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a b s t r a c t

In the empirical mode decomposition (EMD) for the Hilbert–Huang transform (HHT), a
nonlinear and non-stationary signal is adaptively decomposed by an HHT into a series
of intrinsic mode functions (IMFs) with the lowest one as the trend. At each step of the
EMD, the low-frequency component is mainly determined by the average of the upper
envelope (consisting of local maxima) and the lower envelope (consisting of local minima).
The high-frequency component is the deviation of the signal relative to the low-frequency
component. The fact that no local maximum and minimum can be determined at the two
end-points leads to detrend uncertainty, and in turn causes uncertainty in the HHT. To
reduce such uncertainty, Hermitian polynomials are used to obtain the upper and lower
envelopes with the first derivatives at the two end-points (qL, qR) as parameters, which are
optimally determined on the base of minimum temporal variability of the low-frequency
component in the each step of the decomposition. This well-posedmathematical system is
called the Derivative-optimized EMD (DEMD). With the DEMD, the end effect, and detrend
uncertainty are drastically reduced, and scales are separated naturally without any a priori
subjective selection criterion.

Published by Elsevier B.V.

1. Introduction

Analysis of non-stationary time series in terms of nonlinear dynamics has drawn attention in many disciplines. Tradi-
tional methods, based on linear and stationary assumptions, are not suitable for analyzing nonlinear and non-stationary
data. The Hilbert–Huang transform (HHT) with adaptive empirical mode decomposition (EMD) [1] has been developed to
analyze nonlinear/non-stationary data. Being adaptivemeans that the definition of basis functions has to be data dependent,
not a priori defined (e.g., sinusoidal functions in linear/stationary time series analysis).

EMD decomposes a nonlinear and non-stationary signal into several intrinsic mode functions (IMFs) with the lowest
varying IMF as the trend. Instantaneous frequency and then the time–frequency–energy distribution characteristics can be
obtained by the HHT. An IMF is a function that must satisfy two conditions according to the EMD algorithm originally de-
veloped: (a) the difference between the number of local extrema and the number of zero-crossings must be zero or one;
(b) the running mean value of the envelope defined by the local maxima and the envelope defined by the local minima is
zero. The average of the upper and lower envelopes is treated as the low-frequency component. The deviation of original
signal versus the low-frequency component is regarded as the high-frequency component. Thus, accurate determination of
two envelopes (i.e., one for local maxima and the other for local minima) is crucial for the success of EMD in nonlinear/non-
stationary data analysis. For a time series, the interior extrema are easily identified. However, these extrema are not enough
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to determine two well-behaved fitting spline envelopes near the two end-points since no local maximum/minimum can be
identified there.

The easiest way is to treat the two end-points as ‘‘frozen’’ points, i.e. the two end-points are on both the maximum
envelope and the minimum envelope. Such a treatment makes the trend varying from the first end-point to the last end-
point. Another practice is to extend the data points beyond the end-points so as to carry out the spline envelope fitting over
and even beyond the existing data range; examples are the wave extension method [1], the local straight-line extension
method [2], mirror or anti-mirror extension [3], self-similarity [4], overlapping sliding windows [5], and rejecting segments
close to the end-points [2]. While methods for extending data vary, the essence of these methods is to predict data beyond
the end-points, a dauntingly difficult procedure even for linear and stationary processes. Since the original signal only has
the extrema in the data series, extending points beyond the two end-points is not realistic. Therefore the data extension
methods will not solve the problem no matter how much effort has been spent. Besides, the end error may propagate from
the ends to the interior of the data span, which would cause severe deterioration of the IMFs obtained.

A more recent approach to deal with uncertainties in EMD is to use some postprocessing that allows the sum of all IMFs
to be different from the original signal. For instance, the signal is approximately represented by a linear combination of
original IMFs with weighting parameters, which are determined using the least square error relative to the original signal.
This algorithm is called optimal EMD (OEMD) for one-dimensionalweights and bidirectional optimal EMD (BOEMD) for two-
dimensional weight matrix so as to facilitate approximation by window-based filtering [6]. However, OEMD and BOEMD
are limited by their block-based nature, and use of adaptive filters was proposed [7]. The major weakness of this type of
approach is the inequality between the sum of all IMFs and the original signal.

Questions arise: Can the upper and lower envelopes be determined in a systematic way? Can the local maximum and
minimumbeobjectively and optimally determined at the two end-pointswithout using either extrapolation or interpolation
(with an extra point beyond the end-point)? Can the sum of all IMFs always equal the original signal? These problems
will be solved in this study through using compact difference concepts [8–10] with Hermitian polynomials. The upper and
lower envelopes are obtained with the first derivatives at the two end-points (qL, qR) as parameters, which are optimally
determinedon thebase ofminimumtemporal variability of the low-frequency component in each step of the decomposition.
This method, called derivative-optimized EMD (DEMD), shows evident improvement in the EMD analysis.

The rest of the paper is organized as follows. Section 2 introduces the classical EMD for the Hilbert–Huang transform
(HHT). Section 3 describes the construction of upper and lower envelopes using Hermitian polynomials with the first
derivatives at the two end-points, qL (at t1) and qR (at tN ), as tuning parameters. Section 4 depicts optimal determination
of (qL, qR) on the base of minimum temporal variability for the low-frequency component. Section 5 shows the evaluation.
Section 6 presents the conclusions.

2. HHT

The HHT has two steps. First, the process of empirical mode decomposition (EMD) reduces the time series under
analysis into components, known as intrinsic mode functions (IMFs). Let a real signal x(t) be defined in the time interval
[t1, tN ] with two end-points x1 = x(t1) and xN = x(tN). The EMD method is depicted as follows. First, the local minima
(x(min)

j , j = 1, 2, . . . , J) and local maxima (x(max)
k , k = 1, 2, . . . , K) of the signal x(ti) are identified with J = K or differing

at most by 1. Second, interpolation/extrapolation methods are used to determine the upper and lower envelopes [u(t), l(t)]
for t ∈ [t1, tN ]. The mean of the two envelopes is calculated:

m(t) = [u(t)+ l(t)]/2. (1)
The mean is subtracted from the signal, providing the high-frequency component (Fig. 1),

h(t) = x(t)− m(t), (2)
which is then checked to see if it satisfies the above two conditions to be an IMF. If yes, it is considered as the first IMF, and
denoted

c(t) = h(t). (3)
It is subtracted from the original signal, and the first residual,

r(t) = x(t)− c(t), (4)
is taken as the new series to continue the decomposition. If h(t) is not an IMF, a procedure called a ‘‘sifting process’’ is
applied as many times as necessary to obtain an IMF. In the sifting process, h(t) is considered as the new data, and the same
procedure applies. The IMFs are orthogonal (or almost orthogonal) functions (mutually uncorrelated). This method does not
require stationarity and linearity of the data and is especially suitable for non-stationary and nonlinear time series analysis.
By construction, the number of extrema decreases when going from one residual to the next; the above algorithm ends
when the residual has only one extremum, or is constant, and in this case no more IMFs can be extracted; the complete
decomposition is then achieved in a finite number of steps. The signal x(t) is finally written as

x(t) =

P
p=1

cp(t)+ rP(t), (5)
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Fig. 1. Procedure of traditional EMD.

where cp(t) is the pth IMF and rP(t) is the residual, with no any oscillation (i.e., non-existence of both maximum and
minimum envelopes), which is the trend.

The Hilbert transform is conducted on each IMF cp(t),

zp(t) = cp(t)+ iĉp(t), (6)

where i ≡
√

−1 and ĉp(t) is the Hilbert transform of cp(t), represented by

ĉp(t) =
1
π
CP


+∞

−∞

cp(s)
t − s

ds, (7)

where CP is the Cauchy principal value of the integral. The complex variable zp(t) in (6) can be rewritten as

zp(t) = cp(t)+ iĉp(t) = ap(t) exp[iθp(t)], (8)

to obtain the instantaneous amplitude ap(t) and the instantaneous phase function θp(t), and the instantaneous frequency
is calculated by

ωp(t) = dθp(t)/dt. (9)

Recently, it has been discovered that the Hilbert transform has a severe limitation on the data for instantaneous frequency
computation. Different methods such as direct quadrature and the normalized Hilbert transform have been discussed in
detail; see [10,11].

The Hilbert transform conducted on each IMF, cp(t), is called the Hilbert–Huang transform (HHT) [1]. The key issue in the
EMD method for the HHT is the accurate determination of the upper and lower envelopes {up(t), lp(t)}. It is noted that the
values of {up(t), lp(t)} are only given at the localmaxima (x(max)

k , k = 1, 2, . . . , K), and localminima (x(min)
j , j = 1, 2, . . . , J),

and are unknown at the other time instances, especially at the two end-points t1 and tN (Fig. 1). This causes uncertain in
determining cp(t)with two long-recognized difficulties: end-point effect, and detrend uncertainty.

3. Hermitian polynomials for upper and lower envelopes

Let the signal be discretized as {x(ti), i = 1, 2, . . . ,N}, and let (τ1, τ2, . . . , τM) represent occurrence time instances for
either localmaxima (tmax

1 , tmax
2 , . . . , tmax

K ), or localminima (tmin
1 , tmin

2 , . . . , tmin
J ), as shown in Fig. 2. Let em represent the local

maximum (or minimum) with qm its first derivative at time instance τm (m = 1, 2, . . . ,M), and let∆m = τm+1 − τm, ξ =

(t − τm)/∆m. A cubic spline

p3 (ξ) = φ1 (ξ) em + φ2 (ξ) em+1 + φ3 (ξ) qm∆m + φ4 (ξ) qm+1∆m, (10)

is used to fill the gap between two neighboring local maxima (minima) between tam and tam+1 with given values of em and qm.
This spline has the following features:

p3 (0) = em, p3(1) = em+1, dp3 (0) /dt = qm, dp3 (1) /dt = qm+1. (11)
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Fig. 2. Uncertain upper (or lower) envelope at the two end-points.

Here, φ1(ξ), φ2(ξ), φ3(ξ), φ4(ξ) are defined by [5]

φ1(ξ) = 1 − 3ξ 2 + 2ξ 3, φ2(ξ) = 3ξ 2 − 2ξ 3,

φ3(ξ) = ξ − 2ξ 2 + ξ 3, φ4(ξ) = ξ 3 − ξ 2. (12)

Let the second derivative of e(t) be continuous at each local maximum (or minimum) time instance, τm (m = 2, 3, . . . ,
M − 1),

d2e/dt2|(τm−0) = d2e/dt2|(τm+0). (13)

Substitution of (10) into (13) leads to the compact difference schemes [8,9],

∆mqm−1 + 2 (∆m−1 +∆m) qm +∆m−1qm+1 = 3

∆m

∆em−1

∆m−1
+∆m−1

∆em
∆m


, ∆em = em+1 − em (14)

wherem = 2, 3, . . . ,M − 1. Since the value of e(t) is unknown at the two end-points (Fig. 2), the condition (14) cannot be
satisfied at the first and last local maximum (minimum) time instances τ1 and τM .

The values and derivatives of the local maximum (or minimum) at the two end-points, [e(t1), e(tN), e′(t1), e′(tN)], are
unknown. To overcome this, only the first derivative at t1 (qL) along with both the value and the first derivative at τ1(e1, q1)
are used to fill the gap between t1 and τ1 with a quadratic spline,

p2(ζ ) = ψ1(ζ )e1 + ψ2(ζ )qL∆L + ψ3(ζ )q1∆L, ζ = (t − t1)/∆L, ∆L = τ1 − t1, (15)

where

ψ1(ζ ) = 1, ψ2(ζ ) =

−1 + 2ζ − ζ 2 /2, ψ3(ζ ) =


ζ 2

− 1

/2. (16)

This spline has the following features:

p2(1) = e1, dp2(0)/dt = qL, dp2(1)/dt = q1. (17)

Continuity of the second derivative (13) at the first local maximum (or minimum) time instance (t1) from (t1 − 0) [using
the quadratic spline (15)] to (t1 + 0) [using the cubic spline (10)] leads to

−∆1qL + (4∆L +∆1) q1 + 2∆Lq2 = 6∆L
e2 − e1
∆1

. (18)

A similar algebraic equation is obtained for the end-point tN :

2∆RqM−1 + (4∆R +∆M−1) qM −∆M−1qR = 6∆R
eM − eM−1

∆M−1
, ∆R = tN − τM , (19)

where qR is the first derivative at the right end-point. Fig. 2 shows the variation of the spline with different values of qL and
qR. For simplicity, without loss of generality, the upper and lower envelopes are assumed to have the same first derivatives
(qL, qR) at the two end-points (see Fig. 3).
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Fig. 3. Optimal determination of (qL, qR) by minimal temporal variability for the upper (or lower) envelope, i.e., minimal integrated square of the third
derivative (solid curves).

4. Optimal determination of (qL, qR)

Eqs. (14), (18) and (19) represent two sets of tri-diagonal linear equations for the first derivatives at the local maximum
points of the upper envelope (quk, k = 1, 2, 3, . . . , K) and the lower envelope (qlj, j = 1, 2, 3, . . . , J) as the dependent
variables. Let the solutions for the upper envelope be given by

quk = auk + bukqL + cuk qR, k = 1, 2, 3, . . . , K (20)

and those for the lower envelope be given by

qlj = alj + bljqL + c ijqR, i = 1, 2, 3, . . . , J. (21)

At each step, EMD decomposes the signal into high-frequency and low-frequency components, with the average of
the upper and lower envelopes using Eq. (1), i.e., m(t), as the low-frequency component and the deviation from the low-
frequency component as the high-frequency component. Thus, the low-frequency component,m(t), should have minimum
temporal variability. Usually, small absolute values of derivatives mean small temporal variation. Since the first and second
derivatives are already used in obtaining the upper and lower envelopes [see Eqs. (13), (14)], minimization of integrated
squared values of the third derivatives,

S =

 tN

t1


d3u
dt3

2
dt +

 tN

t1


d3l
dt3

2
dt → min, (22)

is used to determine (qL, qR). Here, the third derivatives are calculated numerically by
d3u
dt3


k
= 6


2
uk − uk+1
∆u

k

3 +
1
∆u

k

2 auk + auk+1 +

buk + buk+1


qL +


cuk + cuk+1


qR


= Fk(qL, qR)


d3l
dt3


j
= 6


2
lj − lj+1
∆l

j

3 +
1
∆l

j

2 alj + alj+1 +

blj + blj+1


qL +


c lj + c lj+1


qR


= Gj(qL, qR), (23)

which are constant in the time interval [tk, tk + 1] for the upper envelope and the time interval [tj, tj + 1] for the lower
envelope since the cubic spline (10) and quadratic spline (15) are used. Substitution of (23) into (22) leads to

S =

K
k=1

[Fk(qL, qR)]2∆k +

J
j=1


Gj(qL, qR)

2
∆j. (24)

The end-point derivatives (qL, qR) are determined by the minimization of S,

∂S
∂qL

= 0,
∂S
∂qR

= 0, (25)

which leads to the following set of linear algebraic equations:
A11 A12
A21 A22

 
qL
qR


=


B1
B2


. (26)



Author's personal copy

62 P.C. Chu et al. / Journal of Computational and Applied Mathematics 259 (2014) 57–64

Fig. 4. Time series {xi} represented by Eq. (27).

Table 1
Values of parameters used in Eq. (27).

k 0 3 2 1

Ak 0.5 1.0 0.5 0.20
ωk 6π (3 Hz) 40π (20 Hz) 100π (50 Hz)
ϕk 0.01 0 0.005

Here,

A11 =

K−1
k=1

1
∆u

k

3 buk + bu
k+1

2
+

J−1
j=1

1
∆l

j

3 blj + bl
j+1

2
A12 = A21 =

K−1
k=1

1
∆u

k

3 cuk + cu
k+1

 
buk + bu

k+1


+

J−1
j=1

1
∆l

j

3 c lj + c l
j+1

 
blj + bl

j+1



A22 =

K−1
k=1

1
∆u

k

3 cuk + cu
k+1

2
+

J−1
j=1

1
∆l

j

3 c lj + c l
j+1

2
B1 =

K−1
k=1

1
∆u

k

3 buk + bu
k+1


2
uu
k+1

− uu
k

∆u
k

−


au
k
+ au

k+1


+

J−1
j=1

1
∆l

j

3 blj + bl
j+1


2
ul
j+1

− ul
j

∆l
j

−


al
j
+ al

j+1



B2 =

K−1
k=1

1
∆u

k

3 cuk + cu
k+1


2
uu
k+1

− uu
k

∆u
k

−


auk + au

k+1


+

J−1
j=1

1
∆l

j

3 c lj + c l
j+1


2
ul
j+1

− ul
j

∆l
j

−


al
j
+ al

j+1


.

As soon as the end-point derivatives (qL, qR) are calculated, the upper and lower envelopes are determined. The EMD can
be effectively conducted.

5. Example

A time series of {xi} (Fig. 4) consisting of a quadratic trend and three harmonics,

x(ti) = f0(ti)+

3
k=1

fk(ti), f0(ti) = A0t2i , fk(ti) = Ak sin(ωkti + ϕk), k = 1, 2, 3

xi = x(ti), ti = (i − 1)∆t, t1 = 0, tN = 0.9 s, ∆t = 0.0018 s, N = 501, (27)

is used to demonstrate the capability of DEMD. The parameters in (27) are given in Table 1. The left panels of Fig. 5 show the
trend and three harmonics of the data represented by (27): f0i = f0(ti), f1i = f1(ti), f2i = f2(ti), and f3i = f3(ti). Obviously,
only f0(ti) represents the trend of the signal {xi}. The trend of {xi} varies from f01 to f0N :

f01 = 0, f0N = 0.405. (28)

The DEMD is conducted on the time series {xi} (Fig. 4) to obtain three IMFs and a trend (right panels of Fig. 5). Obviously,
the IMFs correspond well to the harmonics, ci(t) versus fi(t), with high correlation coefficients (CCs) (0.978 between c1 and
f1, 0.992 between c2 and f2, 0.999 between c3 and f3, and 1.0 between the two trends) and low relative root mean square
errors (RRMSEs) (0.00394 between c1 and f1, 0.0218 between c2 and f2, 0.00542 between c3 and f3, and 0.0184 between the
two trends).
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Fig. 5. Components of time series {xi}: a quadratic trend and four harmonics given by Eq. (27).

Fig. 6. DEMD on the signal shown in Fig. 5: (a) IMF-1, (b) IMF-2, (c) IMF-3, and (d) trend. Comparison between Figs. 6 and 5 shows the capability to reduce
the end effect and detrend uncertainty.
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6. Conclusions

(1) A major difficulty in using the HHT (i.e., unknown local maximum and minimum at the two end-points) has
been overcome using DEMD, which is developed on the base of (a) compact difference scheme concepts, and (b)
minimum temporal variability for the low-frequency component (i.e., the average of the upper and lower envelopes).
Determination of either the upper or the lower envelope becomes a well-posed mathematical problem.

(2) DEMD uses hybrid Hermitian polynomials to determine the upper and lower envelopes with the first derivatives at the
two end-points (qL, qR) as parameters. A set of two algebraic equations for (qL, qR) is derived on the base of the minimal
integrated absolute value of the third-order derivative (equivalent tominimal temporal variability). The upper and lower
envelopes are obtained after the optimal (qL, qR) are determined.

(3) The capability of DEMD for eliminating the end effect and detrend uncertainty is demonstrated using a time series
consisting of a quadratic trend and four harmonics. A numerical experiment demonstrates that the new approach could
indeed eliminate the end effect and detrend uncertainty effectively, with low RRMSEs. The potential advantage of DEMD
over postprocessing approaches is that the sum of all IMFs is always the same as the original signal using DEMD, and is
usually different from the original signal using postprocessing approaches.

(4) The three synthetic sine waves are used as an example to show the capability of DEMD, since exact components exist for
the error estimation. Further justification using real-world examples is needed, although this is difficult because exact
components are usually unknown.
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