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Summary. A guided discharge of ice into the belt of subpolar and midlatitude
westerlies from the polar region is observed near the east side of both the
Antarctic  Peninsula and Greenland. Meteorological observations
(Schwerdtfeger) show that moderate to strong southerly surface winds often
develop along the marginal ice zone (MIZ) near the east side of the Antarciic
Peninsula. Such strong winds are generated by surface temperature gradient
over ice and water. These surface winds, acting through stress, in turn force
the drift of the MIZ, This implies an ice—air feedback mechanism. A coupled
air—ice model is established to discuss the instability properties of such a
feedback mechanism. The model consists of two parts: thermally forced
boundary laver air flow (Kuo) and mechanically forced MIZ drift. The two
components are linked through surface temperature gradient and surface
wind stress. The coupled ice—air model is solved for different values of the
three parameters: (a) mean ice thickness /7; (0.5 m< A< 10.5 m), (b) mean
surface temperature difference over ice and water DT, (1°C < DT, < 21°C),
and (¢) Brunt—Viisald frequency (0.32x 1077 577 < N < 1.45% 1072 s7"). The
model results show that the ice motion exhibits two hifurcations. First, it
bifurcates into decaying or growing mode, which depends in most cases on
the mean surface temperature difference DT, representing the strength of the
forcing. When DT, is small, the decaying mode exists. However, when DT
exceeds a first critical value which depends on /) and V (i.e. when N = 1.45
x107% s and H, =25 m, this critical value is 5°C), the growing mode
appears. Second, the growing mode bifurcates into non-oscillatory and
oscillatory states depending on DT, and the properties of ice. If DT, exceeds
the first critical value but does not reach a second critical vilue which mostly
depends on N {ie. when N=145%107% 57!, the second critical value is
14°C), and when ice is thin (generally during summer) the ice motion is non-
oscillatory; however, when ice is thick (gemerally during winter) the ice
motion is oscillatory. If DT, exceeds the second critical value, only the non:
oscillatery growing mode appears. We also estimate the scale of the ice
velocity and compute the growth rate and oscillatory period. These values
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agree well with the observationsand should provide 4 possible way 1o predict
MIZ migration.

Key words: marginal ice zone, free ice drift, thermally forced air flow,
instability, oscillation, ice—air interaction

1 Introduction

The aim of this study S 10 investigate the generation of strong along-ice-edge winds, the
fomation of ice-edge jét, and the instability criteria of ice drift in the MIZ by means of a
coupled ice—air model. lce-drift observations in the Greenland Sea from 1978 April 28 10
September 3 (Fig. 1) show two different types of ice motion: oscillation and non-oscillation.
Although ogean eddies probably produce oscillations in drift track, unother mesoscale
mechanism to cause the ice motion may stiil exist.

A possible mechanism for the mesoscale air-ice interaction is presented in Fig. 2. The
low-level air flow generated by the surfuce temperature gradient Is waterward (icebreeze) and
equatorward dlong the ice edge in both eastern Greenland and eastern Antarctic Peninsula,
and influences the ice through surface air stress. However. movement of the ice edge in the
MIZ changes thermal conditions near the surface and produces an extra air surface
temperature gradient across the ice edge.

The ice—air mteraction model depicted in the subsequent sections is infended to simulate
the main physical processes and to determine some instability criteria for the prediction of
MIZ migration.

2 Thermally forced boundary layer air flow

The surface isotherms, which are nearly parallel to the eastern coast of Greenland over the
Greenland Sea (Prik 1959), indicate that air temperature increases monotonically waterward
near the MIZ. Such a surface temperature gradient will generate a local air flow near the
MIZ. In this section we utilize a planetary boundary layer model treated by Kuo (1973) and

Figure 1. lte=drift observationsin the Greenland Sea.
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Figure 2. [oe —air—water coupled:system.

Chu (1983) 1osimulate a thermally forced boundary layer air flow, The coordinate system is
chosen as moving with the edge of MIZ. The x-axis is in the ¢ross-edge direction, and the
V-axis parallel to the ice edge. as shown in Fig. 3. The xcoordinate’s unit length is twice the
MIZ width, L (200 km), and that of the vertical coordinate is § = (¢/§2)"/?, where v is the
vertical eddy viscosity, and £2 the angular velocity of the Earth’s rotation. The linex = 1/2 is
located at the ice edge. The MIZ covers the zone (0 <x < 0.5, y) where the p-axis (x = 0) is
near the boundary between the MIZ and the interior ice pack. It is considered that spatial
variations in the MIZ are much larger perpendicular to the ice edge than parallel to it, and
hence derivatives with respect to y are assumed to be zero (Lepparanta & Hibler 1986).
Since acceleration of the ice edge is small compared with that of the air flow, we may ignore
the inertial force due to the use of a coordinate system moving relative to the Earth,

The potential temperature of air is divided into two parts: a basic state §p.(z) and
perturbation 8 « . The basic state is given by

BB-{Z)=BQQ +('.-'V33505f3)2. (1)

where 0y, is the basic air potential temperature at the surface, and NV the Brunt— Vaisdld
frequency:

Ice Interior MiZ -~ Open Water

L 4
-

Figure 3. The model MIZ and the coordinate system.
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Figure 4. Influence of MIZ migration on surfnce 1emperature gradient,

Fig. 4 shows the influence of ice motion on the surface temperature gradient, where 70%)
is the water surface tempeérature at a distance of L/2 from the ice edge when the ice is
motionless, 7" is the ice temperature at the boundary between the MIZ and the interior
ice, and L/2 is the width of the MIZ. The first-order approximation representing the
influence of ice migration on surface heating is obtained from the following assumptions:
(a) due to the large heat capacity of water, the ice motion does not immediately change the
water surface temperature T™V); (b) T4, which is determined by the large-scale processes,
remains constant; (¢) the sinuscidal form (as distinct from scale variation) of the surface
temperature distribution between 7™ and 7V remains invariant when the MIZ migrates
iceward or waterward.

Waterward/iceward migration of the MIZ shortens/enlarges the distance between 7V
and 7' The surface temperature gradient is thereby increased/decreased (Fig. 4b, ¢). Thus
the surface temperature perturbation is parameterized as

61(x,0,8)=— DT [1+ (0] cosmx, (2)

where DT, is the meun surface temperature difference across the MIZ, and {(7) is the non-
dimensional displacement of the ice sdge. The coordinates and aimospheric variables are
non-dimensionalized by setting

(xs, 2., )= (xL, 28, 1T), s"=021054 = (DTo/0y4)s,

(e ve, wo)=Uly, v, w8fL), P.=(g8DTy/0pu)p. (3)
where
U=gsDT, /(2L g5) (4)

is the scale of icebreeze wind, and T is the time-scale for the change of surface temperature
gradient due to the movement of the ice edge. If we assume that the local air flow satisfies
the modified Boussinesq approximation (Kuo 1973). the vorticity equation, the momentum
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equation (both in the y direction). and the heat equation for the air disturbances generated
by differential surface temperature gradient near the MIZ (written in dimensionless
variables) are (Chu 1985)

EVAV*Y = f,dvfoz — Bs/ax, (5)
EViy=—f, dy/8z, (6)
and

EV3s=R; dy/dx. (@)

In the foregoing,

u=—ou/az, w = 0y/ax

V2 =8%uy (L y) 87 [3x? + 8% 322, V2 =62 /L%9% fax? + 3% [32°, (8)
where f, = sin ¢, ¢ is the latitude, »y, is the horizontal eddy viscosity, and
E=y/(295%)=1/2, R;=86*N?(4L2 Q%) (@)

are the Ekman and global Richardson numbers respectively. Non-linear terms are dropped
because the Rossby number is much less than unity, and terms involving time derivatives are
dropped because 297> 1. Eliminating v and s from (5)—(7) we find that the stream
function satisfies the following partial differential equation:

(17495 + f3)8° /827 + R, 3 Y/ox* = 0. (10)

We solve (10) for the stream function ¥, and obtain the solutions of v and s from (6) and (7)
after substituting . The local air flow is thermally forced by the surface temperature
gradient as indicated in (2), therefore the stream function should be written by

Ulx, z, )= Yz, 1) sin7x. (11)

The boundary conditions in the vertical direction are derived as follows. The dependent
variables should remain finite as z = o<, i.e,

Em (@1, 8870z, [v], s]) <e=. (12)

The boundary conditions at =z = 0 are:
¥=0, dyfoz=K 8% y/az?,
v=K du/dz, §=— [1 + ()] cosmx, (13)

where K is a measure of the effective depth of the constant stress sublayer (Kuo 1971).
Substituting (11) into (10) we obtain the following sixth-order ordinary differential
equation for the Fourier coefficient /:

d°fdz® — 4y d* Tjdz* + 4[5 + v*)d* Pjdz* — an*R;J = 0, (14)
where
¥ =728%u,/(2L%0). (15)

The general solution of (14) has the following form:

-]
Jen=[1+30] L 7;explya), (16)
=i
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Table 1. The standard model paramerers,

4 =200 km, v=5m? st v = 10% m? g7t
Q=0.7292 10 s, 2=981ms =, K=09.

030 =270K, Cl=055kgm™ <, Ca=3%1073,
2y = 1.29ke m, P =10% kg2, p; =910 kg m.

o= (63, 707, 75%,

where the eigenvalues M;(/=1,2...., 6) are the roots of the sixth-order algebraic equation:

N —ayX® £ 4(fF =7 N3

2R, =0. (17)

Table 1 lists the parameter values for the present caleulation, and Table 2 lists all the eigen-
values For typical stratification at three distinet latitudes (657, 70°. and 75%). Notice that
/2 appears in (17). so the eigenvalues in Table 2 represent both northern and southern polar
regions, According 1o the upper boundary conditions listed in (12) we must set equal to zero
all coefflicients a_,- which correspond to eigenvalues with positive reul parts. Conseguently the
general solution (16) sausfying the top boundary conditions may be written:

3
o=+ X ajexp (Nz), (18)
i=1
where the eigenvalues N; will have negative real parts. Substituting (18) into (11) we obtain
the stream function
3 —
U,z 0= Y a; [1+ ()] exp(Az)sin mx. (193
=
Integrating the momentum equation (6) and the heat equation (7) with respect to z after
substituting (19), we find that v and s are given by

3

wWx.z, = [Eexp (—v2¥2)=Tfo 3 a;N FAj,7) exp-{?\-z)l [1+&6r)] sinmx. (20).

=1
—_— 5 —_—

s{x,z, )= [c exp (—\/2y2}+ 7R, Z a;F(Az ) exp {?\;3)] [1+8()] cosax, (21N
=1

where

FONY)= (N2 =) (22;

Substituting the selutions (19)~(21) into the vorticity equation (5) we find that

¢ =2y 1y bm. (23)

Table 2. The ewrenvalues of the boundary Luyer uir flow mode] gt three ditTerent latitudes,

Latitudes

63"

(=0.32371.0)

1= 1.02800,0.87796)
(—1.02800, -0.87796)
(0.32371, 00
L2880, 0.87796)
(1.02800, =0.87796)

70%

(-0,31223,0)
(—1.04308, (1.89586)
(104508, ~0.89586)
0,31223,0)
(104508, 0.89386)
(1.04508, —0.89586)

75°

(1030378, )
(—1.05823, 090973
(—1.05823, -0.90973)
(030378, 0y

(105823, 0.90973)
(103823, —0.90973)
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Substituting the solutions (19)—(21) into the surface boundary conditions listed in (13)we
obtain the following four algebraic equations lor g; and A.

3
2 a;=0. (24)
=1
3 —_
2 M1 —KN)a;i=0. (25)
=1
3 -
—fo X N —KX)FN. v a;+ 51 + Kv/2Y) =0, (26)
=1
3 _ B .
7Ry ¥ FO\,y)ap+N2vfeb/n=—1. (27)
=1

The four constants @,, 2», @s. and b can be readily obtained by solving these four linear
inhomogeneous algebraic equations.

Figs 5—7 display the solutions for zero ice motion at ¢ =75, DT, =6 C.,and N =107
s~V Fig. 5 shows the distribution of air temperature in the ¢ross-ice section, The horizontal
temperature gradient is very deep near the ice-edge and decreases with altitude. Abovez =3
{z. =800 m) there is almost no horizontal temperature gradient. Fig. 6 shows the
distribution of the wind v along the ice edge in the cross-ice section. The longshore wind is
equatorward at low-levels (below =z = 2) and poleward at high-levels. This strong equator-
ward wind along the ice-edge near the MIZ (around 7 ms™ ) is consistent with the
observations near the Antarctic Peninsula (Schwerdtfeger 1979). Fig. 7 shows the cross-ice
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Figure 8. The distribution of air temperature (K)o the cross-ice section,
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Figure 6. The distribution of thermally forced slong ice-edge winds (m s~ }in the cross-ice section.

circulation. We see the obvious icebreeze at low levels. The speed of the icebreeze reaches a
maximum (which is around 3 m s™") at the ice-edge.

3 Free ice drift mode!
The linearized momentum equations for a free drift ice model are written by:

au'p’ar. =ij_+(Tax+wa)}'(P§Hi), (28)
av;/af.=~.fui+('."”.+7"W_‘._};’(piﬂi}__ (29)
10
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Figure 7. Thermally forced icebreeze circulation in the crosy-ice section with winms™ and winem &%,
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where f(=2Q sin @) is the Coriolis parameter, H, the mean ice thickness, p; the ice density,
Vi= (4, vj) the ice velocity, 7, = (74, 75y) the wind stress, 7y = (7w x, Twy) the water
stress, x the non-dimensional horizontal coordinate. The air and water stresses are given by

7, =C3 Vs, 74 =Co (Vo — Vi), (30)

where V, is the surface air velocity, V,, the surface water velocity and C, and C), the
dimensional air and water drag coefficients, €/ is further given by

Cs = Cop UI@/32)* + 0 121y =05, =0, (31)

where  and v are obtained by (19)—(20). In contrast to the treatments by Hibler (1984),
and by Lepparanta & Hibler (1986). the surface air siress 7, is directly computed by the
boundary-layer flow model presented in the previous section. Substituting the expressions
for air and water stresses (30) into (28) and (29) and assuming that V. = 0, we obtain

/e, = — Cytty = foy + Coitgo [1 + £(1)] sinmx. o
A /At. = — Oy — iy + Cuo [t + E(1)] sinmx, L
where
E;; = Esf-g(pi H;). E“' = C\'\ f(piHl)'
3 —
Uy = — g8DT, [(2L.926 4 ) Z ajhy,
j=1

- — .‘

Va0 =g8DTo/(2L20w) (B~ fo T a;N FON, 7)} : -
=t '

Equations (32) and (33) are the hasic equations for ice motion.

4 Wind-driven steady-state ice motion (u;,, vy,)

For the steady-state, the basic equations (32) and (33) become

— Cyltys + fiije + Tty sinmx = 0, (33a)
—~ CyVis — Jitig + Cutgo sinmx = 0. (35b)

Since our model is linear the mechanically forced ice motion u;, and u;; should have the
same Fourier component as the forcing terms, i.e.

wi{X) = iy, sin Tx, vis(x) = vy, sin 1 (36)

Substituting (36) into (354, b) we find that

"_"i_s = 53(€w_u3_0 + ﬁ’aojf{cﬁ' "'fz)' (37a)
Vi = Co(Coytsg — ftgo)(CZ + 12). (37b)

We can take Ei,, and Ei, as scales for the ice velocities, At N=107%s7!, DT, = 10°C, and
H;=1.5 m,we find that

e 1A -1 re 3 -1
Up=133ems™, v =31 ems .

which agree with the observations of ice speeds in the Gresnland Sea and Arctic Ocean.
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5 Wind-driven time-dependent ice motion (u;. v;)
5.1 SOLUTIONS

As in the steady-state case, the solutions of the basic equations (32) and (33) should have
the sarme Fourier component as the foreing terms, ie.

wi(x, t+)=uy(r, ) sin 7k, vilx. 1) = vi(t.) sin 7x. (38)

By definition, {(r) is the non-dimensional ice=edge displacement in the x-direction. It is
related to ice velocity by

Ldgjdt, =u1)2,8.) = ui(r.). (39)

Eliminating one of the two dependent variables ; and v, from (32) and (33) we get the
following third-order equation for the coefficients:

[D? 4 2C.D? +{Ch — CoutyofL + £)D — C,CpttanfL — 1T,050/L] (3, 0;) =0, (40)

where

D=dfdr,. (41)

The general solutions of (40) have the following form:

_ 3 3

()= Y diexp (), (i) = X erexp(yr.). (42)
=1 =1

The eigenvalues u, , u» , w5 are the roots of the following cubic equation:

1+ 204 + (Chy - Caugo/E + Wt — (/L) (Couttyg + fo,6) = 0. (43)

52 STABILITY AND OSCILLATION CRITERIA

The standard values of parameters are given in Table 1. We solve the characteristic equation
(43) with different values of H;, N, and DT,. H; varies from 0.3 to 105 m, N from
032x107 w 145x107% s}, DT, from 1° to 21°C. The instability criterion for MIZ
‘migration in the ice—air coupled model can be written

<0 decaying
Re(u){ =0 neutral p=pu,, M. Mg (44)
>0 growing

where g is the root of cubic equation (43). The oscillation criterion for MIZ migration is
given by
o ) =0 non-oscillatory = 5)
m H=Uy Ha M5,

#0  oscillatory ¥l

';3 DEPENDENCE OF EIGENVALUES By Mg  AND gy ON THE PARAMETERS
(H;, N. DTy)

We compute all the roots of (43) for different values of the parameters H;, N, DT, and
obtain three roots g, , L. 5 at each point of the parameter space (H; N*. DT,). Here i, is
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real throughout that space, and u, and ua are real for some values of (H;, N*, DT, ) and are
complex elsewhere, _

Fig. 8 shows the surface 4, = 0 in the three-dimensional space (H;, N*, DT, ). This surface
divides the space into two parts corrésponding to growing and decaying modes. The growing
mode generally appears when D7, exceeds some critical value around 10°C. This critical
value decreases with #,, and becomes very small (around 1°C) in the region of small mean
ice-thickness H;(H; < 1.5 m). Ice motion corresponding to the eigenvalue g, is non-
oscillatory.

Fig. 9 indicates the surface of Re{x2) =0 (or Re (i) = 0) in the parameter space (H;, N*
DTy ). This surface separates the whole space into growing and decaying parts. The growing
mode is present when DT, exceeds some critical value which is 2 function of /| and N*
(when H; =45 mand N? = 1.1 x 107 s7%. DT, =3°C), and is in the region that the mean
ice thickness //; exceeds some critical value around 2.5 m.

Fig. 10 reveals the segregation of non-oscillatory and oscillatory modes relating to g, and
M3 . Comparing Fig. 10 with Fig, 9, we find that the decaying mode of y and p5 is generally
non-oscillatory whereas the growing mode of u; and py is generally oscillatory.

Figs 8—10 show the following: (1) both non-oscillatory and oscillatory decaying modes
share a2 common area (restricted to the region of small D7,) in the parameter space:
however, (2) non-oscillatory and oscillatory growing modes occupy different regions in the
parameter space. The segregation of the two modes depends largely on D7 ‘and H;.

Whether ice motion grows or decays substantially depends on a first critical value of the
parameter DT, (when N=1.45%x107 s7' and H;= 2.5 m, this critical value is 5°C). When
DT, is smaller than the first critical value. the motive force is so small that it cannot over-
come dissipative effects and does not make ice motion unstable. If DT, becomes large
enough 1o overcome the dissipative effects of friction, ice motion becomes larger.

Whether ice motion is oscillatory or non-oscillatory largely depends on DT, and the
praperties of ice. If DT, exceeds the first critical value but does not reach a second critical
value which mostly depends on V (i.e. when N = 1.45x 1072 57}, the second critical value is
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Figure 9. Sepération of decaying and growing modes referring to eigenvalues k, and uy.

14°C), and when ice is thin (generally during summer) the ice motion is non-oscillatory,
however, when the ice is thick (generally during winter) the ice motion is oscillatory. If DT,
exceeds the second critical value, only the non-oscillatory growing mode appears.

6 Non-oscillatory growing mode

The non-oscillatory growing mode of ice motion is due to the positive eigenvalue u; . Fig. 11
indicates the isolines of &, with H; and DT, at two different values of N (0.32x 107> 7%,
1.45x 107 s7'). The isoline patterns at these two values are very similar. A ‘I“rype’



Instability theory jor marginal ice zone 875

21

Imfu, =0

Nonosillazory

} !
Oscillatory

2
N ('.D-d.». -z
i
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boundary separates the non-oscillatory growing (i, > 0) and decaying (g, < 0) modes. The
growing mode is located either in an area of large DT, (DT, > 10°C if ¥=032x107 57!
and DTy > 14°Cif N=1.45%107% s7%) or in an-area of small #; when DT, is small. In the
growing area the growth rate accelerates monotonically with an increase of DT, It is quite
understandable that the¢ larger DT, is, the stronger the forcing.

For the non-oscillatory growing mode the time during which the'ice doubles its speed is

Ti=In2/k;, (5 >0). (46)
If H; and N are assigned values
Hi=1m, N=107s",

the doubling time treated asa function of DT}, is shown in Fig. 12, which displays a decrease
of T, with an increase of DT,. T; changes from 2.2 to 0.18hr as DT, varies from 5° to
22°C.

7 Oscillatory growing mode

The oscillatory growing mode is ice motion due to gy (or g3 ), whose real part is positive and
the imaginary part is different from zero, i.e.

Re(4y)>0(orRe(pa)>0).  Im(pa)# 0 (orIm(pg3) #0).

Figs 13 and 14 show the isolines of real and imaginary parts of us and py with A, and
DT, for two different values of V(032x1072 571, 1.45% 107% 57 ). From these figures we
find that the growing oscillatory mode is located in the area where DT, is larger than the
first critical value and smaller than the second critical value. As in the non-oscillatory case
the growth rate Re(u, ;) increases with an increase of DT, (increase of forcing). With
DT, =6"C,N=032x107 57 and H; = 5.5 m, the growth rate

Re (p 3)=0.15x1077 571,
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The corresponding doubling time is 12.84 hr. The period of the growing oscillatory mode
defined by

Ty = 2a/| lm (s 3)| (47)

is 9.28 hr.

Fig. 15 shows the doubling time and period as functions of DTy, for H; =5 m and
N=10"%s"" The doubling time decreases monotonically with an increase of D7 . However,
the period increases slightly when DT, varies from 3°C to 10°C, and then increases rapidly
with DT,. When DT, = 12.5°C the period is nearly one day.

8 Conclusions

(a) This ice—air coupled model is intendad to depict only the mesoscale processes of ice—air
interaction in the MIZ. The synoptic scale pressure gradient associated with the semi-
permanent lcelandic low may additionally produce equatorward winds in the Greenland Sea,
and large-scale ocean currents near the East Greenland Sea or the Antarctic Peninsula may
drive ice-drift. These processes are, howeaver, beyond the scope of this paper. Nevertheless,
when the ice-te-open-water temperature gradient is strong, the mesoscale feedback
mechanism discussed here may become s strong as, or stronger than, the synoptic scale and
oceanic forcings.

(b) The equatorward and waterward surface winds near the MIZ in the Greenland Sea and
the east Antarctic Peninsula are thermally genérated by differential surface temperature
gradient over ice and water. The surface wind has its maximum speed along the ice edge. The
component of surface wind paralle! 10 the ice edge can reach 7 ms™" ‘when the temperature
gradient in the cross-ice direction is chosen as 003K km™'. This agrees with the
observations at the east Antarctic Peninsula reported by Schwerdtfeger (1979).

(c) The migration of the MIZ is forced by local winds generated by differential surface
temperature gradient over ice and ‘water near the ice edge. The ice velocity V| has the
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Figure 15, Dependence of doubling time and pericd on DT, for oscillatory growing mode.

sinusoidal form (38) showing an ice-edge jet. The ice velocity has its maximum at the ice
edge and decreases iceward. This implies that the ice-edge jet is produced indirectly by the
thermal effect of the ice—water contrasts,

(d) The ice motion has two bifurcations. First, it bifurcates into a decaying or growing
mode, which depends in most cases on the mean surface temperature difference DT,
representing the strength of the forcing. When DT, is small, the decaying mode exists,
However, when DT, exceeds a first critical value which depends on H, and V (i.e. when
N=145x107s™" and H;=2.5m, this critical value is 5°C), the growing mode appears.
Secondly, the growing mode bifurcates into non-oscillatory and oscillatory states depending
on DT, and the properties of ice. If DT}, exceeds the first critical value but does not reach a
second critical value which mostly depends on NV (i.e. when N = 1,45 % 1072 s, the second
critical value is 14°C), and when ice is thin (generally during summer) the ice motion is non-
oscillatory; however, when ice is thick (generally in winter) the ice motion is oscillatory. If
DT, exceeds the second critical value, only the non-oscillatory growing mode appears.
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