); and(52 f /5x?);
from known (§f/8x)i;1 and (82 f/8x?); 11. After the twin-diagonal coefficient matrix has
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source
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B a'@) a'(3) @) 1) st
o a1 aj2) ay3) by(1) b2} by(3) s,
I= 2 2
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a1 ay2) ayd) by(1) bj(2) by3) s!
=
(1) &) &) b1 b2 b3 s}
| | |
| | |
| | |
a'(1) a.(2) a(3) b'(1) bl(@) bl(3) s
i=n
al(1) a2 ae) bi(1) b(2) b(3) s’
A a@ Rmg@ s,
I=n+1 2 2 2 2 2
CXDR:XC) R0 R Sar
FIG. 8. Structure of the CCD coefficient matrix for nonperiodic boundaries.
f7(x) f"(x)
source
12 3 4 11 2 3 4 e M
i a,(2) a,(3) bi(2) bl(3) 5!
- a2) a'ta) bie) 673 5
i £ a2 alo) b,2) b3 s,
£ 2l bi(z) bils) &
3 &) a2 alm) 60 bl bl s,
i= . =R
£ a2 a5 bie) bia) sl
| | |
| | I
I | |
{0 a2 aa bl(2) bl(3) s,
i=n _
£ 22 2l 0 vl v s
£ 4@ g@l s,
i=n+1 . . .
i 4 UL

FIG. 9. The twin-forward elimination of the CCD cofficient matrix for nonperiodic boundaries. HZke
denotes eliminated coefficients.
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been established, the global CCD system (4.5) becomes two equations with two unknc
at the right boundaryxy 1),
)=
— °N+1°
N+1

Solving this set of two algebraic equations, we obi@ifysx)n.1 and (82 f /8X%) 1.
The substitution procedure starts from the second right peint The first- and second-
order differences(8f/8x); and (§2f/8x?); are computed from substitutiof = N,

N-1,...,1:
, : St :
=J—-J(3)<—> —bij(3)( ) , j=12
)i 374 8X /41 i+1 :

J2) — b/ (2

2o (%) sl
Appendix 4: Periodic CCD Calculation

The structure of the periodic CCD matrix is shown in Fig. 10. Similar to nonperiod

boundaries, we construct another form of twin-forward elimination and twin-backwa

substitution procedures for periodic boundaries. Figure 11 shows the structure after the t

forward elimination procedure, where the shadowed areas mean the eliminated eleme

82 f

. Y .
J J — i =
an;1(2) <8X) et +bn;a (D) ( 52 =12

82 f

G

52f
5x2

Appendix 5: Fifth-Order Accurate Nonperiodic Boundary Conditions

Consider the left boundary with uniform gritlx = h. Let x; be the left boundary node;
let x, andxz be the first and second neighboring nodes. Expanding the dependent vari

f! X f" X
&) ) source
1.2 3 4 nj1 234 n| fem
a,2) a,(3) a(1)[by(@) by(3) by() s)
|=1 2, 2, 2 2, 2 2 2
a(2) al(3) al(n{bi2) bi(s) b1 §:
i ay1) ay@) ays) by(1) b(2) b;3) s
I= 2, 2 2
a1) a(2) as) b3 b@) b s
) al(n al(2) ale) bi(1) bi(2) bi(3) s
|=3 2 2 2 2 2 2, 2
al(n ajf2) &) b(1) bi(2) b(3) s
!
I
...................................
. anaa@ R4 R B3 Sot
i=n-1 > 2 > 2 2 2 2
e amawae o BORBRE) 8w
a,(3) a(1) a,(2)(by3) bi(1) by(2) s
i=n
a3 a1 @) bis) bi(1) bi2) s,

FIG. 10. Structure the CCD coefficient matrix for periodic boundaries.
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f(x) f7(x)
source
123 4 n|1 2 3 4 n| term
a,2) a,(3) ay(1)|by2) bifa) b(1) S|
= aj(2) ala) ay(1|bf2) bj(a) b1 s
; L e e o
£ 22 2l Zm| ) i) bl B s
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FIG.11. The twin-forward elimination of the CCD coefficient matrix for periodic boundries. Hiréenotes
eliminated coefficients.

f and its derivatives into Taylor seriesxat we have

fox) = f(x)+ Z f(k)(xz)hk +0(h)

fix) = f(x)+ Z = f<k) (x)h* 4+ O(h")

k=1

Foa) = /00) + Z 0 e+ Och)

f7(x1) = /(%) + Z f(k+2)(x )hK+ O (h®)

which lead to

14" (xg) + 16§/ (x0) + 21" (xa)h — 4" (xa)h + %(31f (x0) — 32f (@) +  (x5))

h5
= ®f<6>(x2) + 0(h®).

Therefore, the nonperiodic boundary condition

8f 8f 82 f 82 f 1
4(50), 1105w, + 2 (), - (5 et s2me oo

has fifth-order accuracy.
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Appendix 6: Nonperiodic CCD FDE Solution

The triple-forward elimination/backward substitution scheme is designed to solve glo
CCD FDE system (5.9) with boundary conditions (5.10). ThH 3-1) x 3(N + 1) coef-
ficient matrix of (5.9) has a triple-tridiagonal structure and can be directly solved by t
steps: triple-forward elimination and triple-backward substitution.

A.6.1. Triple-Forward Elimination

The triple-forward technique is used to transform the triple-tridiagonal coefficient mati
into a triple-diagonal coefficient matrix by eliminating the six paramet&¥€l), a?(1),
bl(1), b%(1), ct(1), c2(1) at each grid point (Fig. 12). At the left boundary£ 1), these six
parameters are already absent.

If the six parameters at grid nodeare eliminated, it is easy to use (5.9) to eliminate
al (D, a?,(1), b, (D), b2, (1), ¢1(1), A1) at grid pointi + 1. This process continues
until reaching the right boundary. The coefficient matrix of the global CCD FDE syste
becomes triple-diagonal. Figure 13 shows the structure of the coefficient matrix after triy
forward elimination, where the shadowed area shows the eliminated elements.

A.6.2. Triple-Backward Substitution

The triple-backward substitution technique is used to obkaits f /§x);, and(52 f /6x?);
fromknownf; 1, (§f/8X)i 11, and(8? f /6x?); 1. After the triple-diagonal coefficient matrix
has been established, the global CCD system (5.9) becomes three equations with -

b 1"
Y () f09 source
1234 neif1 2 3 4 net|1 2 3 4 net| term
a2 bi2) ci2) 5|
i=1 [ Ibf2) ci(2) 2
gRse Bibl® cacacy s
. PR e iy e e o
i=2  [Ehaiale b3 16E2)b5(3) Gdi2)ce) s
....... godeas L poseds o didage s
o o e o
i=3 anaiRal® b)) dndade s
T ama@a) ] gy dngase L S
[ 1 | |
| 1 | |
| | | 1
| I | |
B | o L b o
i=n ana2)s bﬁmb:(z)b:(ai Enciacial s
........................... awdea® L vosleee o dodedel s,
ae Bl del s
i=n+1 e b el s
AR Rge cEenerl s

FIG. 12. Structure of the CCD coefficient matrix for FDE with nonperiodic boundaries.
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source
123 4 i1 2 3 4 netf1 2 3 4 net| term
al(2) Iy(2) ci(2) 5
i=1 K@ b(2) iz s
la(=)ai(3) bi(2)bii3) clizicliEg) s
R e e i P s ) T
i=2  |[@aeds Ii2ibdie) &R cizciz s
_______ @z [@eecs o @dede s
i o : s SR oo
i=3 faiiziale) L Lol Ehcca F
ke s b L Wamdy . s
[ | I |
| | | [
I [ | [
I I | [
S R R i P e
i=n felizala Eeibi) Ecede s
N S A2 Whammlel Loty IR | @eecel s
ae bz ael sl
i=n+1 iz b2 diel s,
e e e s

FIG. 13. The triple-forward elimination of the CCD coefficient matrix for FDE with nonperiodic boundaries
Here @ denotes eliminated coefficients.

unknowns at the right boundary(, 1),

. st 4
al+1(2) (&) - +b51(2) (
+

82f
NG

) + C{\|+1(2) fnii= S;j\1+1, i=123.
N+1

Solving this set of three algebraic equations, we obitgif, (8f/8X)n41and(82 f /8X?) N1
The substitution procedure starts from the second right paipt The dependent variable

and its first- and second-order differences at any grid poeintgre computed from the

following substitution (=N, N -1, ..., 1):

. St ) 82f .
al (2 (_8x>i +b'(2) (—sz)i +d @t
o g 5f) ol <52f> P
=5 a’(3)<5x - b (3) 5x2 ), Gfina, =123

Appendix 7: Periodic CCD FDE Solution

The structure of the periodic CCD PDE matrix is shown in Fig. 14. We can use a simi

triple-forward elimination and triple-backward substitution procedures. Figure 15 shows
structure after the triple-forward elimination procedure, where the shadowed areas
the eliminated elements.
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H ”
f’(x) f”(x) f source
1234 nl1 234 nl1 23 4 n| term
a:(2) bl2) ci2) s|
i=1  Rede (13 Binci@)cie) & &
ja2)a33) a(1pi(2)bi(3) bY1fc2)ckE) gl s
I o B R ey NSRS o
=2 [@maieaie) b5(1)E22)053) cdce) s;
AR L b Gngecs s
L RS Sy R o RN R
i= anai2)ale) binbi2)bs(a) dndade s
AT amaleate) | BobgRbe ] SME@ES S
| 1 | |
| | 1 |
| | | I
| 1 | i
B R K R ey L e Qo
i=n-1 @ BAENE) dndade sk,
EXER RN Rk dndade s,
e R aol A R el
i=n [&@ anaeloe) el dmeiel <
253 a1)aeioia) [N ) emdel s
FIG. 14. Structure of the CCD coefficient matrix for FDE with periodic boundary.
1 ”
() 70 f(x) source
123 4 nl1 23 4 nl1 2 3 4 n| term
)2} Ibii2) ci(2) 5
i=1 i@l aibieibiE) piicieicia) dnl s
a(2)al(3) an el Bi]ez s e F
I . T s iR S A fs
i=2 Jadi2)al3) aﬁwgabﬁz]tﬂa: gnEdeide R
g]a:[zna:esa a1 e L) b8 i) ca) il s
L fEbEdR) B . R iR o S o
i=3 E G (RG] an] bl o) Ehdeide duy s
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1 |
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FIG. 15. The triple-forward elimination of the CCD coefficient matrix for FDE with periodic boundaries.
Here @ denotes eliminated coefficients.
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