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a b s t r a c t

Marine biological models are usually complex with many free parameters. Parameter pri-

oritization (based on contribution to model output) is important for system management

but difficult. A variance-based sensitivity analysis is developed in this paper using the

Sobol’–Saltelli sensitivity indices, which measure the relative importance of each parameter

(or group of parameters) and range these parameters along their contribution to output vari-

ability. To reduce the number of degrees of freedom, the model output is decomposed using

the warping functions or irreversible predictability time. A simple three-component [nutri-

ents, phytoplankton and zooplankton (NPZ)] model with 23 parameters for reproducing

annual phytoplankton cycle of the Black Sea is taken as the example to show the usefulness

and procedure of the sensitivity analysis. Single and total sensitivity indices showed strong

sensitivity of the biological model to the light limitation of the phytoplankton growth. This

agrees well with physical intuition. However, ranging model parameters along their con-

tributions to model output variability does not follow exactly the physical intuition when

model-related errors from large perturbations of the parameters are not small. For example,

the model output becomes very sensitive to the nutrient stock parameterization for certain

combinations of the light-related factors.

© 2007 Elsevier B.V. All rights reserved.

1. Introduction

Ocean models, especially ocean biological models, in general,
have many uncertain parameters, which should be identi-
fied from data or the physics (Lozano et al., 1996; Omlin
et al., 2001; Fulton et al., 2004; Lermusiaux et al., 2006
among others). Various data assimilation methods may be
used for model parameter identification: the adjoint method
(Evensen et al., 1998), the non-linear optimization technique
(Fasham and Evans, 1995), the weak-constraint parameter
estimation (Loza et al., 2004) and others. The basic con-
cept of these methods is to vary model parameters until
the misfit between temporally varying modeled and observed

∗ Corresponding author.
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data is minimal, while the model equations are satisfied
exactly.

Although robust dynamical regimes (attractors) repro-
duced by biological models are not very complex (most of
such models demonstrate only simple periodical or quasi-
periodical behavior), the parameter identification is quite a
difficult problem by a number of reasons. First, data and model
may be incompatible because the data contain contributions
from hydrodynamic and biological processes, which may not
be resolved by the model. Model error (no matter how small it
is) can cause the solutions deviating far from the data. For
example, Fasham and Evans (1995) could not find a single
parameter set that fits the observational data well. Spitz et

0304-3800/$ – see front matter © 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.ecolmodel.2007.04.006
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al. (1998) could not estimate the optimal model parameters
using observational data.

Second, modern data assimilation methods are on the base
of statistical estimation theory, which uses the same founda-
tion as the Kalman filtering: (1) data and model are assumed
to be unbiased; (2) error variances and co-variances (dictating
model-data difference) are used to correct the model state;
(3) Gaussian statistics are assumed for the data errors. These
conditions may not be true in biological modeling.

Third, even simple biological models with 3–10 model vari-
ables often contain 20–30 or more model parameters (e.g.,
Fasham et al., 1990; Oguz et al., 1996; Fennel et al., 2001;
Kantha, 2004). When the number of model variables is con-
siderably less than the number of model parameters, the
parameter identification does not have a unique solution,
and in general, selection of the “optimal” solution is difficult.
This leads to the identifiability problem in ecological model-
ing, which concerns the uniqueness of the model parameters
determined from the input–output data, under ideal condi-
tions of noise-free observations and error-free model structure
(Beck, 2002). The statistical method identifies the model
parameters with only minimum difference between model
and data but does not guarantee the absolute minimum error
(Schittkowski, 2002): hyper-parameterized models may have
many possible solutions.

In many cases, change in certain parameters (non-control
parameters) causes only little change in model output. There-
fore, these parameters can be approximately determined and
then fixed. Change in other parameters (control parameters)
causes large change in model output. Thus, the control param-
eters have to be determined in a very accurate manner because
they affect the model predictability. The question arises, how
can we range model parameters according to their contribu-
tions to model output variability?

Here, a phenomenological approach may be used to
detect model sensitivity to the control parameter[s]. Such an
approach requires rich practical experience and, in general,
often gives reasonable results if the number of control param-
eters is not large. If the number of model parameters is large
(marine biological models are the case), such an approach may
fail no matter how rich a researcher’s experience is, because
model sensitivity relative to one parameter often differs from
model sensitivity to a group of parameters.

Alternative methods to determine the control parameters
are the first-order sensitivity function (Chu et al., 2004) and
the adjoint method (Evensen et al., 1998). The traditional sen-
sitive analysis based on the direct-perturbation method (e.g.,
Dickinson and Gelinas, 1976) is popular in biological oceanog-
raphy. For example, Oguz et al. (1996) used this approach to
verify a low-component model of annual phytoplankton cycle
in the Black Sea. The direct-perturbation method pursuant
to which the sensitivity of model output to change in model
parameter[s] is found by comparing model integrations with
the only (finite) difference in the parameter of interest. The
disadvantage of the direct method is that separate model inte-
gration must be performed for each parameter of interest.
That a priori assumes additive contribution from each param-
eter to model output.

The adjoint method (Lawson et al., 1995; Evensen et al.,
1998 and others) estimates model parameters and variables

through fitting the model to data, using model equation as a
constraint. However, the method requires an initial guess for
unknown initial conditions and parameters. Second, a biolog-
ical model cannot be taken as a ‘true model’ because of many
parameterization schemes involved. Third, although Lawson
et al. (1995) reported that the adjoint method worked reason-
ably well even for “data” with 20% noise-to-signal level, it is not
clear how the optimal model parameters are determined. Pires
et al. (1996) pointed out that for non-linear dynamical mod-
els and noisy data there are limitations in application of the
adjoint technique, and its convergence to the optimal solution
is not obvious with the presence of noise in the data.

As the exact values of control parameters of a biolog-
ical model are unknown, the linear sensitivity approach
assumes explicitly no interactions among forecast model-
related errors caused by parameter perturbations. In many
practical cases, this assumption is unrealistic, and the model
regimes and transitions among regimes are controlled by
parameters determined from the sensitivity analysis on finite-
amplitude parameter perturbations (Nicolis, 2003).

The primary goals of the proposed study are outlined as fol-
lows: (a) develop a model-independent non-linear sensitivity
analysis for marine biological models using the Sobol’–Saltelli
sensitivity indices (Saltelli et al., 1993, 2000, 2005). (b) Use spe-
cial metrics, such as warping functions and the irreversible
predictability time (IPT) (Chu et al., 2002a,b,c) as model out-
put. IPT is developed on the base of first passage time. (c)
Demonstrate capability of this approach through the analysis
of a three-component (nutrients, phytoplankton, zooplank-
ton) model for the annual phytoplankton cycle in the Black
Sea. The choice of the model is from research interests of the
authors, and is not principle.

The non-linear sensitivity analysis does not find the opti-
mal model parameters directly. It assesses the influences or
relative importance of each model parameter to the model
output and determines which parameters are control param-
eters contributing most to the output variability and, possibly,
requiring additional research to reduce output uncertainty,
and which parameters are non-control parameters and can be
estimated approximately. Excluding the non-control parame-
ters, we may reduce the number of model parameters that are
identified from data or physics.

The rest of the paper is organized as follows. Section
2 describes the sensitivity analysis using the Sobol’–Saltelli
indices. Section 3 presents model output representations for
estimating the Sobol’–Saltelli indices. Section 4 shows the
model output representation using the warping functions and
IPT for the non-linear sensitivity analysis. Section 5 describes
the simplified three-component biological model for the Black
Sea phytoplankton annual cycle (hereafter, the NPZ model).
Section 6 depicts the experiment design. Sections 7–10 present
the results and their oceanographic interpretations. Section 11
presents the conclusions.

2. Non-linear sensitivity

A variance-based method (Saltelli et al., 2000, 2005) is devel-
oped to estimate the non-linear sensitivity of a biological
model to large variations of model parameters. Following



Author's personal copy

e c o l o g i c a l m o d e l l i n g 2 0 6 ( 2 0 0 7 ) 369–382 371

Sobol’ (1993), Saltelli et al. (1993) and Saltelli (2002), we intro-
duce the sensitivity indices, which are quantitative measures
of model output sensitivity to large variations of model param-
eters.

For simplicity, consider a scalar model output y = f(a1, a2,
. . ., ak) corresponding to a number of non-correlated model
parameters a = (a1, a2, . . ., ak) with the joint probability density
function:

P(a1, a2, . . . , ak) =
k∏
i=1

pi(ai). (2.1)

Here, pi(ai) is the PDF for ith parameter.
The total sensitivity of the model output relative to vari-

ations of all model parameters is estimated by the variance
V

V(y) =
∫ ∫

. . .

∫
[f (a1, a2, . . . , ak) − E(y)]2

k∏
i=1

pi(ai) dai

= E(y2) − E2(y), (2.2)

where E(y) =
∫∫

. . .
∫
f (a1, a2, . . . , ak)

∏k

i=1pi(ai) dai.
The output variance for the fixed model parameter (aj),

should be determined by the conditional variance as

Vj = V(y) − E{V(y|aj)} = V{E(y|aj)} = Uj − E2(y), (2.3)

where E(y|aj) is the conditional mean:

E(y|aj) =
∫ ∫

. . .

∫
f (a1, a2, . . . , aj, . . . , ak)

k∏
i = 1
i�=j

pi(ai) dai, (2.4)

Uj =
∫

E2(y|aj)pj(aj) daj. (2.5)

The conditional variance Vj is a good measure of the sen-
sitivity of y with respect to the parameter (aj). Once divided by
the unconditional variance V, it is called first-order (or single)
sensitivity indices

Sj = Vj

V(y)
. (2.6)

Similarly to (2.6) second-order sensitivity indices deter-
mining model output sensitivity relative to variations of two
parameters ai and aj (j > i) may be introduced by

Sij = Vij

V(y)
, Vij = V{E(y|ai, aj)} − Vi − Vj, (2.7)

which show the joint effects of both parameters ai and aj on
the model output.

The model sensitivity relative to variations of all the
parameters excluding aj, is represented by the conditional
variance,

VT
j = V{E(y|a−j)} = U−j(y) − E2(y), (2.8)

where a−j = (ã1, ã2, . . . , ãj−1, ãj+1, . . . , ãk) is the sub-vector of a
containing all the varying parameters other than aj,

E(y|a−j) ≡
∫

f (ã1, ã2, . . . , aj, . . . , ãk)pj(aj) daj, (2.9)

U−j(y) ≡
∫

E2(y|a−j)
k∏

i = 1
i�=j

pi(ãi) dãi. (2.10)

The total sensitivity of the model output to variations of
parameter aj is written by

ST
j =

V − VT
j

V
, (2.11)

which shows the non-additive part of model output sensitiv-
ity caused by interactions among model-related errors due to
perturbations of model parameters. Following Sobol’ (1993),
the total output variance V is decomposed by:

V =
k∑
j=1

Vj +
∑
j<i

Vij +
∑
j<i<l

Vijl + · · · + V12...k. (2.12)

which shows partition of the variance between the main
effects (defined by Vj) and the interaction terms (defined by
Vij, Vijl, . . .). It is clear that when Eq. (2.12) holds, we can iden-
tify V−j = V{(y|a−j)} as the sum of all terms in the right-hand
side of (2.12) without terms including the subscript j.

Therefore, for the total sensitivity case, the index for the
first parameter of a three-parameter model is

ST
1 = S1 + S12 + S13 + S123. (2.13)

Dividing both parts of (2.12) by V, we get

k∑
j=1

Sj +
∑
j<i

Sij +
∑
j<i<l

Sijl + · · · + S12...k = 1, (2.14)

which shows that any sensitivity index Sj varies between 0
and 1.

Sj = 1

for the model output depending only on the parameter aj, and

Sj = 0, ST
j = 0

when the model output does not depend on the parameter aj.
It is also clear from Eqs. (2.11) and (2.14) that

∑
j=1

Sj ≤ 1 ≤
∑
j

ST
j , (2.15)

with equalities only when all interaction terms in (2.14) are
zero.

The major advantage of variance-based non-linear analy-
sis is that we can account for and specify the contributions
of model-related errors caused by perturbations of differ-
ent parameters and interactions among these errors using
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second-order indices Sij, Sijl, . . .. In this case, the total model
output is a non-additive function of model parameters.

Use of the sensitivity indices requires: (a) specifying the
model output y in the simplest form and (b) developing a
numerical technique to estimate appropriate variances of the
model output. If the Monte-Carlo method (the approach used
in the present study) is used to compute the conditional means
and variances, the model output should be represented in the
simplest form so that the sensitivity analysis would be com-
putationally feasible.

3. Model output representation

We suggest to use the following representations for model
output. First, considering the non-negative feature of output
for biological ocean models, the warping functions (Gervini
and Gasser, 2004) can be used as for identification of func-
tion landmarks, such as the phytoplankton blooms. Second,
IPT introduced by Ivanov et al. (1994), Chu et al. (2002a,b,c)
and Chu and Ivanov (2005) to quantify the model predictabil-
ity for finite-amplitude errors, is a natural measure of model
sensitivity when perturbations of model parameters are not
small.

3.1. Warping functions

Following Gervini and Gasser (2004), a non-negative one-
variable model output (y(t) ≥ 0, such as phytoplankton
concentration) is represented by

y(t) = sF{v(t)} + ı(t), (3.1)

where s is a non-negative scaling coefficient; v(t) is a source of
amplitude variability of the mean F; ı(t) is the random error.
The function v(t) generates time variability on F to shift the
location of important features of the output (like the phy-
toplankton blooms). Representation of multi-variable model
output (y1, y2, . . ., ym) can be found in Gervini and Gasser (2004).

The problem is to estimate the structural mean F. Clearly,
the simple averaging y(t) over all ensemble realizations under-
estimates the amplitude of local extreme values since the
peaks vary from one realization to another not only in inten-
sity but also in timing. To account for how it affects the
structural mean (F), Gervini and Gasser (2004) suggest to
choose v(t) as

v(t) = w−1(t), (3.2)

where w is called the warping function, which is represented
by

w(t) = t +
q∑
j=1

dj j(t). (3.3)

Here, d = (d1, . . ., dq) is the score vector; { j(t)} are functions
constructed from a combination of B-splines and weights esti-
mated relative to a single model output.

The parameters of (3.1)–(3.3) are estimated by minimizing
the mean integrated squared error,

〈∫ t0+T

t0

[y(t) − sF{v(t)}]2 dt

〉
→ min, (3.4)

where 〈〉 is averaging over a statistical ensemble of the
model output. Gervini and Gasser (2004) suggest a two-
stage algorithm (a MATLAB routine is available on web
page http://www.unizh.ch/biostat/People/gervini) to mini-
mize (3.4), and point out that only a few functions { j(t)} are
often needed to reconstruct geometrical specificities of the
model output, y(t) ≥ 0. Therefore, only few parameters s and dj

can be used to estimate non-linear sensitivity model output
for a biological model.

3.2. IPT

The IPT is defined as a time-period when the prediction error
first exceeds a pre-determined criterion (i.e., the tolerance
level). The probability density function of IPT with a given
initial error satisfies the backward Pontryagin-Kolmogorov-
Stratonovich equation. Using IPT as a quantitative measure for
prediction skill, both linear and non-linear regimes of forecast
errors were found in the low-order atmospheric model (Chu
et al., 2002a,b) and regional ocean circulation model (Chu et
al., 2002c; Chu and Ivanov, 2005).

Following Ivanov et al. (1994) IPT (�) is determined as a time
for which difference between individual model output z and
some reference solution z̄ (defined as a model solution with
specified model parameters and initial conditions) will exceed
the tolerance level (or the accepted prediction error) ε for the
first time:

� = inf
t>0

(t|
∣∣z − z̄

∣∣ > ε). (3.5a)

Eq. (3.5a) can be re-written using a non-dimensional toler-
ance level ε̄

� = inf
t>0

(
t

∣∣∣ |z − z̄|
|z̄| > ε̄

)
. (3.5b)

The IPT is a priori random value and depends functionally
on the reference solution, as well as on perturbations in the
initial conditions and model parameters.

4. Generation of ensemble perturbations

Accuracy in estimating the non-linear sensitivity indices
depends on ensemble size and structure of model paramet-
rical space. Therefore, to generate perturbations of model
parameters, it is better to get homogeneous coverage in the
model parameter space. On the other hand, for any model,
the ensemble size is limited due to computer capability.

The Latin hypercube (LHC) design strategy (Latin
Hypercube, 2001) is used to generate appropriate pertur-
bations. An extensive review of Latin hypercube sampling
technique can be found in Helton and Davies (2003); also
see Rose and Smith (1998) as an example of the ecological
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applications of this technique. LHC design increases con-
siderably the accuracy in estimating probability density
functions in comparison with the classical Monte-Carlo
method (Dowling et al., 1985). For the same homogeneity
of coverage in model parametrical space, the Monte-Carlo
method needs an ensemble with nk components, while the
LHS strategy only needs 2n(k + 1) components. Here, n is the
number of perturbations for a parameter and k is the number
of model parameters.

Another computational problem is to calculate Uj and U−j.
Clearly, Eqs. (2.5) and (2.10) are computationally impractical. In
a Monte-Carlo frame, it implies a double loop: the inner one is
to compute E2 and the outer one is to compute the integral over
daj. Saltelli et al. (1993) suggest two model parameter matrices
M1 and M2,

M1 =

⎛
⎜⎜⎜⎝
a11 a12 . . . a1k

a21 a22 . . . a2k

. . .

an1 an2 . . . ank

⎞
⎟⎟⎟⎠ , M2 =

⎛
⎜⎜⎜⎝
a′

11 a′
12 . . . a′

1k

a′
21 a′

22 . . . a′
2k

. . .

a′
n1 a′

n2 . . . a′
nk

⎞
⎟⎟⎟⎠ .

(4.1)

Two perturbed parameter matrices are used for the specific
parameter aj. The first one is constructed from M2 by replacing
the column [a′

rj
] to [arj] from M1, and another one from M1 by

replacing the column [arj] to [a′
rj

] from M2:

Nj =

⎛
⎜⎜⎜⎝
a′

11 a′
12 . . . a1j

a′
21 a′

22 . . . a2j

. . .

a′
n1 a′

n2 . . . anj

. . . a′
1k

. . . a′
2k

. . . a′
nk

⎞
⎟⎟⎟⎠ ,

N−j =

⎛
⎜⎜⎜⎜⎝

a11 a12 . . . a′
1j

a21 a22 . . . a′
2j

. . .

an1 an2 . . . a′
nj

. . . a1k

. . . a2k

. . . ank

⎞
⎟⎟⎟⎟⎠ (4.2)

Either M1 or M2 is used to estimate E(y),

Ê(y) = 1
n

n∑
r=1

f (ar1, ar2, . . . , ark) = 1
n

n∑
r=1

f (a′
r1, a

′
r2, . . . , a

′
rk). (4.3)

Both M1 and Nj are used to estimate Uj,

Ûj = 1
n− 1

n∑
r=1

f (ar1, . . . , ar(j−1), arj, ar(j+1), . . . , ark)

× f (a′
r1, . . . , a

′
r(j−1), arj, a

′
r(j+1), . . . , a

′
rk), (4.4)

Thus, the computational cost associated with the full set
of first-order indices Sj is only n(k + 1). One set of n evaluations
of f is necessary to compute E, and k sets of n evaluations of
f are necessary for the calculation of Uj. Additional k sets of n
evaluations of f are necessary to calculate U−j using both M1

and N−j:

Û−j = 1
n− 1

n∑
r=1

f (ar1, . . . , ar(j−1), arj, ar(j+1), . . . , ark)

× f (ar1, . . . , ar(j−1), a
′
rj, ar(j+1), . . . , ark). (4.5)

5. Model of annual phytoplankton cycle for
the black sea

A three-component model of annual phytoplankton cycle in
the Black Sea is used to illustrate the non-linear sensitivity
analysis. This model has a simple configuration and may not
be able to reproduce the phytoplankton behavior in summer
when the mixed layer depth is shallow. If the mixed layer
retreats towards the surface in the Black Sea, most of the
production takes place below the mixed layer in the deep
chlorophyll maximum zone.

However, the model is able to reproduce two phyto-
plankton blooms observed in reality. The first one occurs
during the early spring. The second bloom takes place during
September–October. Both blooms are clearly identified from
the climatic chlorophyll data (Chu et al., 2005) and color satel-
lite observations (Oguz et al., 2002). This three-component
model has 20 model parameters. The choice of such a model is
not essential in illustrating the non-linear sensitivity analysis.
More complex biological model may also apply. The well-
known NPZ model originally suggested by Evans and Parslow
(1985) for the North Atlantic, was modified and applied for
reproducing annual phytoplankton cycle in the Black Sea. The
governing model equations are

dM
dt

= �(t), �+(t) = max[�(t),0], (5.1)

dP
dt

=
[
˛(t,M, P)N
j+N

− r

]
P− c(P0 − P)Z

K + P0 − P
− m+ �+(t)

M
P, (5.2)

dZ
dt

= fc(P0 − P)Z
K + P0 − P

− gZ − �(t)
M
Z, (5.3)

dN
dt

= −
[
˛(t,M, P)N
j+N

− r

]
P+ m+ �+(t)

M
(N0 −N), (5.4)

Here, the model variables are phytoplankton (P), herbivore
zooplankton (Z), dissolved nutrients (N), all of them expressed
in terms of nitrogen specific amount (mmol/m3); the upper
mixed layer depth (M). �(t) is the time rate change of the mixed
layer depth.

The model parameters are ˛(t, M, P) is the photosynthetic
rate of phytoplankton, (j, r) the half-saturation and mortality
rates for the phytoplankton, (c, K) the maximum grazing and
half-saturation rates of herbivore zooplankton, P0 the phyto-
plankton threshold, m the diffusivity, f the grazing efficiency,
g the zooplankton mortality and N0 is the nutrient stock just
below the mixed layer. Among these parameters, ˛(t, M, P) and
N0, need more description.

Following Jassby and Platt’s (1976) and Evans and Parslow’s
(1985) treatments, the photosynthetic rate of phytoplank-
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Table 1 – Model parameters

i Parameter Unit Model Value

1 Nutrient stock
parameterization

A1 mmol N m−4 0.12
2 A2 mmol N m−3 −0.75

3 Initial slope of P/I curve ˛0 (Wm−2)−1 day−1 0.025
4 Attenuation coefficient for seawater kw m−1 0.08
5 Coefficient of phytoplankton self-shading kc mmol N m−3 0.12
6 Half-saturation rate for phytoplankton j mmol N m−3 0.5
7 Mortality rate for phytoplankton r day−1 0.045
8 Phytoplankton threshold P0 mmol N m−3 0.1
9 Grazing efficiency coefficient f day−1 0.75

10 Zooplankton mortality g day−1 0.15
11 Phytoplankton maximum grow rate day−1 2
12 Cloudiness b — 0.5

Fig. 1 – Reference solution and climatic input for the Black Sea NPZ model (5.1)–(5.5): (a) annual cycle of phytoplankton (the
reference solution), (b) mixed layer depth (given by Hydrometeorology and Hydrochemistry, 1991), (c) nutrient stock below
the mixed layer and (d) the solar irradiation (dashed curve) and photosynthetically active radiation (dotted curve).

ton, ˛(t, M, P) incorporates several additional parameters,
namely, cloudiness (b), light attenuation by seawater (kw) and
phytoplankton self-shading coefficient (kc), and maximum
photosynthetic rate (Q).

The nutrient stock (N0) is parameterized by

N0 = A1z+A2, (5.5)

which accounts for vertical variability of the nutrient distribu-
tion that coincides with the Black Sea climatology. Here, z is
the vertical coordinate.

The model parameters (Table 1) and the depth of mixed
layer M (Fig. 1a) are taken either from climatological data
(Hydrometeorology and Hydrochemistry, 1991) or as tradi-
tional values generally accepted in marine biological modeling
(Oguz et al., 1996; Kantha, 2004). Fig. 1b and c show the nutrient
stock below the mixed layer and the solar irradiation calcu-
lated from the climatological values of M, respectively.

For the chosen model parameters and climatological input
(Fig. 1a–c) the NPZ model (5.1)–(5.4) predicts the existence of
a bimodal structure with occurrence of two phytoplankton
blooms in April and September (Fig. 1d), that agrees well with
the chlorophyll-a behavior in the Black Sea (Chu et al., 2005).
Such a seasonally varying solution is treated as the reference
solution for the sensitivity studies.

6. Experimental design

During numerical experiments, the NPZ model (5.1)–(5.4) is
integrated with the set of twelve perturbed parameters (±50%
from the climatic values, see Table 2). All the parameters are
uniformly distributed within the given ranges. Homogeneous
coverage in the model parameter space for matrices M1, M2,
Nj, N−j [(4.1) and (4.2)] is required to generate statistically sig-
nificant ensemble. Let n (usually n ≈ 103) be the number of
integrations in a statistical ensemble for one parameter. Then,
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Table 2 – Ranges of parameter variation

i Parameter Range of Variation

1 Nutrient stock
parameterization

A1 0.06–0.18
2 A2 −0.375 to −1.125

3 Initial slope of P/I curve ˛0 0.01–0.04
4 Attenuation coefficient for seawater kw 0.04–0.12
5 Coefficient of phytoplankton self-shading kc 0.06–0.18
6 Half-saturation rate for phytoplankton j 0.25–0.75
7 Mortality rate for phytoplankton r 0.0225–0.0675
8 Phytoplankton threshold P0 0.05–0.15
9 Grazing efficiency coefficient f 0.5–1.0

10 Zooplankton mortality g 0.075–0.225
11 Phytoplankton maximum grow rate 1–3
12 Cloudiness b 0.25–0.75

for the NPZ model with k = 12, only 26,000 perturbations are
generated. This is computationally feasible even for a personal
computer.

There are about 20 parameters in original Evans and
Parslow (1985) biological model, but only 12 parameters here
for the sensitivity study. From the computational point of view,
there is no restriction on the number of perturbed parame-
ters. However, part of model parameters are fixed due to: (a)
little influence on the model output (non-control parameters)
and (b) little information on the range of variation for that
parameter.

7. Construction of warping functions

Since the reference solution is quasi-periodic, one year is
taken for constructing the warping functions for annual
phytoplankton cycle. Our computations show that a two-
component decomposition [i.e., q = 2 in (3.3)] is sufficient for
the reconstruction of the mean phytoplankton annual cycle

shown in Fig. 1d from the ensemble of perturbed reference
solutions (Fig. 2a). This ensemble of stochastic realizations
is calculated by adding white noise to the reference solution
(Fig. 1d). Here, ratio of noise-to-signal (the reference solu-
tion) is about 1. Two bell-shaped warping functions  1 and  2

(Fig. 2b) are computed on the base of six B-splines with equally
spaced knots.

Reconstruction, using  1 and  2, leads to the annual
phytoplankton cycle with the maxima corresponding approx-
imately to the time of the two blooms (Fig. 2c). Some
distortions of the reconstructed reference solution (1-month
shift of the fall bloom and reduction of bloom peaks)
observed in Fig. 2c are due to high noise added to the
reference solution. However, the accuracy of the reconstruc-
tion increases with reducing the noise-to-signal ratio. The
root mean square error indicates that this technique can
reconstruct the two modal structures in the annual phy-
toplankton cycle with reasonable accuracy using only two
warping functions even with large noise-to-signal ratios
(Fig. 2d).

Fig. 2 – Construction and evaluation of warping functions: (a) an ensemble of perturbed reference solutions, (b) warping
functions  1 and  2, (c) reconstructed mean and (d) the root mean square error between the reference solution and the
reconstructed mean solution  2 estimated by the warping function with q = 2.
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Fig. 3 – The first-order sensitivity of phytoplankton amount
in upper mixed layer to variations of twelve model
parameters. Labels 1, . . ., 12 correspond to parameters
specified as in Tables 1 and 2.

8. Sensitivity indices for phytoplankton
component

The above non-linear sensitivity analysis is directly applied
to phytoplankton concentration computed by the NPZ model.
The first-order sensitivity indices (Si) for all 12 parameters
(Table 2) are calculated numerically for each month within
a year cycle. Fig. 3 shows the temporal variations of S̄i =∑i

j=1Sj(i = 1, . . .12) (indicated by bold curves in Fig. 3).
Two interesting features are important for further analy-

sis. First, the set of influential parameters considerably varies
with time. The annual phytoplankton cycle is divided into
three periods: (1) prior to spring bloom, (2) between the spring
and fall blooms and (3) after the fall bloom. It is expected that
the phytoplankton during the first and third periods is mostly
influenced by initial slope of the P/I curve ˛0 (i = 3) and the
light conditions (i = 4) while the phytoplankton during the sec-
ond period is driven mainly by the nutrients stock under the
mixed layer (i = 1, 2).

Second, the summation of the first-order indices never
reaches 1. This means that the model output is not simple
additive relative to parameters. Even if a possible uncertainty
up to 50% in the model output is taken into account, the sum
of all first indices drops evidently during the blooms. It means
that the contribution of interactions among model-related
errors generated by perturbations of different parameters, to
model output is large. The first-order indices alone cannot
fully explain the model output variance as a whole.

Contribution of interactions between model-related errors
generated by perturbations of different parameters is esti-
mated by the difference,

Sint
j = ST

j − Sj.

Fig. 4 shows the temporal variation of Sint
i

=
∑i

j=1S
int
j

.
Although, we can still conclude higher significance of some
factors, such as the initial slope ˛ of the I/P curve and the
parameters defining the nutrient stock (A1, A2) below the
mixed layer, the interpretation of this plot is questionable.
Therefore, instead of analyzing the temporally varying model

Fig. 4 – The high order sensitivity of phytoplankton amount
in upper mixed layer to variations of twelve model
parameters. Labels 1, . . ., 12 correspond to parameters
specified as in Tables 1 and 2.

output, we use the scale parameters and scores of the corre-
sponding functions as described above.

9. Sensitivity indices for scale (s) and score
vector (d1, d2)

Section 7 shows that the model output (phytoplankton con-
centration) can be represented only by two warping functions
( 1,  2). Therefore, the model output sensitivity is reduced to
the sensitivity of a scale s and a score vector (d1, d2) relative to
variations of model parameters.

9.1. Sensitivity of d1

The first component of score vector (d1) in general, determines
the spring-bloom landmark and fixes the position of the spring
bloom. Therefore, joint analysis of the single (Fig. 5a) and
total (Fig. 5b) sensitivity indices for d1 identifies the main fac-
tors responsible for the generation of this bloom. The indices
(Fig. 5a and b) are computed with 95% confidence interval
using the bootstrap technique (Efron and Tibshirani, 1993)
with a bootstrap sample dimension of 103.

It is obvious from Fig. 5a and b that the single indices
are very small as comparing to the total indices. This
implies high importance of parameter interactions. The sin-
gle indices for d1 show that the initial slope ˛0 of the P/I
curve (i = 3) has a significant effect (about 0.12) while all the
other parameters are non-significant (Fig. 5a). This result
seems to be correct only for small perturbations of model
parameters.

In contrast to this, the total indices for d1 give more infor-
mation about model sensitivity and factors determining it.
Fig. 5b indicates that the parameter ˛0 (i = 3) still retains the
leading role with the total index of about 1, however, other
parameters, such as the light attenuation coefficient of the
seawater (i = 4) and cloudiness (i = 12) become important too.
The total indices for these parameters are up to 0.85–0.87. The
light attenuation coefficient and cloudiness are related mostly
to the light limitation of the phytoplankton growth.
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Fig. 5 – (a) Single and (b) total sensitivity indices for the first score vector component (d1). Bars show 95% confidence interval
computed by the bootstrap technique.

Less important but still influential is the mortality rate
of the phytoplankton (i = 7) and the parameter A1 determin-
ing the nutrient stock below the mixed layer (i = 1). The total
indices for these parameters reach 0.61–0.65. The model solu-
tion is not sensitive to the choice of second parameter A2 in
Eq. (5.4) (i = 2), half-saturation rate for phytoplankton (i = 6),
crazing efficiency coefficient (i = 9) and zooplankton mortal-
ity (i = 10). The weakest sensitivity is also for the coefficient
of plankton self-shading (i = 5), phytoplankton threshold (i = 8)
and phytoplankton maximum growth rate (i = 11).

Our method estimates relative importance of each model
parameters on the spring bloom generation and identi-
fies their contributions using non-dimensional numbers �i =
ST
i
/max(ST

i )
i

as follows

0.85 ≤ (�3, �4, �12) ≤ 1.00 for highly significant,

0.60 ≤ (�1, �7) ≤ 0.65 for significant,

0.38 ≤ (�2, �6, �9, �10) ≤ 0.45 for low significant,

0.15 ≤ (�5, �8, �11) ≤ 0.25 for not significant.

Sensitivity enhancement of the spring bloom (phy-
toplankton growth) to the light limitation is intuitively
understandable. However, ranging model parameters along
their contributions to model output variability does not follow
exactly the physical intuition.

More biological insight can be obtained using the second-
order indices Sij (Fig. 6). These indices show that the sensitivity
of model output depends strongly on interactions among
model-related errors caused by different model parameters.
For example, the model-related error due to uncertainty of ini-
tial slope of the P/I curve (i = 3) is amplified through interaction
with error caused by uncertainty of phytoplankton threshold
(i = 8) (large value of S38 in Fig. 6), and is diminished due to
uncertainty of grazing efficiency coefficient (i = 9) (small value
of S39 in Fig. 6). However, the model output is very sensitive
to uncertainty in determination of parameter pairs (i,j) = (2,3),
(2,10), (4,6), (5,10) and (11,12). In general, we may conclude
that the generation of the spring bloom depends strongly on
light-related model parameters and weakly on different phy-
toplankton ratios.

9.2. Sensitivity of d2

The second component of score vector, d2, determines the
fall-bloom landmark. The single sensitivity indices (Fig. 7a)
of d2 show that the nutrient stock parameterization (i = 1, 2)
is the most important for reproducing the fall phytoplank-
ton bloom (S1 = 0.12 and S2 = 0.10). On the contrary, the total
sensitivity indices identify six most important model param-
eters for reproducing the fall phytoplankton bloom (Fig. 7b).
They are the nutrient stock parameterization (i = 1), the ini-
tial slope of the P/I curve (i = 3), the attenuation coefficient for
seawater (i = 4), the mortality rate for phytoplankton (i = 7), the
zooplankton mortality (i = 10) and the cloudiness (i = 12). The
reference solution, in general, is insensitive to perturbations
of parameters with i = 2, 5, 6, 8, 9 and 11. Significant total effect
for the fall-bloom landmark also depends on the parameters
for the nutrient distribution below the mixed layer as well as
photosynthesis.

The sensitivity indices Sij (Fig. 8) show the important
effect of interactions among model-related errors generated
by uncertainty inserted into the following pairs of model
parameters (i,j) = (1,3), (1,4), (1,12), (1, 6-11), (3,4), (3,11), (6,9),
(7,10), (8,9) and (9,11). Again, note that interactions among
model related errors can lead to increasing or decreasing

Fig. 6 – Second-order indices Sij for the first component of
the score vector d1.
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Fig. 7 – (a) Single and (b) total sensitivity indices for the
second score vector component (d2). Bars show 95%
confidence interval computed by the bootstrap technique.

model output sensitivity to uncertain model parameters.
For example, the reference solution is insensitive to per-
turbations inserted into model parameters pairs (i,j) = (1,7),
(1,8), (1,9), (1,10), (1,11). The large value of single sensitivity

Fig. 8 – Second-order indices Sij for the second component
of the score vector d2.

index for A1 indicates high influence of A1 on the reference
solution.

9.3. Sensitivity of the scale coefficient s

The single sensitivity indices of the scale coefficient (s) demon-
strate no one parameter (or several parameters) dominating
the model output (Fig. 9a). Although S1 and S2 are larger
than other indices, their values are quite small (<0.11). How-
ever, the total sensitivity indices (Fig. 9b) and second-order
indices Sij (Fig. 10) indicate high sensitivity of the scale coeffi-
cient (s) to interactions among model-related errors caused by
uncertainty inserted in different pairs of model parameters.
The model parameters are decomposed into two groups with
respect to model output sensitivity. The first group contains
model parameters relative to which ˛ has maximum sensi-
tivity: nutrient stock parameterization (i = 1, 2), initial slope of
P/I curve (i = 3) and attenuation coefficient for seawater (i = 4).
The second group includes model parameters causing mini-
mum sensitivity of model output: from plankton self-shading
(i = 5) to cloudiness (i = 12). The second-order indices Sij (Fig. 10)
show that the model output is strongly sensitive to interac-
tions among model-related errors induced by pairs of model
parameters: (1,2), (1,3), (1,4), (1,10) and (2,3).

Fig. 9 – (a) Single and (b) total sensitivity indices for the scaling coefficient s. Bars show 95% confidence interval computed
by the bootstrap technique.
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Fig. 10 – Second-order indices Sij for the scaling coefficient s.

10. Sensitivity Indices of IPT

The warping functions are good metrics for the non-linear
sensitivity analysis if the model output can be represented by
few warping functions. This only happens when the reference
solution presents the periodical or quasi-periodical attractor.
For more complex dynamical regimes, such as chaotic attrac-
tor, large number of the warping functions are needed for
decomposition of model output. To overcome this difficulty,
IPT (represented by �) is used to quantify model non-linear
sensitivity. Clearly, smaller values of IPT correspond to higher
sensitivity and vice versa.

Analyzing the functional dependence, � = �(ε̄), we can
understand the sensitivity of the reference solution to pertur-
bations of various intensities. The tolerance level ε̄ controls
intensities of model-related errors caused by perturbations in
model parameters.

The IPT, in general, is a non-smooth function in 12-
dimensional parametrical space (a1, . . ., a12). Fig. 11 shows the
IPT computed in the model parameter sub-space (a1, a2) for
two tolerance levels with high “ridge” and deep “valleys”. IPT
depends strongly not only on magnitude but also on direction
of the perturbation vector.

The analysis of the IPT landscapes between ε= 0.07
(Fig. 11a) and ε= 0.2 (Fig. 11b) demonstrates that the model-
related errors do not grow in dependently for tolerance levels

Fig. 11 – IPT for the NPZ model (5.1)–(5.4) in the model
parameter phase sub-space (A1, A2) with the tolerance
level: (a) ε= 0.07 and (b) ε= 0.2.

larger than 0.15–0.20. It indicates that the errors interact
among themselves, and the total effect from the parameter
perturbations on model output is non-linear. For small tol-
erance levels (as an example, ε= 0.07), the single indices (Si)
are small (Fig. 12a). Maximum value for the indices is 0.15. It
indicates weak sensitivity of the model output to the choice
of model parameters. However, the total indices (ST

i
) show

Fig. 12 – (a) Single and (b) total sensitivity indices for the IPT with the tolerance level of ε= 0.07. Bars show 95% confidence
intervals computed by the bootstrap technique.
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Fig. 13 – Second-order indices Sij for the IPT with the
tolerance level of ε= 0.07.

at least seven influential parameters (Fig. 12b): the nutrient
stock parameterization (i = 1), the initial slope of P/I curve (i = 3),
the attenuation coefficient for seawater (i = 4), the coefficient
of phytoplankton self-shading (i = 5), the half-saturation rate
for phytoplankton (i = 6), the mortality rate for phytoplankton
(i = 7) and the cloudiness (i = 12). Obviously, the biological NPZ
model (5.1)–(5.4) is not good enough for long-term prediction
with high accuracy because it is difficult to identify the seven
parameters from data with appropriate accuracy. The model
produces the right type of attractor but cannot reproduce such
fine details as the phase of oscillations. Note that interactions
among the model-related errors caused by different param-
eter perturbations do not add to the general prediction error
(Fig. 13). In this regime, the model sensitivity can be analyzed
by a tangent model, i.e., through the first-order sensitivity
functions.

For intermediate values of ε̄ ranging from 0.1 to 0.5, the
total sensitivity indices identify the model parameters with
maximum contribution to model output sensitivity (Fig. 14a
and b). The reference solutions are most sensitive to the choice
of the initial slope of P/I curve (i = 3), the attenuation coefficient
for seawater (i = 4) and the cloudiness (i = 12).

The sensitivity of model output to variations of the nutrient
stock parameterization (i = 1, 2) and different phytoplank-
ton ratios is weak. However, the second-order indices Sij

(Fig. 15) show that the contribution of the nutrient stock
parameterization to the model output sensitivity can be
amplified considerably through interactions among appro-
priate model-related errors. For example, the model-related
errors corresponding to the perturbations of A1 and A2

strongly interact with the errors caused by perturbations in
˛0 and kw. These interactions are non-linear and do not exist
for small tolerance levels (see Figs. 12b and 13).

Thus, a model of the Black Sea phytoplankton cycle with
higher accuracy than the NPZ model, requires high accurate
model parameters. It is hard to estimate these parameters
with necessary accuracy from existing biological observations.
A less accurate model, such as the NPZ model, which is able
to reproduce the main events (spring and fall blooms), may be
successfully constructed because only few parameters need
to be identified.

Fig. 14 – The total sensitivity indices for the IPT on the
tolerance level: (a) ε̄ = 0.2 and (b) ε̄ = 0.5. Bars show 95%
confidence intervals computed by the bootstrap technique.

Fig. 15 – Second-order indices Sij for the IPT with the
tolerance level of ε= 0.2.

11. Conclusions

The present study has developed a variance-based method
for the analysis of non-linear sensitivity of marine biological
models to large variations of model parameters. This approach
utilizes the Sobol’–Saltelli’s sensitivity indices as a measure
of model sensitivity and special scalar model output decom-
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posed through the warping functions or represented by the
irreversible predictability time.

The method does not identify directly the optimal param-
eters from model-data fitting but ranges the parameters
relative to their influence to model output. It determines the
control parameters, which contribute most to output variabil-
ity. Additional research is required to increase knowledge of
the control parameter in order to reduce output uncertainty.
The insignificant parameters are held constant or even elimi-
nated from the model.

Many methods currently in use have some sort of sensi-
tivity aspect for linear and non-linear biological models. The
variance-based method developed here, can be used to investi-
gate non-linear sensitivity of model output to large variations
of model parameters.

Large values of the sensitivity indices Sij show the amplifi-
cation of the model output variance due to perturbations of
both ith and jth model parameters. Here, output variances
corresponding to perturbations of appropriate parameters are
not additive. Contrarily, small values of the indices Sij show
no such amplification of the model output variance when two
parameters are perturbed simultaneously.

The simplified three-component model of annual phyto-
plankton cycle in the Black Sea is chosen to illustrate the
technique and to understand some generic features of model
sensitivity to large perturbations of model parameters. This
model has very simple configuration and may fail to repro-
duce the phytoplankton behavior in summer when the mixed
layer depth is shallow. However, the model reproduces the bi-
modal behavior of phytoplankton observed in the Black Sea
and can be a useful tool for the demonstration of capability of
the non-linear sensitivity analysis.

The single and total sensitivity indices demonstrate that
the model predicted spring bloom (in April–May) is most
sensitive to the choice of the initial slope of the photosyn-
thesis/irradiation curve. As far as the parameter interactions
are concerned, the light attenuation of the seawater, cloudi-
ness, the mortality rate of the phytoplankton and the nutrient
stock parameter become influential as compared to the initial
slope of the P/I curve, the light attenuation coefficient of the
seawater and cloudiness. These factors are mostly related to
the light limitation of the phytoplankton growth. Of course,
this result is intuitive from the physical point of view.

However, ranging model parameters along their con-
tributions to model output variability does not show
straightforward result. The intuition is also useless when we
try to understand and to estimate contributions of interactions
among model-related errors caused by perturbations of differ-
ent parameters to model output variance. For example, this is
not a priori clear when model-related error caused by uncer-
tainty in the nutrient stock parameterization is amplified
considerably by interactions with uncertainty in the light-
related factors.
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